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Stochastic Hodgkin-Huxley Models and Noise Decomposition

Abstract

by

SHUSEN PU

In this thesis, we present a natural 14-dimensional Langevin model for the Hodgkin-

Huxley (HH) conductance-based neuron model in which each directed edge in the ion

channel state transition graph acts as an independent noise source, leading to a 14×28 noise

coefficient matrix. We show that (i) the corresponding 14D mean-field ordinary differential

equation system is consistent with the classical 4D representation of the HH system; (ii) the

14D representation leads to a noise coefficient matrix that can be obtained cheaply on each

timestep, without requiring a matrix decomposition; (iii) sample trajectories of the 14D

representation are pathwise equivalent to trajectories of several existing Langevin models,

including one proposed by Fox and Lu in 1994; (iv) our 14D representation give the most

accurate interspike-interval distribution, not only with respect to moments but under both

the L1 and L∞ metric-space norms; and (v) the 14D representation gives an approximation

to exact Markov chain simulations that are as fast and as efficient as all equivalent models.

We combine the stochastic shielding (SS) approximation, introduced by Schmandt and

Galán in 2012, with Langevin versions of the HH model to derive an analytic decom-

position of the variance of the interspike intervals (ISI), based on the mean–return-time

oscillator phase. We prove in theory, and demonstrate numerically, that in the limit of

x



small noise, the variance of the ISI decomposes linearly into a sum of contributions from

each directed edge. Unlike prior analyses, our results apply to current clamp rather than

voltage clamp conditions. Under current clamp, a stochastic conductance-based model is

an example of a piecewise-deterministic Markov process. Our theory is exact in the limit of

small channel noise. Through numerical simulations we demonstrate its applicability over a

range from small to moderate noise levels. We show numerically that the SS approximation

has a high degree of accuracy even for larger, physiologically relevant noise levels.

xi



Part I

Introduction and Motivation
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Chapter 1

Physiology Background

There is no scientific study more vital to man than the study of his own brain.

Our entire view of the universe depends on it.

– Francis Crick

1.1 Single Cell Neurophysiology

The human brain is the command center for the human nervous system, which controls

most of the activities of the body, receiving and analyzing information from the body’s

sensory organs, and sending out decision information to the rest of the body. The human

brain contains billions of nerve cells interconnected by trillions of synapses, that commu-

nicate with one another and with peripheral systems (sensory organs, muscles) through

transient spikes in transmembrane voltages called “action potentials”. Fig. 1.1 shows three

types of neurons. In a neuron, the dendrite receives inputs from other neurons, and the axon

carries the neuronal output to other cells [22].
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Figure 1.1: Morphology of neurons. A: a cortical pyramidal cell. B: a Purkinje cell of
the cerebellum. C: a stellate cell of the cerebral cortex. Reproduced from [22], original
drawing from [133]; figure from [27].

3



1.2 Ion Channels

There are a wide variety of pore-forming membrane proteins, namely ion channels, that

allow ions, such as sodium (Na+), potassium (K+), calcium (Ca2+), and chloride (Cl−),

to pass through the cell. Ion channels control the flow of ions across the cell membrane

by opening and closing in response to voltage changes and to both internal and external

signals. Neurons maintain a voltage difference between the exterior and interior of the cell,

which is called the membrane potential. Under resting conditions, a typical voltage across

an neuron cell membrane is about −70 mV. Pumps spanning the cell membrane maintain

a concentration difference that support this membrane potential. More specifically, under

the resting state, the concentration of Na+ is much higher outside a neuron than inside,

while the concentration of K+ is significantly higher inside the neuron than its extracellular

environment [22].

An action potential occurs when the membrane potential at a specific location of the

cell rapidly changes. Action potentials are generated by voltage-gated ion channels in

the cell’s membrane. These ion channels are shut when the membrane potential is near

the resting potential and they rapidly open when the membrane potential increases to a

threshold voltage, which leads a depolarization of the membrane potential [8]. During the

depolarization, the sodium channels open, which produces a further rise in the membrane

potential. The influx of sodium ions causes the polarity of the membrane to reverse, which

rapidly leads to the inactivation of sodium channels and activation of potassium channels.

There is a transient negative shift after an action potential has occurred, which is called

the after hyperpolarization (AHP). Action potentials (or “spikes”) are generally thought to

carry information via their timing (as opposed to their magnitude or duration). Figure 1.2

gives an schematic plot of a typical action potential.
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Figure 1.2: Schematic plot of a typical action potential on a cell membrane. The resting
potential is ≈ −70 mV, and a stimulus is applied at time = 42 ms, which raises the
membrane potential above a threshold voltage (≈ −55 mV in this case). After reaching the
threshold, the membrane potential rapidly rises to a peak potential around 25 mV at time
= 62 ms, which is followed by a rapid fall that overshoots −70 mV to a hyperpolarization
state. After a resetting process, the membrane potential finally sets back to ≈ −70 mV
around time = 88 ms. The spike itself is an all-or-none phenomenon, so information is
coded not in the amplitude of a spike but in the timing of spikes.

The timing of action potentials is determined by a combination of deterministic factors

external to a nerve cell (the transmembrane current it receives from its synapses, for ex-

ample) and intrinsic stochastic factors such as the random gating of discrete populations of

ion channels. Under experimental conditions in which a single nerve cell’s external inputs

are blocked, save for a constant applied driving current, the variability of action potential

timing due to fluctuations in the states of several ion channels (sodium, potassium, and

calcium channels being among the most prominent types) can be studied in the laboratory.
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Chapter 2

Foundations of the Hodgkin-Huxley

Model

The Nobel Prize in Physiology or Medicine 1963 is awarded jointly to Sir John

Carew Eccles, Alan Lloyd Hodgkin and Andrew Fielding Huxley “for their dis-

coveries concerning the ionic mechanisms involved in excitation and inhibition

in the peripheral and central portions of the nerve cell membrane.”

– Nobel Prize Committee, 1963

By using voltage clamp experiments and varying extracellular sodium and potassium

concentrations, Alan Hodgkin and Andrew Huxley described a model in 1952 to explain

the ionic mechanisms underlying the initiation and propagation of action potentials. The

Hodgkin-Huxley (HH) model is a set of four nonlinear ordinary differential equations

that approximates the electrical characteristics of neurons firing. They received the 1963

Nobel Prize in Physiology or Medicine for their ground-breaking work on modeling neuron

spikes. In this section, we will first review essential components of the HH model, includ-
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ing the membrane capacitance, reversal potentials, active conductances, and membrane

current. Then, we will present the mathematical framework of the HH model.

2.1 Membrane Capacitance and Reversal Potentials

Ionic pumps embedded in the membranes of nerve cells typically maintain a negative

charge on the inside surface of the cell membrane, and a balancing positive charge on its

outside surface. This charge imbalance creates a voltage difference V between the inside

and outside of the cell. Specifically, the lipid bilayer of the cell membrane forms a thin

insulator that separates two electrolytic media, the extracellular space and the cytoplasm

[51]. The specific membrane capacitance Cm, the potential across the membrane V , and

the amount of the excess charge density Q (per area) are related by the equation Q = CmV

[1]. Given that the thickness of the membrane is a constant, the total membrane capacitance

cm of a cell is a quantity directly proportional to the membrane surface area and the

properties of the membrane. Therefore, the total membrane capacitance is cm = CmA,

where Cm is the per area membrane capacitance (typically in units of µF/cm2) and A is

the area (typically in units of cm2). The capacitance per unit area of membrane, Cm, is

approximately the same for all neurons with Cm ≈ 10nF/mm2.

The membrane capacitance can be used to determine the current required to change the

membrane potential at a given rate. More specifically, the relation between the change in

voltage and charge can be written as

Cm
dV

dt
=
dQ

dt
. (2.1)

Equation 2.1 plays an important role in the formulation of the HH model.
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The reversal potential for a channel is the voltage at which the net current through the

channel is zero. The reversal potential is determined by the difference of concentration of

ions inside the cell, [C]in, and the concentration outside the cell, [C]out. The Nernst equation

[22] for the reversal potential can be written as

V =
RT

zF
log

[C]in
[C]out

, (2.2)

where R is the universal gas constant: R = 8.31 JK−1mol−1, T is the temperature in

Kelvins, F is the Faraday constant, and z is the charge of the ion species (z = +1 for

Na+ and K+, −1 for Cl−, and z = +2 for Ca2+). The reversal potential for a K+channel,

VK, typically falls in the range between -70 and -90 mV. The reversal potential for Na+, VNa,

is 50 mV or higher. Throughout this thesis, we will use VK = −77mV and VNa = 50mV

for all numerical simulations.

2.2 The Membrane Current

The membrane current of a neuron is the total current flowing across the membrane through

all ion channels [22]. The total membrane current is determined by including all currents

resulting from different types of channels within the cell membrane. To make it comparable

for neurons with different sizes, the membrane current per unit area of cell membrane

is conveniently used, which we define as Im. The total membrane current is obtained

from the current per unit area Im by multiplying by the total surface area of the cell. For

each ion channel, the current depends approximately linearly on the difference between the

membrane potential and its reversal potential, Vion.1 Given the conductance per unit area,

1Here we followed the standard convention that equates “ion channels” with “ion”; in particular, we do
not consider nonspecific ion channels.
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gion, for each ion channel, the total membrane current can be expressed as a sum of currents

from different ion channels as

Im =
∑
ion

gion(V − Vion), (2.3)

which is Ohmic approximation for the membrane current.2

2.3 The Hodgkin-Huxley Model

In the model Hodgkin and Huxley proposed in 1952, the behaviour of a nerve fiber is

described using an electrical network where the membrane is represented by a capacitor

of fixed capacitance, and the ion pathways through the membrane are represented by three

resistance-capacitor modules arranged in parallel (see Fig. 2.1).

The Hodgkin-Huxley [59] model treats each component of an excitable cell as an

electrical element (as shown in Figure 2.1). The lipid bilayer is represented as a capacitance

(Cm). Voltage-gated ion channels are represented by active electrical conductances (gion,

where ion stands for Na+ or K+) that vary dynamically, depending on the voltage. The leak

channels (gL) represent a generic ionic current. Reversal potentials for the Na+, K+ and

leak channels are defined as VNa, VK, and VL, respectively.

Therefore, if we denote the membrane potential by Vm, the current flowing through the

lipid bilayer can be written as

Ic = Cm
dVm
dt

(2.4)

2A more precise expression, given by the Goldman-Hodgkin-Katz equation, gives good agreement with
this linear approximation over the physiologically relevant voltage range.
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Figure 2.1: Basic components of the Hodgkin–Huxley model. The lipid bilayer is
represented as a capacitance (Cm). Reversal potentials for the Na+, K+and leak channels
are VNa, VK, and VL, respectively. Shaded boxes represent active conductances (inverse
resistances) gion that specify the Ohmic currents Iion = gion(V −Vion), for ion ∈ {Na,K,L}.
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and the current through a given ion channel is a product

Iion = gion(Vm − Vion). (2.5)

The original HH model only considered the Na+ and K+ currents and a leak current,

therefore, the total current through the membrane is

I = Cm
dVm
dt

+ gK(Vm − VK) + gNa(Vm − VNa) + gL(Vm − VL) (2.6)

where I is the total membrane current per unit area, Cm is the membrane capacitance per

unit area, gK and gNa are the potassium and sodium conductances per unit area. VK and VNa

are the potassium and sodium reversal potentials, and gL and VL are the leak conductance

per unit area and leak reversal potential, respectively. Appendix B has a complete list of

parameters.

Using a series of voltage clamp experiments, and by numerically fitting parameters,

Hodgkin and Huxley [59] developed a set of four ordinary differential equations as

C
dv

dt
= −ḡNam

3h(v − VNa)− ḡKn
4(v − VK)− gL(v − VL) + Iapp, (2.7)

dm

dt
= αm(v)(1−m)− βm(v)m, (2.8)

dh

dt
= αh(v)(1− h)− βh(v)h, (2.9)

dn

dt
= αn(v)(1− n)− βn(v)n, (2.10)

where v is the membrane potential, Iapp is the applied current, and 0 ≤ m,n, h ≤ 1 are di-

mensionless gating variables associated with the Na+ and K+ channels. The constant ḡion is

the maximal value of the conductance for the sodium and potassium channel, respectively.
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Parameters Vion and C are the ionic reversal potentials and capacitance, respectively. The

quantities αx and βx, x ∈ {m,n, h} are the voltage-dependent per capita transition rates,

defined as

αm(v) =
0.1(25− v)

exp(2.5− 0.1v)− 1
, (2.11)

βm(v) = 4 exp(−v/18), (2.12)

αh(v) = 0.07 exp(−v/20), (2.13)

βh(v) =
1

exp(3− 0.1v) + 1
, (2.14)

αn(v) =
0.01(10− v)

exp(1− 0.1v)− 1
, (2.15)

βn(v) = 0.125 exp(−v/80). (2.16)

Fig. 2.2 shows the voltage component of a regular spiking trajectory of the HH equa-

tions with constant driving current injection of I = 10 nA/cm2.

12



Figure 2.2: Sample trace of the deterministic HH model showing periodic firing using
standard parameters (cf. Tab. B.1) and I = 10 nA/cm2. The interspike interval (ISI) for
this specific case is T ≈ 14.6384 ms.
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Chapter 3

Channel Noise

The probabilistic gating of voltage-dependent ion channels is a source of electri-

cal “channel noise” in neurons. This noise has long been implicated in limiting

the reliability of neuronal responses to repeated presentations of identical stimuli.

– White, Rubinstein and Kay [126]

Nerve cells communicate with one another, process sensory information, and control

motor systems through transient voltage pulses, or spikes. At the single-cell level, neurons

exhibit a combination of deterministic and stochastic behaviors. In the supra-threshold

regime, the regular firing of action potentials under steady current drive suggests limit

cycle dynamics, with the precise timing of voltage spikes perturbed by noise. Variability

of action potential timing persists even under blockade of synaptic connections, consistent

with an intrinsically noisy neural dynamics arising from the random gating of ion channel

populations, or “channel noise” [126].

Channel noise arises from the random opening and closing of finite populations of ion

channels embedded in the cell membranes of individual nerve cells, or localized regions of
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Estimated numbers of Na+ and K+ channels in different cell types
Ion Type of cell Number of channels Reference

Na+

chromaffin cells 1,800-12,500 [35, 120]a

cardiac Purkinje cells &325,000 [79]b

node of Ranvier 21,000-42,000 [115]c

squid axon (1mm)d &18,800 [34]d

pyramidal cell &17,000 [34]d

Purkinje cellg 47,000-158,000 [38, 113]d,f,g

pre-BötC neuronsh 56-5,600 [15, 34]d,f,h

K+

squid axon (1mm)d &5,600 [34]d

pyramidal cell &2,000 [34]d

Purkinje cellg 3,000-55,000 [38, 113]d,e,g

pre-BötC neuronsh 112-2,240 [15, 34]d,e,h

Table 3.1: Details of the data sources:

(a) Na+ density: 1.5-10 channels/µm2[35], the average diameter of rounded chromaffin
cells is d ≈ 20µm, Area=πd2 [120].

(b) Na+ density: 260 channels/µm2 [79], and diameter of roughly 20µm [79].

(c) Number of Na+ channels in Tab. 1 from [115].

(d) Na+ density: 60 channels/µm2 in squid axon, and 68 channels/µm2 in pyramidal
axon (Tab. S1 in [34]). K+ density: 18 channels/µm2 in squid axon, and 8
channels/µm2 in pyramidal axon (Tab. S1 in [34]). Membrane area: squid axon: 0.1
µm diameter and 1mm length (Fig. S2 in [34]); pyramical cell: 0.08µm diameter
with 1 mm length (Fig. S1 in [34]). Single voltage-gated ion channel conductance is
typically in the range of 5-50 pS, and 15-25 pS for Na+ (p. 1148 [34]).

(e) Single K+ channel conductance ([113]): inward rectifier in horizontal cells (20-30
pS in 62-125 mM K+, 9-14◦C); skeletal muscle (10 pS in 155 mM K+, 24-26◦C);
egg cells (≈6 pS for 155 mM K+, 14-15◦C); heart cells (27 pS for 145 mM K+ at
17-23◦C; 45 pS for 150 mM K+ at 31-36◦C).

(f) Single Na+ channel conductance is≈14 pS in squid axon, other measurements under
various conditions show results in the range of 2-18 pS (Tab. 1 in [9]).

(g) Maximal conductance for different K+ channels (Tab. 1 in [38]): SK K+ (10
mS/cm2), highly TEA K+ (41.6 mS/cm2) sensitive BK K+ (72.8 mS/cm2);
membrane area (1521 µm2). Maximal conductance for resurgent Na+ (156 mS/cm2).
Note that the range of K+ channels provided here is for each type of K+ channel, not
the total number of K+ channels.

(h) Maximal conductance (ḡion) in pacemaker cells of the pre-Bötzinger complex (pre-
BötC) [15]: ḡNaP = 2.8 nS for persistent Na+ current, ḡNa = 28 nS for fast
Na+ current, and ḡK ∈ [5.6, 11.2] nS for different types of K+ channels (p. 384-385).
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axons or dendrites. Electrophysiological and neuroanatomical measurements do not typi-

cally provide direct measures of the sizes of ion channel populations. Rather, the size of ion

channel populations must be inferred indirectly from other measurements. Several papers

report the density of sodium or potassium channels per area of cell membrane [34, 35, 79].

Multiplying such a density by an estimate of the total membrane area of a cell gives one

estimate for the size of a population of ion channels. Sigworth [115] pioneered statistical

measures of ion channel populations based on the mean and variance of current fluctuations

observed in excitable membranes, for instance in the isolated node of Ranvier in axons of

the frog. Single-channel recordings [85] allowed direct measurement of the “unitary”,

or single–channel-conductance, goNa or goK. Most conductance-based, ordinary differential

equations models of neural dynamics incorporate maximal conductance parameters (gNa or

gK) which nominally represents the conductance that would be present if all channels of a

given type were open. The ratio of g to go thus gives an indirect estimate of the number

of ion channels in a specific cell type. Tab. 3.1 summarizes a range of estimates for ion

channel populations from several sources in the literature. Individual cells range from 50

to 325,000 channels for each type of ion. In §11.2 of this thesis, we will consider effective

channel populations spanning this entire range (cf. Figs 11.3, 11.4).

3.1 Modeling Channel Noise

Hodgkin and Huxley’s quantitative model for active sodium and potassium currents produc-

ing action potential generation in the giant axon of Loligo [59] suggested an underlying sys-

tem of gating variables consistent with a multi-state Markov process description [58]. The

discrete nature of individual ion channel conductances was subsequently experimentally

confirmed [85]. Following this work, numerical studies of high-dimensional discrete-state,
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Figure 3.1: Molecular potassium (K+) and sodium (Na+) channel states for the Hodgkin-
Huxley model. Filled circles mark conducting states n4 and m31. Per capita transition rates
for each directed edge (αn, βn, αm, βm, αh and βh) are voltage dependent (cf. eqns. (B.1)-
(B.6)). Directed edges are numbered 1-8 (K+ channel) and 1-20 (Na+-channel), marked in
small red numerals.

continuous-time Markov chain models produced insights into the effects of fluctuations

in discrete ion channel populations on action potentials [116, 119], aka channel noise

[125, 126].

In the standard molecular-level HH model, which we adopt here, the K+ channel

comprises four identical “n” gates that open and close independently, giving a five-vertex

channel-state diagram with eight directed edges; the channel conducts a current only when

in the rightmost state (Fig. 3.1, top). The Na+ channel comprises three identical “m” gates

and a single “h” gate, all independent, giving an eight-vertex diagram with twenty directed

edges, of which one is conducting (Fig. 3.1, bottom).

Discrete-state channel noise models are numerically intensive, whether implemented

using discrete-time binomial approximations to the underlying continuous-time Markov
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process [102, 116] or continuous-time hybrid Markov models with exponentially distributed

state transitions and continuously varying membrane potential. The latter were intro-

duced by [18] and are in principle exact [4]. Under voltage-clamp conditions the hybrid

conductance-based model reduces to a time-homogeneous Markov chain [19] that can

be simulated using standard methods such as Gillespie’s exact algorithm [46, 47]. Even

with this simplification, such Markov Chain (MC) algorithms are numerically expensive

to simulate with realistic population sizes of thousands of channels or greater. Therefore,

there is an ongoing need for efficient and accurate approximation methods.

Following Clay and DeFelice’s exposition of continuous time Markov chain implemen-

tations, [39] introduced a Fokker-Planck equation (FPE) framework that captured the first

and second order statistics of HH ion channel dynamics in a 14-dimensional representation.

Taking into account conservation of probability, one needs four variables to represent

the population of K+ channels, seven for Na+, and one for voltage, leading to a 12-

dimensional state space description. The resulting high-dimensional partial differential

equation is impractical to solve numerically. However, as Fox and Lu observed, “to every

Fokker-Planck description, there is associated a Langevin description” [39]. They therefore

introduced a Langevin stochastic differential equation of the form:

C
dV

dt
= Iapp(t)− ḡNaM8 (V − VNa)− ḡKN5 (V − VK)− gleak(V − Vleak), (3.1)

dM

dt
= ANaM + S1ξ1, (3.2)

dN

dt
= AKN + S2ξ2, (3.3)

where C is the capacitance, Iapp is the applied current, maximal conductances are denoted

ḡion, with Vion being the associated reversal potential, and ohmic leak current gleak(V −Vleak).

M ∈ R8 and N ∈ R5 are vectors for the fractions of Na+ and K+ channels in each
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state, with M8 representing the open channel fraction for Na+, and N5 the open channel

fraction for K+ (Fig. 3.1). Vectors ξ1(t) ∈ R8 and ξ2(t) ∈ R5 are independent Gaussian

white noise processes with zero mean and unit variances 〈ξ1(t)ξᵀ1(t′)〉 = I8 δ(t − t′) and

〈ξ2(t)ξᵀ2(t′)〉 = I5 δ(t − t′). The state-dependent rate matrices ANa and AK are given in

eqns. (5.10) and (5.11). In Fox and Lu’s formulation, S must satisfy S =
√
D, where D

is a symmetric, positive semi-definite k × k “diffusion matrix” (see Appendix C for the D

matrices for the standard HH K+ and Na+ channels). We will refer to the 14-dimensional

Langevin equations (3.1)-(3.3), with S =
√
D, as the “Fox-Lu” model.

3.2 Motivation 1: The Need for Efficient Models

The original Fox-Lu model, later called the “conductance noise model” by [49], did not

see widespread use until gains in computing speed made the square root calculations more

feasible. Seeking a more efficient approximation, [39] also introduced a four-dimensional

Langevin version of the HH model. This model was systematically studied in [40] which

can be written as follows:

C
dV

dt
= Iapp(t)− ḡNam

3h (V − VNa)− ḡKn
4 (V − VK)

−gleak(V − Vleak) (3.4)

dx

dt
= αx(1− x)− βxx+ ξx(t), where x = m,h, or, n. (3.5)

where ξx(t) are Gaussian processes with covariance function

E[ξx(t), ξx(t
′)] =

αx(1− x) + βxx

N
δ(t− t′). (3.6)
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Here N represents the total number of Na+channels (respectively, the total number of

K+channels) and δ(·) is the Dirac delta function. This model, referred as the “subunit noise

model” by [49], has been widely used as an approximation to MC ion channel models

(see references in [12, 49]). For example, [103] used this approximation to investigate

stochastic resonance and coherence resonance in forced and unforced versions of the HH

model (e.g. in the excitable regime). However, the numerical accuracy of this method was

criticized by several studies [12, 81], which found that its accuracy does not improve even

with increasing numbers of channels.

Although more accurate approximations based on Gillespie’s algorithm (using a piece-

wise constant propensity approximation, [12, 81]) and even based on exact simulations

[4, 18, 87] became available, they remained prohibitively expensive for large network

simulations. Meanwhile, Goldwyn and Shea-Brown’s rediscovery of Fox and Lu’s earlier

conductance based model [48, 49] launched a flurry of activity seeking the best Langevin-

type approximation. The paper [49] introduced a faster decomposition algorithm to sim-

ulate equations (3.1)-(3.3), and showed that Fox and Lu’s method accurately captured

the fractions of open channels and the inter-spike interval (ISI) statistics, in comparison

with Gillespie-type Monte Carlo (MC) simulations. However, despite the development of

efficient singular value decomposition based algorithms for solving S =
√
D, this step still

causes a bottleneck in the algorithms based on [39, 48, 49].

The persistent need for fast and accurate simulation methods is the first main motivation

of this thesis work. Many variations on Fox and Lu’s 1994 Langevin model have been pro-

posed in recent years [20, 21, 41, 56, 60, 61, 73, 90, 93] including Goldwyn et al’s work [48,

49], each with its own strengths and weaknesses. One class of methods imposes projected

boundary conditions [20, 21]; as we will show in §8, this approach leads to an inaccurate

interspike interval distribution, and is inconsistent with a natural multinomial invariant
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manifold structure for the ion channels. Several methods implement correlated noise at

the subunit level, as in (3.5)-(3.6) [40, 55, 56, 73]. In the subunit model (cf. eqn. (3.5)) a

single noise source represents the fluctuations associated with the gating variable x (x ∈

{m,n, h}). However, if one recognizes that, at the molecular level, the individual directed

edges in Fig. 3.1 represent the independent noise sources in ion channel dynamics, then it

becomes clear that the subunit noise model obscures the biophysical origin of ion channel

fluctuations. Some methods introduce the noisy dynamics at the level of edges rather

than nodes, but lump reciprocal edges together into pairs [21, 60, 90, 93]. This approach

implicitly assumes, in effect, that the ion channel probability distribution satisfies a detailed

balance (or microscropic reversibility) condition. However, while detailed balance holds

for the HH model under stationary voltage clamp, this condition is violated during active

spiking. Finally, the stochastic shielding approximation [102, 104, 105] does not have a

natural formulation in the representation associated with an n× n noise coefficient matrix

S; in the cases of rectangular S matrices used in [21, 90] stochastic shielding can only be

applied to reciprocal pairs of edges. We will elaborate on these points in §12.
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Chapter 4

The Connection Between Variance of

ISIs with the Random Gating of Ion

Channels

4.1 Variability In Action Potentials

At the single-cell level, neurons exhibit a combination of deterministic and stochastic

behaviors. In the supra-threshold regime, the action potentials under steady current drive

suggests limit cycle dynamics, with the precise timing of voltage spikes perturbed by noise.

Variability of action potential timing persists even under blockade of synaptic connections,

consistent with an intrinsically noisy neural dynamics arising from the random gating of ion

channel populations, or “channel noise” [126]. Channel noise can have a significant effect

on spike generation [78, 107], propagation along axons [33], and spontaneous (ectopic)

action potential generation in the absence of stimulation [88]. At the network level, channel
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noise can drive endogenous variability of vital rhythms such as respiratory activity [134].

Understanding the molecular origins of spike time variability may shed light on several

phenomena in which channel noise plays a role. For example, microscopic noise can give

rise to a stochastic resonance behavior [103], and can contribute to cellular- and systems-

level timing changes in the integrative properties of neurons [26]. Jitter in spike times under

steady drive may be observed in neurons from the auditory system [45, 50, 83] as well as

in the cerebral cortex [78] and may play a role in both fidelity of sensory information

processing and in precision of motor control [107].

4.2 Motivation 2: Understanding the Molecular Origins

of Spike Time Variability

As a motivating example for this dissertation, channel noise is thought to underlie jitter

in spike timing observed in cerebellar Purkinje cells recorded in vitro from the “leaner

mouse”, a P/Q-type calcium channel mutant with profound ataxia [123]. Purkinje cells fire

Na+ action potentials spontaneously [76, 77], and may do so at a very regular rate [123],

even in the absence of synaptic input (cf. Fig. 4.1 A and C). Mutations in an homologous

human calcium channel gene are associated with episodic ataxia type II, a debilitating form

of dyskinesia [94, 97]. Previous work has shown that the leaner mutation increases the

variability of spontaneous action potential firing in Purkinje cells [91, 123] (Fig. 4.1 B and

D). It has been proposed that increased channel noise akin to that observed in the leaner

mutant plays a mechanistic role in this human disease [123].

To understand the underlying mechanisms for the different firing properties in wild type

and the leaner mutant, a model with biological fidelity is desired. For example, in addition

to fast channel noise due to sodium and potassium channels, fluctuations of electrical
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Figure 4.1: Somatic voltage recorded in vitro from intact Purkinje cells (cerebellar slice
preparation) during spontaneous tonic firing, with synaptic input blocked. Voltage was
sampled at 20KHz and digitized at 32/mV. Recordings performed in the laboratory of
Dr. David Friel (CWRU School of Medicine). A: Sample voltage recordings from a
wild type Purkinje cell showing precise spontaneous firing with interspike interval (ISI)
coefficient of variation (CV=standard deviation / mean ISI) of approximately 3.9%. B:
Sample recordings from Purkinje cells with leaner mutation in P/Q-type calcium channels
showing twice the variability in ISI (CV c. 30%). C, D: histogram of ISI for wild type and
leaner mutation, respectively. Bin width = 1 msec for each.
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activity in PCs may be subject to the effects of slow noise processes such as stochasticity

of calcium channels, calcium-gated potassium channels, and dendritic filtering. Cerebellar

Purkinje cells have been studied using models with a wide range of complexity, from

models with thousands of subcellular compartments each with multiple gating variables and

voltage [23, 24, 25] to “reduced” models with only dozens of compartments [38] as well as

models with as few as five dynamical variables [36]. The currents at work in Purkinje cells

have also been subject to detailed modeling, including “resurgent” sodium current [17, 98],

multiple types of potassium currents [37, 66], calcium currents [37, 82] and calcium-

dependent potassium currents [37]. In order to pave the way for tackling more complex

models, in this thesis we restrict attention to a simpler, single-compartment conductance-

based model, the canonical excitable membrane model originating with Hodgkin and Hux-

ley [59].

Despite its practical importance, a quantitative understanding of distinct molecular

sources of macroscopic timing variability remains elusive, even for the HH model. As

the second main motivation of this thesis, we would like to study the quantitative con-

nection between the molecular-level ion channel transitions to the macroscopic variability

of timing in membrane action potentials. Significant theoretical attention has been paid

to the variance of phase response curves and interspike interval (ISI) variability. Most

analytical studies are based on the integrate-and-fire model [13, 74, 122], except [31],

which perturbs the voltage of a conductance-based model with a white noise current rather

than through biophysically-based channel noise. Standard models of stochastic ion channel

kinetics comprise hybrid stochastic systems. As illustrated in Fig. 4.2, the membrane

potential evolves deterministically, given the transmembrane currents; the currents are

determined by the ion channel state; the ion channel states fluctuate stochastically with

opening and closing rates that depend on the voltage [4, 10, 14, 92]. This closed-loop
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nonlinear dynamical stochastic system is difficult to study analytically, because of recurrent

statistical dependencies of the variables with one another. An important and well studied

special case is fixed-voltage clamp, which reduces the ion channel subsystem to a time

invariant Markov process [105]. Under the more natural current clamp, the ion channel

dynamics taken alone are no longer Markovian, as they intertwine with current and voltage.

A priori, it is challenging to draw a direct connection between the variability of spike

timing and molecular-level stochastic events, such as the opening and closing of specific

ion channels, as spike timing is a pathwise property reflecting the effects of fluctuations

accumulated around each orbit or cycle.

} Observed

} Sum observed

} Hidden

Voltage {

Ionic Currents {

Ion Channel State {

Figure 4.2: Interdependent variables under current clamp. Statistical dependencies among
voltage (Vt), ionic currents (It), and ion channel state (Xt) form a hybrid, or piecewise
deterministic, stochastic model. Voltage Vt at time t influences current It as well as the
transition from channel state X = [M00,M10, . . . ,M31, N0, N1, . . . , N4], at time t − 1 to
time t. (For illustration we assume discrete sampling at integer multiples of a nominal
time step ∆t in arbitrary units.) Channel state dictates the subsequent ionic current, which
dictates the voltage increment. Arrowheads (→) denote deterministic dependencies. T-
connectives (⊥) denote statistical dependencies.

In [102] Schmandt and Galán introduced stochastic shielding as a fast, accurate approx-

imation scheme for stochastic ion channel models. Rather than simplifying the Markov

process by aggregating ion channel states, stochastic shielding reduces the complexity of

the underlying sample space by eliminating independent noise sources (corresponding to

individual directed edges in the channel state transition graph) that make minimal contri-

butions to ion channel state fluctuations. In addition to providing an efficient numerical

procedure, stochastic shielding leads to an edge importance measure [105] that quantifies
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the contribution of the fluctuations arising along each directed edge to the variance of

channel state occupancy (and hence the variance of the transmembrane current). The

stochastic shielding method then amounts to simulating a stochastic conductance-based

model using only the noise terms from the most important transitions. While the original,

heuristic implementation of stochastic shielding considered both current and voltage clamp

scenarios [102], subsequent mathematical analysis of stochastic shielding considered only

the constant voltage-clamp case [104, 105]. In our recent paper [96] we provide, to our

knowledge, the first analytical treatment of the variability of spike timing under current

clamp arising from the random gating of ion channels with realistic (Hodgkin-Huxley)

kinetics. Building on prior work [75, 95, 102, 104, 105], we study the variance of the tran-

sition times among a family of Poincaré sections, the mean–return-time (MRT) isochrons

investigated by [75, 108] that extend the notion of phase reduction to stochastic limit cycle

oscillators. We prove a theorem that gives the form of the variance, σ2
φ, of inter-phase-

intervals (IPI)1 in the limit of small noise (equivalently, large channel number or system

size), as a sum of contributions σ2
φ,k from each directed edge k in the ion channel state

transition graph (Fig. 3.1). The IPI variability involves several quantities: the per capita

transition rates αk along each transition, the mean-field ion channel population Mi(k) at

the source node for each transition, the stoichiometry (state-change) vector ζk for the kth

transition, and the phase response curve Z of the underlying limit cycle:

σ2
φ =

∑
k∈all edges

σ2
φ,k = εT 0

∑
k

E
(
αk(v(t))Mi(k)(t) (ζᵀkZ(t))2 dt

)
+O

(
ε2
)
,

in the limit as ε → 0+. Here T 0, v(t) and M(t) are the period, voltage, and ion channel

population vector of the deterministic limit cycle for ε = 0. E denotes expectation with

1Equivalently, “iso-phase-intervals”: the time taken to complete one full oscillation, from a given isochron
back to the same isochron.
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respect to the stationary probability density for the Langiven model (cf. eqn. (9.28)). As

detailed below, we scale ε ∝ 1/
√
Ω where the system size Ω reflects the size of the

underlying ion channel populations.

Thus we are able to pull apart the distinct contribution of each independent source

of noise (each directed edge in the ion channel state transition graphs) to the variability

of timing. Figs. 11.4-11.5 illustrate the additivity of contributions from separate edges

for small noise levels. As a consequence of this linear decomposition, we can extend

the stochastic shielding approximation, introduced in [102] and rigorously analyzed under

voltage clamp in [104, 105], to the current clamp case. Our theoretical result guarantees

that, for small noise, we can replace a full stochastic simulation with a more efficient

simulation driven by noise from only the most “important” transitions with negligible loss

of accuracy. We find numerically that the range of validity of the stochastic shielding

approximation under current clamp extends beyond the “small noise limit” to include

physiologically relevant population sizes, cf. Fig. 11.5.

The inter-phase-interval (IPI) is a mathematical construct closely related to, but dis-

tinct from, the inter-spike-interval (ISI). The ISI, determined by the times at which the

cell voltage moves upward (say) through a prescribed voltage threshold vthresh, is directly

observable from experimental recordings – unlike the IPI. However, we note that both in

experimental data and in stochastic numerical simulations, the variance of the ISI is not

insensitive to the choice of voltage threshold, but increases monotonically as a function of

vthresh (cf. Fig. 11.2). In contrast, the variance of inter-phase-interval times is the same,

regardless of which MRT isochron is used to define the intervals. This invariance property

gives additional motivation for investigating the variance of the IPI.

The thesis is organized as follows. In Part I, we have presented an overview of the

background information for single cell neurophysiology and also offered motivations both
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from experimental recordings and from a theoretical point of view.

In Part II, we systematically study the canonical deterministic 14D version of the HH

model. We prove a series of lemmas which show that (1) the multinomial submanifold

M is an invariant manifold within the 14D space and (2) the velocity on the 14D space

and the pushforward of the velocity on the 4D space are identical. Moreover, we show

(numerically) that (3) the submanifoldM is globally attracting, even under current clamp

conditions. In §6, we describe our 14×28 Langevin HH model. Like [21, 90, 93], we avoid

matrix decomposition by computing the coefficient matrix S directly. The key difference

between our approach and its closest relative [93] is to use a rectangular n × k matrix S

for which each directed edge is treated as an independent noise source, rather than lumping

reciprocal edges together in pairs. In the new Langevin model, the form of our S matrix

reflects the biophysical origins of the underlying channel noise, and allows us to apply the

stochastic shielding approximation by neglecting the noise on selected individual directed

edges.

In Part III, we answer an open question in the literature, arising from the fact that

the decomposition D = SSᵀ is not unique. As Prof. Fox has pointed out, sub-block

determinants of the D matrices play a major role in the structure of the S matrix elements.

In [41] this author conjectured that “a universal form for S may exist”. We obtained the

universal form for the noise coefficient matrix S in [95], which we will review below

in §7. Moreover, we prove that our model is equivalent to Fox and Lu’s 1994 model in

the strong sense of pathwise equivalence. As we establish in §7, our model (without the

stochastic shielding approximation) is pathwise equivalent to all those in a particular class

of biophysically derived Langevin models, including those used in [39, 41, 48, 49, 90, 93].

In §8, we compare our Langevin model to several alternative stochastic neural models in

terms of accuracy (of the full ISI distribution) and numerical efficiency.
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In Part IV, we prove a theorem that decomposes the macroscopic variance of iso-phase

intervals (IPIs) as a sum of contributions from the microscopic ion channel transitions in

the limit of small noise. In §9, we state definitions, notations and terminology that are

necessary for the proof of the theorem. We provide a detailed prediction of contributions

to the variance of IPIs from each individual edges in Fig. 3.1. In §11, we test the numerical

performance of the decomposition theorem and generalize it to the variance of inter-spike

intervals.

In Part V, we conclude the thesis and discuss related work, as well as some limitations

of our results.
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Part II

Mathematical Framework
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Chapter 5

The Deterministic 4-D and 14-D HH

Models

In this chapter, we briefly review the classical four-dimensional model of [59] (HH), as well

as its natural fourteen-dimensional version ([22], §5.7), with variables comprising mem-

brane voltage and the occupancies of five potassium channel states and eight sodium chan-

nel states. The deterministic 14D model is the mean field of the channel-based Langevin

model proposed by [39]; this thesis describes both the Langevin and the mean field versions

of the 14D Hodgkin-Huxley system. For completeness of exposition, we briefly review the

4D deterministic HH system and its 14D deterministic counterpart. In §7 we will prove

that the sample paths of a class of Langevin stochastic HH models are equivalent; in §5.3

we review analogous results relating trajectories of the 4D and 14D deterministic ODE

systems.

In particular, we will show that the deterministic 14D model and the original 4D HH

model are dynamically equivalent, in the sense that every flow (solution) of the 4D model
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corresponds to a flow of the 14D model. The consistency of trajectories between of the

14D and 4D models is easy to verify for initial data on a 4D submanifold of the 14D

space given by choosing multinomial distributions for the gating variables [22, 48]. Simi-

larly, Keener established results on multinomial distributions as invariant submanifolds of

Markov models with ion channel kinetics under several circumstances [29, 30, 63, 64], but

without treating the general current-clamped case. Consistent with these results, we show

below that the set of all 4D flows maps to an invariant submanifold of the state space of the

14D model. Moreover, we show numerically that solutions of the 14D model with arbitrary

initial conditions converge to this submanifold. Thus the original HH model “lives inside”

the 14D deterministic model in the sense that the former embeds naturally and consistently

within the latter (cf. Fig. 5.1).

In the stochastic case, the 14D model has a natural interpretation as a hybrid stochastic

system with independent noise forcing along each edge of the potassium (8 directed edges)

and sodium (20 directed edges) channel state transition graphs. The hybrid model leads

naturally to a biophysically grounded Langevin model that we describe in section §6.

In contrast to the ODE case, the stochastic versions of the 4D and 14D models are not

equivalent [49].
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Figure 5.1: 4D and 14D HH models. The meshed surface is a three dimensional projection
of the 14D state space onto three axes representing the voltage, v, the probability of all four
potassium gates being in the closed state, n0, and the probability of exactly one potassium
gate being in the open state, n1. Blue curves: Trajectories of the deterministic 14D HH
model with initial conditions located on the 4D multinomial invariant submanifold, M.
We prove that M is an invariant submanifold in §5.3. Black curve: The deterministic
limit cycle solution for the 14D HH model, which forms a closed loop withinM. Green
curve: A trajectory of the deterministic 14D HH model with initial conditions (vertical
green arrow) off the multinomial submanifold. Red curve: A trajectory of the stochastic
14D HH model (cf. §6) with the same initial conditions as the green trajectory. The blue
and black arrows mark the directions of the trajectories. Note that trajectories starting away
from M converge to M; and all deterministic trajectories converge to the deterministic
limit cycle. Parameters of the simulation are given in Tab. B.1.
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5.1 The 4D Hodgkin-Huxley Model

Recall that the 4D voltage-gated ion channel HH model is given by

C
dv

dt
= −ḡNam

3h(v − VNa)− ḡKn
4(v − VK)− gL(v − VL) + Iapp, (5.1)

dm

dt
= αm(v)(1−m)− βm(v)m, (5.2)

dh

dt
= αh(v)(1− h)− βh(v)h, (5.3)

dn

dt
= αn(v)(1− n)− βn(v)n, (5.4)

where all variables and parameters retain the same meaning as in §2.3 (listed in App. B).

This system is a C∞ vector field on a four-dimensional manifold (with boundary)

contained in R4: X = {−∞ < v < ∞, 0 ≤ m,h, n ≤ 1} = R × [0, 1]3. The manifold is

forward and backward invariant in time. If Iapp is constant then X has an invariant subset

given by X ∩ {vmin ≤ v ≤ vmax}, where vmin and vmax are calculated in Lemma 1.

As pointed out in ([65], §3, p. 106) and [63], for voltage either fixed or given as

a prescribed function of time, the equations for m,h and n can be interpreted as the

parametrization of an invariant manifold embedded in a higher-dimensional time-varying

Markov system. Several papers developed this idea for a variety of ion channel models and

related systems [30, 63] but the theory developed is restricted to the voltage-clamped case.

Under fixed voltage clamp, the ion channels form a time-homogeneous Markov pro-

cess with a unique (voltage-dependent) stationary probability distribution. Under time-

varying current clamp the ion channels nevertheless form a Markov process, albeit no

longer time-homogeneous. Under these conditions the ion channel state converges rapidly

to a multinomial distribution indexed by a low-dimensional set of time-varying parameters

(m(t), h(t), n(t)) [64]. In the current-clamped case, the ion channel process, considered
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alone, is neither stationary nor Markovian, making the analysis of this case significantly

more challenging, from a mathematical point of view.

5.2 The Deterministic 14D Hodgkin-Huxley Model

For the HH kinetics given in Fig. 3.1 (on page 17), we define the eight-component state

vector M for the Na+ gates, and the five-component state vector N for the K+ gates,

respectively, as

M = [m00,m10,m20,m30,m01,m11,m21,m31]
ᵀ ∈ [0, 1]8 (5.5)

N = [n0, n1, n2, n3, n4]
ᵀ ∈ [0, 1]5, (5.6)

where
∑3

i=0

∑1
j=0mij = 1 and

∑4
i=0 ni = 1. The open probability for the Na+ channel is

M8 = m31, and is N5 = n4 for the K+ channel. The deterministic 14D HH equations may

be written (compare (5.1)-(5.4))

C
dV

dt
= −ḡNaM8(V − VNa)− ḡKN5(V − VK)− gL(V − VL) + Iapp, (5.7)

dM

dt
= ANa(V )M, (5.8)

dN

dt
= AK(V )N, (5.9)
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where the voltage-dependent drift matrices ANa and AK are given by

ANa(V ) =



ANa(1) βm 0 0 βh 0 0 0

3αm ANa(2) 2βm 0 0 βh 0 0

0 2αm ANa(3) 3βm 0 0 βh 0

0 0 αm ANa(4) 0 0 0 βh

αh 0 0 0 ANa(5) βm 0 0

0 αh 0 0 3αm ANa(6) 2βm 0

0 0 αh 0 0 2αm ANa(7) 3βm

0 0 0 αh 0 0 αm ANa(8)



, (5.10)

AK(V ) =



AK(1) βn(V ) 0 0 0

4αn(V ) AK(2) 2βn(V ) 0 0

0 3αn(V ) AK(3) 3βn(V ) 0

0 0 2αn(V ) AK(4) 4βn(V )

0 0 0 αn(V ) AK(5)


, (5.11)

and the diagonal elements

Aion(i) = −
∑
j : j 6=i

Aion(j, i), for ion ∈ {Na,K}.

5.3 Relation Between the 14D and 4D Deterministic HH

Models

Earnshaw et al [30] suggested that it is reasonable to expect that the global flow of the

14D system should converge to the 4D submanifold but also that it is far from obvious

that it must. Existing theory applies to the voltage-clamped case [30, 63]. Here, we

consider instead the current-clamped case, in which the fluctuations of the ion channel
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state influences the voltage evolution, and vice-versa.

In the remainder of this section we will (1) define a multinomial submanifold M and

show that it is an invariant manifold within the 14D space, and (2) show that the velocity

on the 14D space and the pushforward of the velocity on the 4D space are identical. In §5.4

we will (3) provide numerical evidence that M is globally attracting within the higher-

dimensional space.

In order to compare the trajectories of the 14D HH equations with trajectories of the

standard 4D equations, we define lower-dimensional and higher-dimensional domains X

and Y , respectively, as

X = {−∞ < v <∞, 0 ≤ m ≤ 1, 0 ≤ h ≤ 1, 0 ≤ n ≤ 1} = R× [0, 1]3 ⊂ R4

Y = {−∞ < v <∞} ∩

{
0 ≤ mij,

3∑
i=0

1∑
j=0

mij = 1

}
∩

{
0 ≤ ni,

4∑
i=0

ni = 1

}

= R×∆7 ×∆4 ⊂ R14, (5.12)

where ∆k is the k-dimensional simplex in Rk+1 given by y1 + . . .+ yk+1 = 1, yi ≥ 0. The

4D HH model dx
dt

= F (x), equations (5.1)-(5.4), is defined for x ∈ X , and the 14D HH

model dy
dt

= G(y), equations (5.7)-(5.9), is defined for y ∈ Y . We introduce a dimension-

14D model 4D model
(v,m00, . . . ,m31, n0, . . . , n4) (v,m, h, n)

v v
1
3
(m11 +m10) + 2

3
(m21 +m20) +m31 +m30 m

m01 +m11 +m21 +m31 h
n1/4 + n2/2 + 3n3/4 + n4 n ‘

Table 5.1: R: Map from the 14D HH model (m00, . . . ,m31, n0, . . . , n4) to the 4D HH
model (m,h, n). Note that {m00, . . . ,m31} and {n0, . . . , n4} both follow multinomial
distributions.
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reducing mapping R : Y → X as in Table 5.1, and a mapping from lower to higher

dimension, H : X → Y as in Table 5.2. We construct R and H in such a way that

R ◦ H acts as the identity on X , that is, for all x ∈ X , x = R(H(x)). The maps H

and R are consistent with a multinomial structure for the ion channel state distribution, in

the following sense. The space Y covers all possible probability distributions on the eight

sodium channel states and the five potassium channel states. Those distributions which are

products of one multinomial distribution on the K+-channel 1 and a second multinomial

distribution on the Na+-channel2 form a submanifold of ∆7 ×∆4. In this way we define a

submanifold, denotedM = H(X ), the image of X under H .

4D model 14D model
(v,m, h, n) (v,m00, . . . ,m31, n0, . . . , n4)

v v

(1− n)4 n0

4(1− n)3n n1

6(1− n)2n2 n2

4(1− n)n3 n3

n4 n4

(1−m)3(1− h) m00

3(1−m)2m(1− h) m10

3(1−m)m2(1− h) m20

m3(1− h) m30

(1−m)3h m01

3(1−m)2mh m11

3(1−m)m2h m21

m3h m31

Table 5.2: H: Map from the 4D HH model (m,h, n) and the 14D HH model
(m00, . . . ,m31, n0, . . . , n4).

Before showing that the multinomial submanifold M is an invariant manifold within

1That is, distributions indexed by a single open probability n; with the five states having probabilities(
4
i

)
ni(1− n)4−i for 0 ≤ i ≤ 4.
2That is, distributions indexed by two open probabilitiesm and h, with the eight states having probabilities(

3
i

)
mi(1−m)3−ihj(1− h)1−j , for 0 ≤ i ≤ 3, and 0 ≤ j ≤ 1.
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the 14D space, we first show that the deterministic 14D HH model is defined on a bounded

domain. Having a bounded forward-invariant manifold is a general property of conductance-

based models, which may be written in the form

dV

dt
= f(V,Nopen) =

1

C

{
Iapp − gleak(V − Vleak)−

∑
i∈I

[
giN

i
open(V − Vi)

]}
(5.13)

dN
dt

= A(V )N and (5.14)

Nopen = O[N ]. (5.15)

Here, C is the membrane capacitance, Iapp is an applied current with upper and lower

bounds I± respectively, and gi is the conductance for the ith ion channel. The index i runs

over the set of distinct ion channel types in the model, I. The gating vector N represents

the fractions of each ion channel population in various ion channel states, and the operator

O gives the fraction of each ion channel population in the open (or conducting) channel

states. The following lemma establishes that any conductance-based model (including the

4D or 14D HH model) is defined on a bounded domain.

Lemma 1. For a conductance-based model of the form (5.13)-(5.15), and for any bounded

applied current I− ≤ Iapp ≤ I+, there exist upper and lower bounds Vmax and Vmin such

that trajectories with initial voltage condition V ∈ [Vmin, Vmax] remain within this interval

for all times t > 0, regardless of the initial channel state.

Proof. Let V1 = min
i∈I
{Vi} ∧ Vleak, and V2 = max

i∈I
{Vi} ∨ Vleak, where the index i runs

over I, the set of distinct ion channel types. Note that for all i, 0 ≤ N i
open ≤ 1, and
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gi > 0, gleak > 0. Therefore when V ≤ V1

dV

dt
=

1

C

{
Iapp − gleak(V − Vleak)−

∑
i∈I

[
giN

i
open(V − Vi)

]}
(5.16)

≥ 1

C

{
Iapp − gleak(V − V1)−

∑
i∈I

[
giN

i
open(V − V1)

]}
(5.17)

≥ 1

C

{
Iapp − gleak(V − V1)−

∑
i∈I

[gi × 0× (V − V1)]

}
(5.18)

=
1

C
{Iapp − gleak(V − V1)} . (5.19)

Inequality (5.17) follows because V1 = min
i∈I
{Vi} ∧ Vleak, and inequality (5.18) follows

because V − V1 ≤ 0, gi > 0 and N i
open ≥ 0. Let Vmin := min

{
I−
gleak

+ V1, V1

}
. When

V < Vmin, dV
dt
> 0. Therefore, V will not decrease beyond Vmin.

Similarly, when V ≥ V2

dV

dt
=

1

C

{
Iapp − gleak(V − Vleak)−

∑
i∈I

[
giN

i
open(V − Vi)

]}
(5.20)

≤ 1

C

{
Iapp − gleak(V − V2)−

∑
i∈I

[
giN

i
open(V − V2)

]}
(5.21)

≤ 1

C

{
Iapp − gleak(V − V2)−

∑
i∈I

[gi × 0× (V − V2)]

}
(5.22)

=
1

C
{Iapp − gleak(V − V2)} . (5.23)

Inequality (5.21) holds because V2 = max
i∈I
{Vi} ∨ Vleak, and inequality (5.22) holds because

V − V2 ≥ 0, gi > 0 and N i
open ≥ 0. Let Vmax = max

{
Iapp

gleak
+ V2, V2

}
. When V > Vmax,

dV
dt
< 0. Therefore, V will not go beyond Vmax.

We conclude that if V takes an initial condition in the interval [Vmin, Vmax], then V (t)

remains within this interval for all t ≥ 0.
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Given that y ∈ Y has a bounded domain, Lemma 2 follows directly, and establishes

that the multinomial submanifoldM is a forward-time–invariant manifold within the 14D

space.

Lemma 2. LetX andY be the lower-dimensional and higher-dimensional Hodgkin-Huxley

manifolds given by (5.12), and let F and G be the vector fields on X and Y defined by

(5.1)-(5.4) and (5.7)-(5.9), respectively. Let H : X → M ⊂ Y and R : Y → X be the

mappings given in Tables 5.2 and 5.1, respectively, and define the multinomial submanifold

M = H(X ). ThenM is forward-time–invariant under the flow generated byG. Moreover,

the vector field G, when restricted toM, coincides with the vector field induced by F and

the map H . That is, for all y ∈M, G(y) = DxH(R(y)) · F (R(y)).

The main idea of the proof is to show that for every y ∈ Y , G(y) is contained in the

span of the four vectors
{
∂H
∂xi

(R(y))
}4

i=1
.

Proof. The map from the 4D HH model to the 14D HH model is given in Tab. 5.2 as

{H : x → y | x ∈ X , y ∈ Y}, and the map from the 14D HH model to the 4D HH model

is given in Tab. 5.1 as {R : y → x | x ∈ X , y ∈ Y}. The partial derivatives ∂H
∂x

of the map
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H are given by

dm00

dm
= −3(1−m)2(1− h)

dm00

dh
= −(1−m)3

dm10

dm
= 3(1− h)(3m2 − 4m+ 1)

dm10

dh
= −3(1−m)2m

dm20

dm
= 3(1− h)(2m− 3m2)

dm20

dh
= −3(1−m)m2

dm30

dm
= 3(1− h)m2 dm30

dh
= −m3

dm01

dm
= −3h(1−m)2

dm01

dh
= (1−m)3

dm11

dm
= 3h(3m2 − 4m+ 1)

dm11

dh
= 3(1−m)2m

dm21

dm
= 3h(2m− 3m2)

dm21

dh
= 3(1−m)m2

dm31

dm
= 3hm2 dm31

dh
= m3.
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We can write ∂H/∂x in matrix form as:

∂H

∂x
=



1 0 0 0

0 −3(1−m)2(1− h) −(1−m)3 0

0 3(1− h)(3m2 − 4m+ 1) −3(1−m)2m 0

0 3(1− h)(2m− 3m2) −3(1−m)m2 0

0 3(1− h)m2 −m3 0

0 −3h(1−m)2 (1−m)3 0

0 3h(3m2 − 4m+ 1) 3(1−m)2m 0

0 3h(2m− 3m2) 3(1−m)m2 0

0 3hm2 m3 0

0 0 0 −4(1− n)3

0 0 0 4(1− n)2(1− 4n)

0 0 0 12n(1− n)(1− 2n)

0 0 0 4n2(3− 4n)

0 0 0 4n3



.

We write out the vector fields (5.8) and (5.9) component by component:

dM1

dt
= βmM2 + βhM5 − (3αm + αh)M1

= −3(1−m)2(1− h) [(1−m)αm −mβm] + (1−m)3 [hβh − (1− h)αh]

dM2

dt
= 3αmM1 + 2βmM3 + βhM6 − (2αm + βm + αh)M2

= 3(1− h)(3m2 − 4m+ 1) [(1−m)αm −mβm] + 3(1−m)2m [hβh − (1− h)αh]

dM3

dt
= 2αmM2 + 3βmM4 + βhM7 − (αm + 2βm + αh)M3,

= 3(1− h)(2m− 3m2) [(1−m)αm −mβm] + 3(1−m)m2 [hβh − (1− h)αh]
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dM4

dt
= αmM3 + βhM8 − (3βm + αh)M4,

= 3(1− h)m2 [(1−m)αm −mβm] +m3 [hβh − (1− h)αh]

dM5

dt
= βmM6 + αhM1 − (3αm + βh)M5,

= −3h(1−m)2 [(1−m)αm −mβm] + (1−m)3 [hβh − (1− h)αh]

dM6

dt
= 3αmM5 + 2βmM7 + αhM2 − (2αm + βm + βh)M6,

= 3h(3m2 − 4m+ 1) [(1−m)αm −mβm]− 3(1−m)2m [hβh − (1− h)αh]

dM7

dt
= 2αmM6 + 3βmM8 + αhM3 − (αm + 2βm + βh)M7,

= 3h(2m− 3m2) [(1−m)αm −mβm]− 3(1−m)m2 [hβh − (1− h)αh]

dM8

dt
= αmM7 + αhM4 − (3βm + βh)M8,

= 3hm2 [(1−m)αm −mβm]−m3 [hβh − (1− h)αh]

dN1

dt
= βnN2 − 4αnN1 = −4(1− n)3[αn(1− n)− nβn],

dN2

dt
= 4αnN1 + 2βnN3 − (3αn + βn)N2 = 4(1− n)2(1− 4n)[αn(1− n)− nβn],

dN3

dt
= 3αnN2 + 3βnN4 − (2αn + 2βn)N3 = 12n(1− n)(1− 2n)[αn(1− n)− nβn],

dN4

dt
= 2αnN3 + 4βnN5 − (3αn + 3βn)N4 = 4n2(3− 4n)[αn(1− n)− nβn],

dN5

dt
= αnN4 − 4βnN5 = 4n3[αn(1− n)− nβn].

By extracting common factors from the previous expressions it is clear that G(y) may be
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written, for all y ∈ Y , as

G(y) =
−ḡNaM8(V − VNa)− ḡKN5(V − VK)− gL(V − VL) + Iapp

C

{
∂H

∂v
(R(y))

}
+ [(1−m′)αm −m′βm]

{
∂H

∂m
(R(y))

}
− [h′βh − (1− h′)αh]

{
∂H

∂h
(R(y))

}
+ [αn(1− n′)− n′βn]

{
∂H

∂n
(R(y))

}
(5.24)

where m′ = (M2 + M6)/3 + 2(M3 + M7)/3 + (M4 + M8), h
′ = M5 + M6 + M7 + M8 and

n′ = N2/4 + N3/2 + 3N4/4 + N5. Thus G(y) is in the span of the column vectors ∂H/∂v,

∂H/∂m, ∂H/∂n, and ∂H/∂h, as was to be shown.

On the other hand, the vector field for the 4D HH ODE (5.1-5.4) is given by

F =



(−ḡNam3h(V − VNa)− ḡKn4(V − VK)− gL(V − VL) + Iapp) /C

αm(V )(1−m)− βm(V )m

αh(V )(1− h)− βh(V )h

αn(V )(1− n)− βn(V )n


.

Referring to (5.24), we see thatG(y) = DxH(R(y))F (R(y)). Thus we complete the proof

of Lemma 2.

Lemma 2 establishes that the 14D HH model given by (5.7)-(5.9) is dynamically con-

sistent with the original 4D HH model given by (5.1)-(5.4). In §5.4 we provide numerical

evidence that the flow induced by G on Y converges to M exponentially fast. Thus, an

initial probability distribution over the ion channel states that is not multinomial quickly

approaches a multinomial distribution with dynamics induced by the 4D HH equations.

Similar results, restricted to the voltage-clamp setting, were established by Keener and
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Earnshaw [30, 63, 65].

5.4 Local Convergence Rate

Keener and Earnshaw [30, 63, 65] showed that for Markov chains with constant (even

time varying) transition rates: (i) the multinomial probability distributions corresponding

to mean-field models (such as the HH sodium or potassium models) form invariant sub-

manifolds within the space of probability distributions over the channel states, and (ii)

arbitrary initial probability distributions converged exponentially quickly to the invariant

manifold. For systems with prescribed time-varying transition rates, such as for an ion

channel system under voltage clamp with a prescribed voltage V (t) as a function of time,

the distribution of channel states had an invariant submanifold again corresponding to the

multinomial distributions, and the flow on that manifold induced by the evolution equations

was consistent with the flow of the full system.

In the preceding section we established the dynamical consistency of the 14D and 4D

models with enough generality to cover both the voltage-clamp and current-clamp systems;

the latter is distinguished by NOT having a prescribed voltage trace, but rather having

the voltage coevolve along with the (randomly fluctuating) ion channel states. Here, we

give numerical evidence for exponential convergence under current clamp similar to that

established under voltage clamp by Keener and Earnshaw.

Rather than providing a rigorous proof, we give numerical evidence for the standard

deterministic HH model that y →M under current clamp (spontaneous firing conditions)

in the following sense: if y(t) is a solution of ẏ = G(y) with arbitrary initial data y0 ∈

Y , then ||y(t) − H(R(y(t)))|| → 0 as t → ∞, exponentially quickly. Moreover, the

convergence rate is bounded by λ = max(λv, λNa, λK), where λion is the least negative
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nontrivial eigenvalue of the channel state transition matrix (over the voltage range Vmin ≤

v ≤ Vmax) for a given ion, and −1/λv is the largest value taken by the membrane time

constant (for Vmin ≤ v ≤ Vmax). In practice, we find that the membrane time constant

does not determine the slowest time scale for convergence toM. In fact it appears that the

second-least-negative eigenvalues (not the least-negative eigenvalues) of the ion channel

matrices set the convergence rate.

Note that y ∈ Y can be written as y = [V ;M;N]. The Jacobian matrix ∂H
∂x

consists of

three block matrices: one for the voltage terms, ∂V
∂v

, one associated to the Na+ gates, given

by ∂M
∂m

and ∂M
∂h

, and one corresponding to the K+ gates, ∂N
∂n

. Fixing a particular voltage

v, let λi, i ∈ {0, 1, 2, . . . , 7} be the eight eigenvalues of ANa and vi be the associated

eigenvectors, i.e., ANavi = λivi for the rate matrix in equations (5.8). Similarly, let

ηi, wi, i ∈ {0, 1, 2, . . . , 4} be the five eigenvalues and the associated eigenvectors of AK,

i.e.,AKwi = ηiwi, for the rate matrix in equations (5.9). If we rank the eigenvalues of either

matrix in descending order, the leading eigenvalue is always zero (because the sum of each

column for ANa and AK is zero for every V ) and the remainder are real and negative. Let λ1

and η1 denote the largest (least negative) nontrivial eigenvalues ofANa andAK, respectively,

and let v1 ∈ R8 and w1 ∈ R5 be the corresponding eigenvectors.

The eigenvectors of the full 14D Jacobian are not simply related to the eigenvectors of

the component submatrices, because the first (voltage) row and column contain nonzero off-

diagonal elements. However, the eigenvectors associated to the largest nonzero eigenvec-

tors of ANa and AK (respectively v2 and w2) are parallel to ∂M/∂h and ∂N/∂n, regardless

of voltage. In other words, the slowest decaying directions for each ion channel, v1 and w1,

transport the flow along the multinominal sub-manifold of Y . Therefore, it is reasonable to

make the hypothesis that if Y (t) is a solution of ẏ = G(y) with arbitrary initial data y ∈ Y ,
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then
||y(t)−H(R(y(t)))||
||y(0)−H(R(y(0)))||

. e−λ2t (5.25)

for λ2 being the second largest nonzero eigenvalue of AK and ANa over all v in the range

vmin < v < vmax. The convergence behavior is plotted numerically in Fig. 5.2, and is

consistent with the Ansatz (5.25). We calculate the distance from a point y toM as

ymax = argmax
y∈Y

‖y −H(R(y))‖2 . (5.26)

In order to obtain an upper bound on the distance as a function of time, we begin with the

furthest point in the simplex fromM, by numerically finding the solution to the argument

(5.26), which is

ymax = [v, 0.5, 0, 0, 0.5, 0, 0, 0, 0, 0.5, 0, 0, 0, 0.5].

This vector represents the furthest possible departure from the multinomial distribution:

all probability equally divided between the extreme states m00 and m03 for the sodium

channel, and the extremal states n0 and n4 for potassium. The maximum distance from the

multinomial submanifold M, dmax, is calculated using this point. As shown in Fig. 5.2,

the function dmax e
−λ2t provides a tight upper bound for the convergence rate from arbitrary

initial data y ∈ Y to the invariant submanifoldM.
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Figure 5.2: Convergence of trajectories y(t), for arbitrary initial conditions y0 ∈ Y , to the
multinomial submanifold M, for an ensemble of random initial conditions. A: distance
(eqn. (5.26)) between y(t) andM. B: Logarithm of the distance in panel A. The red solid
line shows dmaxe

−λ2t in panel A and log(dmax)− λ2t in panel B.
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Chapter 6

Stochastic 14D Hodgkin-Huxley Models

Finite populations of ion channels generate stochastic fluctuations (“channel noise”) in

ionic currents that influence action potential initiation and timing [107, 125]. At the molec-

ular level, fluctuations arise because transitions between individual ion channel states are

stochastic [58, 85, 116]. Each directed edge in the ion channel state transition diagrams

(cf. Fig. 3.1) introduces an independent noise source. It is of interest to be able to attribute

variability of the interspike interval timing distribution to specific molecular noise sources,

specifically individual directed edges in each channel state graph. In order to explore

these contributions, we develop a system of Langevin equations for the Hodgkin-Huxley

equations, set in a 14-dimensional phase space.

Working with a higher-dimensional stochastic model may appear inconvenient, but

in fact has several advantages. First, any projection of an underlying 14D model onto a

lower (e.g. 4D) stochastic model generally entails loss of the Markov property. Second, the

higher-dimensional representation allows us to assess the contribution of individual molec-

ular transitions to the macroscopically observable variability of timing in the interspike
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interval distribution. Third, by using a rectangular noise coefficient matrix constructed

directly from the transitions in the ion channel graphs, we avoid a matrix decomposition

step.1 This approach leads to a fast algorithm that is equivalent to the slower algorithm due

to Fox and Lu [39, 49] in a strong sense (pathwise equivalence) that we detail in §7.

6.1 Two Stochastic Representations for Stochastic Ion Chan-

nel Kinetics

Before introducing Langevin models for the stochastic HH kinetics, we will review two

stochastic representations for stochastic ion channel kinetics [4]. First, we consider a sys-

tem with two possible states, C (“closed”) and O (“open”) and assume that the dwell times

in C and O are determined by independent exponential random variables with parameters

α > 0 and β > 0, as shown below:

C
α

�
β
O.

Given an initial state x0 ∈ {C,O}, denote px0(x, t) to be the probability of being in state

x ∈ {C,O} at time t. The “chemical master equation” for this system is given by

d

dt
px0(C, t) = −αpx0(C, t) + βpx0(O, t) (6.1)

d

dt
px0(O, t) = αpx0(C, t)− βpx0(O, t). (6.2)

The chemical master equation provides two linear ordinary differential equations that gov-

ern the dynamical behavior of the probability distribution of the model, which is not a

1In [49], they used the singular value decomposition (SVD) to calculate the square root of the diffusion
matrix and Fox [41] proposed to use a Cholesky decomposition. We will discuss the numerical behavior of
both in the Discussion (cf. §12).
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stochastic representation for the underlying process.

To construct a pathwise representation, [4, 5] constructed a counting process as follows.

Let R1(t) be the number of times the transition C → O has taken place by time t and R2(t)

be the number of times the transition O → C has taken place by time t. Moreover, let

X1(t) ∈ {0, 1} equal one if the channel is closed at time t, and zero if open; and X2(t) ∈

{0, 1} take the value one if the channel is open at time t, and zero if close. Denoting

X(t) = (X1(t), X2(t))
T , then

X(t) = X(0) +R1(t)

−1

1

+R2(t)

 1

−1

 .

To represent the counting process for X(t), [5] constructed a unit-rate Poisson process

as follows. Let {ei}∞i=1 be independent exponential random variables with a parameter of

one and τ1 = e1, τ2 = τ1 + e2, · · · , τn = τn−1 + en, . . .. The associated unit-rate Poisson

process, Y (s), is the counting process determined by the number of points {τi}∞i=1 before

s > 0. For instance, if we let ”x” denote the points τn in the image below,

x x x x x x x · · ·

s

then Y(s)=5. The random time representation defines a non-constant rate λ(s) : [0,∞) →

R>0, and the number of points observed by time s is Y
(∫ s

0
λ(r)dr

)
. When λ(s) > 0, the

probability of seeing a jump within the next small increment of time4s is

P

(
Y

(∫ s+4s

0

λ(r)dr

)
− Y

(∫ s

0

λ(r)dr

)
> 1

)
= λ(s)4s+ o(4s). (6.3)

Therefore, the propensity of seeing the next jump is λ(s). For the two-state model, the
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propensities of the open reaction (C → O) and close reaction (O → C) are

λ1(X(s)) = αX1(s), λ2(X(s)) = βX2(s).

These facts imply that

R1(t) = Y1

(∫ t

0

λ1(X(s))ds
)

= Y1

(∫ t

0

αX1(s)ds
)
,

R2(t) = Y2

(∫ t

0

λ2(X(s))ds
)

= Y2

(∫ t

0

βX2(s)ds
)
.

Therefore, a pathwise representation for the stochastic two-state model is

X(t) = X(0) + Y1

(∫ t

0

αX1(s)ds
)−1

1

+ Y2

(∫ t

0

βX2(s)ds
) 1

−1

 , (6.4)

where Y1 and Y2 are two independent, unit-rate Poisson processes. This is the random time

change representation for this particular reaction system.

The transition rates in the two-state example we discussed here are constant, but in

general they can be time dependent or state dependent. For example, Markov chain models

of ion channels typically have voltage-dependent propensities. For HH-like ion channel

kinetics, the propensity of the channel-opening reaction is

λ1(t,X(t)) = α(t)X1(t),

and the propensity of the channel-closing reaction is

λ2(t,X(t)) = β(t)X2(t),
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where α(t), and β(t) are voltage-dependent non-negative functions. The analogous expres-

sion for the pathwise representation [4] can be expressed as

X(t) =X(0) + Y1

(∫ t

0

α(s)X1(s)ds
)−1

1


+ Y2

(∫ t

0

β(s)X2(s)ds
) 1

−1

 . (6.5)

As a generalization, [4] extended the random time change representation to a d-state

model with M reaction channels. Denote Xi(t) to be the value of the ith component at time

t, with X(t) ∈ Zd and the propensity of the kth reaction being λk(t,X(t)). If we further

assume that the system is updated immediately once the kth reaction happens at time t

according to the reaction vector ζk ∈ Zd, then

X(t) = X(t−) + ζk.

Thus, the expression for the pathwise representation is

X(t) = X(0) +
∑
k

Yk

(∫ t

0

λk(t,X(t))ds

)
ζk, (6.6)

where the Yk are independent unit-rate Poisson processes.

Algorithm for the simulation of the random time change representation The time

until the next reaction occurs after time T is given by

4 = min
k

{
4k :

∫ T+4k

0

λk(s,X(s))ds = τ kT

}
,
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where τ kT is the first point associated with Yk coming after
∫ T
0
λk(s,X(s))ds, which is

defined as follows

τ kT ≡ inf
{
r >

∫ T

0

λk(s,X(s))ds : Yk(r)− Yk
(∫ T

0

λk(s,X(s))ds

)
= 1

}
.

For a single ion channel type with state variable X, and including the membrane potential

V as an additional dynamical variable, then its pathwise representation is given by

C
dV

dt
= Iapp(t)− IV (V (t))−

( d∑
i=1

goiXi(t)
)

(V (t)− VX). (6.7)

Here goi is the conductance of an individual channel when it is in the ith state (of channel

X) and the sum gives the total conductance associated with the channel represented by the

vector X , and VX is the reversal potential for the ion channel. Meanwhile the channel state

X(t) evolves stochastically according to (6.6).

Algorithm 1. Simulation random time change representation

1. Initialize: set the initial number of molecules of each species, X . Set the initial

voltage value V . Set t = 0. For each k, set τk= 0 and Tk = 0.

2. Generate M independent, uniform(0,1) random numbers {rk}Mk=1, for each k ∈ {1, 2, · · · ,M},

set τk = ln(1/rk)

3. Numerically integrate equation (6.7) forward in time until one of the following equal-

ities hold: ∫ t+4

t

λk(V (s), X(s))ds = τk − Tk. (6.8)

4. Let µ be the index of the reaction channel where the equality (6.8) holds.
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5. For each k, set

Tk = Tk +

∫ t+4

t

λk(V (s), X(s))ds,

where4 is determined in step 3.

6. Set t = t+4 and X = X + ζµ

7. Let r be uniform(0,1) and set τµ = τµ + ln(1/r).

8. Return to step 3 or stop.

Gillespie’s algorithm A more widely used algorithm for simulating the stochastic ion

channel kinetics is the Gillespie’s algorithm [16, 46], which is a time-homogeneous method.

For simulating the same system for a multi-state single ion channel kinetics in equa-

tion (6.7), the Gillespie’s algorithm can be presented as follows. Let Y be a unit rate

Poisson process, and {ξi, i = 0, 1, 2, . . .} be independent, uniform (0, 1) random variables

that are independent of Y . If we define

λ0 (V (s), X(s)) =
M∑
k=1

λk (V (s), X(s)) , (6.9)

qk(s) =
1

λ0 (V (s), X(s))

k∑
l=1

λl (V (s), X(s)) , (6.10)
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where q0 = 0 and k ∈ {1, 2, . . . ,M}. The representation for the “Gillespie algorithm” for

the stochastic process of X and V can be written as

R0(t) = Y

(∫ t

0

λ0 (V (s), X(s)) ds

)
(6.11)

X(t) = X(0) +
M∑
k=1

ξk

∫ t

0

1{ξR0(s−) ∈ [qk−1(s−), qk(s−)]}dR0(s) (6.12)

C
dV

dt
= Iapp(t)− IV (V (t))−

( d∑
i=1

goiXi(t)
)

(V (t)− VX). (6.13)

The corresponding algorithm is given by

Algorithm 2. The Gillespie’s algorithm

1. Initialize: set the initial number of molecules of each species, X . Set a initial voltage

value V and t = 0.

2. Let r be uniform(0,1) and numerically integrate equation (6.11) forward in time until:∫ t+4
t

λ0(V (s), X(s))ds = ln(1/r).

3. Let ξ be uniform(0,1) and find the index k where ξ ∈ [qk−1((t+4)−), qk((t+4)−)]

4. Set t = t+4 and X = X + ζk

5. Return to step 2 or stop

6.2 Exact Stochastic Simulation of HH Kinetics: the Random–

Time-Change Representation

An “exact” representation of the Hodgkin-Huxley system with a population of Mtot sodium

channels and Ntot potassium channels treats each of the 20 directed edges in the sodium
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channel diagram, and each of the 8 directed edges in the potassium channel diagram,

as independent Poisson processes, with voltage-dependent per capita intensities. As in

the deterministic case, the sodium and potassium channel population vectors M and N

satisfy
∑3

i=0

∑1
j=0 Mij ≡ 1 ≡

∑4
i=0Ni.2 Thus they are constrained, respectively, to a 7D

simplex embedded in R8 and a 4D simplex embedded in R5. In the random–time-change

representation [6] (which we follow closely throughout this section) the exact evolution

equations are written in terms of sums over the directed edges E for each ion channel,

ENa = {1, . . . , 20} and EK = {1, . . . , 8}, cf. Fig. 3.1.

M(t) = M(0) +
1

Mtot

∑
k∈ENa

ζNa
k Y

Na
k

(
Mtot

∫ t

0

αNa
k (V (s))Mi(k)(s) ds

)
(6.14)

N(t) = N(0) +
1

Ntot

∑
k∈EK

ζK
k Y

K
k

(
Ntot

∫ t

0

αK
k (V (s))Ni(k)(s) ds

)
. (6.15)

Here ζ ion
k is the stoichiometry vector for the kth directed edge. If we write i(k) for the source

node and j(k) for the destination node of edge k, then ζ ion
k = eion

j(k) − eion
i(k).

3 Each Y ion
k (τ)

is an independent unit-rate Poisson process, evaluated at “internal time” (or integrated

intensity) τ , representing the independent channel noise arising from transitions along the

kth edge. The voltage-dependent per capita transition rate along the kth edge is αion
k (v),

and Mi(k)(s) (resp. Ni(k)(s)) is the fractional occupancy of the source node for the kth

transition at time s. Thus, for example, the quantity Mtotα
Na
k (V (s))Mi(k)(s) gives the net

intensity along the kth directed edge in the Na+ channel graph at time s.

Remark 1. Under “voltage-clamp” conditions, with the voltage V held fixed, (6.14)-(6.15)

reduce to a time-invariant first-order transition process on a directed graph [42, 105].

2We annotate the stochastic population vector M either as [M00,M10, . . . ,M31] or as [M1, . . . ,M8],
whichever is more convenient. In either notation M31 ≡ M8 is the conducting state of the Na+channel. For
the K+channel, N4 denotes the conducting state.

3We write eNa
i and eK

i for the ith standard unit vector in R8 or R5, respectively.
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Under “current-clamp” conditions, the voltage evolves according to a conditionally

deterministic current balance equation of the form

dV

dt
=

1

C
{Iapp(t)− ḡNaM31 (V − VNa)− ḡKN4 (V − VK)− gleak(V − Vleak)} . (6.16)

Here, C (µF/cm2) is the capacitance, Iapp (nA/cm2) is the applied current, the maximal

conductance is ḡchan (mS/cm2), Vchan (mV ) is the associated reversal potential, and the

ohmic leak current is gleak(V − Vleak).

The random–time-change representation (6.14)-(6.16) leads to an exact stochastic sim-

ulation algorithm, given in [6]; equivalent simulation algorithms have been used previously

[18, 87]. Many authors substitute a simplified Gillespie algorithm that imposes a piecewise-

constant propensity approximation, described above, that ignores the voltage dependence

of the transition rates αion
k between channel transition events [48, 49, 90, 93]. The two

methods give similar moment statistics, provided Ntot,Mtot & 40 [6]; their similarity

regarding path-dependent properties (including interspike interval distributions) has not

been studied in detail. Moreover, both Markov chain algorithms are prohibitively slow for

modest numbers (e.g. thousands) of channels; the exact algorithm may be even slower than

the approximate Gillespie algorithm. For consistency with previous studies, in this thesis

we use the piecewise-constant propensity Gillespie algorithm with Mtot = 6000 Na+ and

Ntot = 1800 K+ channels as our “gold standard” Markov chain (MC) model, as in [49].

In §6.3 we develop a 14D conductance-based Langevin model with 28 independent

noise sources – one for each directed edge – derived from the random–time-change rep-

resentation (6.14)-(6.16). In previous work [105] we established a quantitative measure

of “edge importance”, namely the contribution of individual transitions (directed edges)

to the variance of channel state occupancy under steady-state voltage-clamp conditions.
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Under voltage clamp, the edge importance was identical for each reciprocal pair of directed

edges in the graph, a consequence of detailed balance. Some Langevin models lump the

noise contributions of each pair of edges [20, 21, 90, 93]. Under conditions of detailed

balance, this simplification is well justified. However, as we will show (cf. Fig. 6.2) under

current-clamp conditions, e.g. for an actively spiking neuron, detailed balance is violated,

the reciprocal edge symmetry is broken, and each pair of directed edges makes a distinct

contribution to ISI variability.

6.3 Previous Langevin Models

As reviewed by [49, 61, 73], the general Langevin models based on Fox and Lu’s work [39]

(cf. eqn (3.1)-(3.3)) for HH kinetics incorporates noise into the deterministic HH equations

as follows:

CV̇ = −gK(n4 + φK)(V − VK)− gNa(m
3h+ φNa)(V − VNa)− gL(V − VL) + I, (6.17)

ṅ = αn(1− n)− βnn+ ηn, (6.18)

ṁ = αm(1− n)− βmm+ ηm, (6.19)

ḣ = αh(1− h)− βhh+ ηh, (6.20)

where φK , φNa, ηn, ηm and ηh are mean zero noise terms, the exact form of which depends

on the model we consider.
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Fox and Lu’s model (1997)

In this model [40], φFK ≡ φFNa ≡ 0, where the superscript F is used to indicate the case of

this model (same as the following models). Terms ηn, ηm and ηh are Gaussian white noise

with mean squares

〈ηn(t), ηn(t′)〉F =
αn(1− n) + βnn

NK
δ(t− t′), (6.21)

〈ηm(t), ηm(t′)〉F =
αm(1−m) + βmm

NNa
δ(t− t′), (6.22)

〈ηh(t), ηh(t′)〉F =
αh(1− h) + βhh

NNa
δ(t− t′), (6.23)

where NK and NNa denotes the number of potassium and sodium channels.

Linaro et al. model (2011)

In the paper [73], they proposed a Langevin model where

φLK =
4∑
i=1

zK,i, (6.24)

and

τK,iżK,i = −zK,i + σK,i
√

2τK,iξK,i. (6.25)

Here, τK,i and σK,i are some functions of the opening and closing rates of the n-gates. The

random processes ξK,i represent independent delta-correlated Gaussian white noise with

zero mean and unitary variances. Similarly, the noise term for Na+ channels reads

φLNa =
7∑
i=1

zNa,i, (6.26)

62



where

τNa,iżNa,i = −zNa,i + σNa,i
√

2τNa,iξNa,i. (6.27)

Moreover, the noise term for gating variables are zero: ηn ≡ ηm ≡ ηh ≡ 0.

Güler and Marifi’s model (2013)

In [56], the authors mentioned the “nontrivial cross-correlation persistence (NCCP)”, which

they claimed to be the major cause of the elevated excitability and spontaneous firing

in small-size neuronal membranes. The term φGK , which reflects NCCP attributed to the

K+ channels, is given by

φGK =

√
n4(1− n4)

NK
qK, (6.28)

where

τ q̇K = pK, (6.29)

τ ṗK = −γKpK − ω2
K[αn(1− n) + βnn]qK + ξK, (6.30)

and ξK is a delta-correlated, mean zero Gaussian white noise term with mean squares

〈ξK(t), ξK(t′)〉G = γKTK[αn(1− n) + βnn]δ(t− t′). (6.31)

In the above equations, τ corresponds to the unit time. The constants are dimensionless

with: γK = 10, ω2
K = 150 and TK = 400. Similarly, the term φGNa, which captures NCCP

attributed to the Na+ channels reads

φGNa =

√
m3(1−m3)

NNa
hqNa, (6.32)
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where

τ q̇Na = pNa, (6.33)

τ ṗNa = −γNapNa − ω2
Na[αm(1−m) + βmm]qNa + ξNa, (6.34)

with ξNa a mean zero Gaussian white noise term with mean squares

〈ξNa(t), ξNa(t
′)〉G = γNaTNa[αm(1−m) + βmm]δ(t− t′). (6.35)

In the above equations, τ corresponds to the unit time. The constants are dimensionless

with: γNa = 10, ω2
Na = 200 and TNa = 800.

The subunit noises are Gaussian and their mean squares satisfy

〈ηn(t), ηn(t′)〉F =
αn(1− n) + βnn

4NK
δ(t− t′), (6.36)

〈ηm(t), ηm(t′)〉F =
αm(1−m) + βmm

3NNa
δ(t− t′), (6.37)

〈ηh(t), ηh(t′)〉F =
αh(1− h) + βhh

NNa
δ(t− t′), (6.38)

where NK and NNa denote the number of potassium and sodium channels.

Orio and Soudry’s Model (2012)

In [90], Orio and Soudry derived the SDE explicitly for HH type ion channel kinetic. They

examined a specific population of N ion channels with M states, where the transition rate

of a single channel from state j to i is given by Aji. In addition, they define the matrix A

to be composed of Aij terms for all i 6= j, and Aii = −
∑

j 6=iAji on the diagonal. They

denote by xi the fraction of channels in each of the state, and by x a vector of xi. The
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diffusion approximation (DA) for the stochastic dynamics of x leads to the same form of

SDE as Fox and Lu’s 94 model
dx

dt
= Ax + Sξ, (6.39)

where ξ is a vector of independent Gaussian white noise processes with zero mean and unit

variance, A is the rate matrix (same as eqn (5.10)-(5.11)). Goldwyn et al [49] provided

a numerical method for Fox and Lu’s 94 model with a great computational cost, of order

O(M3) at each time step. In [90], Orio and Soudry proposed a more efficient method,

where

Dij =
1

N


∑

k 6=i(AikxK(t) + Akixi(t)), if i = j

−Ajixi(t)− Aijxj(t), if i 6= j

They denote by T the set of all possible transitions pairs (i 
 j) that exist between states

and then give each pair an index in k = 1, . . . , |T | . Note that |T | is the size of set T. Also,

they denote T (i) to be the subset of all transitions pairs that connect to state i, and mik to

be the index of the state connected by the kth transition pair, excluding state i. Finally, they

write matrix S of size M × |T |, and

Sik =


sign(i−mik)

1√
N

√
A(i,mik)xmik + A(mki,i)xi , k ∈ T (i)

0 , k 6∈ T (i).

Note that Dangerfield et al. [20] proposed a Langevin model that shares the same construc-

tion as the Orio and Soudry’s model. In [20, 21], they implemented the model with different

boundary conditions than Orio and Soudry’s model, which we will discuss in detail in §8.
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6.4 The 14× 28D HH Model

For sufficiently large number of channels, [104, 105] showed that under voltage clamp,

equations (6.14)-(6.15) can be approximated by a multidimensional Ornstein-Uhlenbeck

(OU) process (or Langevin equation) in the form4

dM =
20∑
k=1

ζNa
k

{
αNa
k (V )Mi(k)dt+

√
εNaαNa

k (V )Mi(k) dW
Na
k

}
(6.40)

dN =
8∑

k=1

ζK
k

{
αK
k (V )Ni(k)dt+

√
εKαK

k (V )Ni(k) dW
K
k

}
. (6.41)

Here, M, N, ζ ion
k , and αion

k have the same meaning as in (6.14)-(6.15). The channel

state increments in a short time interval dt are dM and dN, respectively. The finite-

time increment in the Poisson process Y ion
k is now approximated by a Gaussian process,

namely the increment dW ion
k in a Wiener (Brownian motion) process associated with each

directed edge. These independent noise terms are scaled by εNa = 1/Mtot and εK = 1/Ntot,

respectively.

Equations (6.16)-(6.41) comprise a system of Langevin equations for the HH system

(under current clamp) on a 14-dimensional phase space driven by 28 independent white

noise sources, one for each directed edge. These equations may be written succinctly in the

form

dX = f(X) dt+
√
εG(X) dW(t) (6.42)

where we define the 14-component vector X = (V ;M;N), and W(t) is a Wiener process

with 28 independent components. The deterministic part of the evolution equation f(X) =[
dV
dt

; dM
dt

; dN
dt

]
is the same as the mean-field, equations (5.7)-(5.9). The state-dependent

4The convergence of the discrete channel system to a Langevin system under voltage clamp is a special
case of Kurtz’ theorem [71].
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noise coefficient matrix G is 14× 28 and can be written as

√
εG =


01×20 01×8

SNa 08×8

05×20 SK

 .

The matrices SK and SNa are given by

SK =



−
√

4αnn0

√
βnn1 0 0

√
4αnn0 −

√
βnn1 −

√
3αnn1

√
2βnn2

0 0
√

3αnn1 −
√

2βnn2

0 0 0 0

0 0 0 0

· · ·

· · ·

0 0 0 0

0 0 0 0
√

2αnn2 −
√

3βnn3 −
√
αnn3

√
4βnn4

0 0
√
αnn3 −

√
4βnn4


,
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and

S
(1:5)
Na =



−√αhm00

√
βhm01 −

√
3αmm00

√
βmm10 0

0 0
√

3αmm00 −
√
βmm10 −

√
αhm10

0 0 0 0 0

0 0 0 0 0

√
αhm00 −

√
βhm01 0 0 0

−
√
βhm11 0 0 0 0

0 0 0
√
αhm20 −

√
βhm21

0 0 0 0 0



S
(6:10)
Na =



0 0 0 0 0
√
βhm11 −

√
2αmm10

√
2βmm20 0 0

√
2αmm10 −

√
2βmm20 −

√
αhm20

√
βhm21

0 0 0 0 0

0 0 0 0 0

−
√
βhm11 0 0 0 0

0 0 0
√
αhm20 −

√
βhm21

0 0 0 0 0


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S
(11:15)
Na =



0 0 0 0 0

0 0 0 0 0

−√αmm20

√
3βmm30 0 0 0

√
αmm20 −

√
3βmm30 −

√
αhm30

√
βhm31 0

0 0 0 00

0 0 0 0
√

3αmm01

0 0 0 0 0

0 0
√
αhm30 −

√
βhm31 0



S
(16:20)
Na =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−
√

3αmm01

√
βmm11 0 0 0

−
√
βmm11 −

√
2αmm11

√
2βmm21 0 0

0
√

2αmm11 −
√

2βmm21 −
√
αmm21

√
3βmm31

0 0 0
√
αmm21 −

√
3βmm31



,

where S(i:j)
Na is the ith-jth column of SNa.

Note that each of the 8 columns of SK corresponds to the flux vector along a single

directed edge in the K+ channel transition graph. Similarly, each of the 20 columns of SNa

corresponds to the flux vector along a directed edge in the Na+ graph (cf. Fig. 3.1).

Remark 2. Although the ion channel state trajectories generated by equation (6.42) are

not strictly bounded to remain within the nonnegative simplex, empirically, the voltage

nevertheless remains within specified limits with overwhelming probability.
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To facilitate comparison of the model (6.16)-(6.41) with prior work [39, 49, 40], we

may rewrite the 14× 28D Langevin description in the equivalent form

C
dV

dt
= Iapp(t)− ḡNaM8 (V − VNa)− ḡKN5 (V − VK)− gleak(V − Vleak), (6.43)

dM

dt
= ANaM + SNaξNa, (6.44)

dN

dt
= AKM + SKξK, (6.45)

The drift matrices ANa and AK remain the same as in [39], and are the same as in the 14D

deterministic model (5.10)-(5.11). SNa and SK are constructed from direct transitions of the

underlying kinetics in Fig. 3.1, ξNa ∈ R20 and ξK ∈ R8 are vectors of independent Gaussian

white noise processes with zero mean and unit variance.

Fox and Lu’s original approach [39] requires solving a matrix square root equation

SSᵀ = D to obtain a square (8 × 8 for Na+ or 5 × 5 for K+) noise coefficient matrix

consistent with the state-dependent diffusion matrix D. As an advantage, the ion channel

representation (6.43)-(6.45) uses sparse, nonsquare noise coefficient matrices (8 × 20 for

the Na+ channel and 5× 8 for the K+ channel), which exposes the independent sources of

noise for the system.

The new Langevin model in (6.43)-(6.45) does not require detailed balance, which gives

more insights to the underlying kinetics. Review papers such as [49, 61, 93], did systematic

comparison of various stochastic versions of the HH model. In §7 and §8, we quantitaviely

analyze the connection between the new model and other existing models [20, 21, 39, 40,

41, 48, 49, 60, 61, 90, 93]. Problems such as the boundary constrains are beyond the scope

of this dissertation, however, we would like to connect the new model to another type of

approximation to the MC model, namely the stochastic shielding approximation.
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6.5 Stochastic Shielding for the 14D HH Model

The stochastic shielding (SS) approximation was introduced by Schmandt and Galán [102],

in order to approximate the Markov process using fluctuations from only a subset of the

transitions, namely those corresponding to changes in the observable states. In [105], we

showed that, under voltage clamp, each directed edge makes a distinct contribution to the

steady-state variance of the ion channel conductance, with the total variance being a sum of

these contributions. We call the variance due to the kth directed edge the edge importance;

assuming detailed balance, it is given by

Rk = Jk

n∑
i=2

n∑
j=2

(
−1

λi + λj

)
(cᵀvi) (wᵀi ζk) (ζᵀkwj)

(
vᵀj c
)
. (6.46)

Here, Jk is the steady-state probability flux along the kth directed edge; λn < λn−1 ≤

. . . ≤ λ2 < 0 are the eigenvalues of the drift matrix (ANa or AK, respectively), and vi

(resp. wi) are the corresponding right (resp. left) eigenvectors of the drift matrix. Each

edge’s stoichiometry vector ζk has components summing to zero; consequently the columns

of ANa and AK all sum to zero. Thus each drift matrix has a leading trivial eigenvalue

λ1 ≡ 0. The vector c specifies the unitary conductance of each ion channel state; for the

HH model it is proportional to eNa
8 or eK

5 , respectively.

Fig. 6.1 shows the edge importance for each pair of edges in the HH Na+ and K+ ion

channel graph, as a function of voltage in the range [−100, 100] mV. Note that reciprocal

edges have identical Rk due to detailed balance. Under voltage clamp, the largest value of

Rk for the HH channels always corresponds to directly observable transitions, i.e. edges k

such that |cᵀζk| > 0, although this condition need not hold in general [104].

To apply the stochastic shielding method under current clamp, we simulate the model

with noise from only a selected subset E ′ ⊂ E of directed edges, replacing (6.44)-(6.45)
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Figure 6.1: Stochastic shielding under voltage clamp. Redrawn (with permission) from
Figs. 10 & 13 of [105]. Each curve shows the edge importance Rk (equation (6.46))
as a function of voltage in the range [−100, 100] mV for a different edge pair. For the
K+ kinetics, R7 = R8 are the largest Rk value in the voltage range above. For the
Na+ kinetics, R11 = R12 have the largest Rk values in the subthreshold voltage range
(c. [−100,−25] mV), and R19 = R20 have the largest Rk values in the suprathreshold
voltage range (c. [−25, 100] mV).
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with

dM

dt
= ANaM + S ′NaξNa, (6.47)

dN

dt
= AKM + S ′KξK, , (6.48)

where S ′Na (resp. S ′K) is a reduced matrix containing only the noise coefficients from the

most important edges E ′. That is, E ′ contains a subset of edges with the largest edge-

importance values Rk.

In [102], they assumed that the edges with the largest contribution contribution to

current fluctuations under voltage clamp would also make the largest contributions to

variability in voltage and timing under current clamp, and included edges 7 − 8 of the

K+channel (E ′K = {7, 8}) and edges 11 − 12 and 19 − 20 of the Na+ channel (E ′Na =

{11, 12, 19, 20}), yielding an 8× 4 matrix S ′Na and an 5× 2 matrix S ′K. They demonstrated

numerically that restricting stochastic forcing to these edges gave a significantly faster

simulation with little appreciable change in statistical behavior: under voltage clamp, the

mean current remained the same, with a small (but noticeable) decrease in the current

variance; meanwhile similar inter-spike interval (ISI) statistics were observed.

Under current clamp, detailed balance is violated, and it is not clear from mathematical

principles whether the edges with the largest Rk under voltage clamp necessarily make the

largest contribution under other circumstances. In order to evaluate the contribution of the

fluctuations driven by each directed edge on ISI variability, we test the stochastic shielding

method by removing all but one column of Sion at a time. That is, we restrict to a single

noise source and observe the resulting ISI variance empirically. For example, to calculate

the importance of the kth direct edge in the Na+ channel, we suppress the noise from all
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other edges by setting S ′KξK = 05×1 and

S ′Na =
[
08×1, · · · , SNa(:, k), · · · ,08×1

]

i.e., only include the kth column of SNa and set other columns to be zeros. The ISI variance

was calculated from an ensemble of 104 voltage traces, each spanning c. 500 ISIs.

Fig. 6.2A plots the logarithm of the ISI variance for each edge in EK. Vertical bars (cyan)

show the ensemble mean of the ISI variance, with a 95% confidence interval superimposed

(magenta). Several observations are in order. First, the ISI variance driven by the noise

in each edge decreases rapidly, the further the edge is from the observable transitions

(edges 7,8), reflecting the underlying “stochastic shielding” phenomenon. Second, the

symmetry of the edge importance for reciprocal edge pairs ((1,2), (3,4), (5,6) and (7,8))

that is observed under voltage clamp is broken under current clamp. The contribution of

individual directed edges to timing variability under current clamp has another important

difference compared with the edge importance (current fluctuations) under voltage clamp.

A similar breaking of symmetry for reciprocal edges is seen for the Na+ channel, again

reflecting the lack of detailed balance during active spiking.

Fig. 6.2B shows the ISI variance when channel noise is included on individual edges

of ENa. Here the difference between voltage and current clamp is striking. Under voltage

clamp, the four most important edges are always those representing “observable transi-

tions”, in the sense that the transition’s stoichiometry vector ζ is not orthogonal to the

conductance vector c. That is, the four most important pairs are always 11-12 and 19-20,

regardless of voltage (Fig. 6.1). Under current clamp, the most important edges are 17,

18, 19 and 20. Although edges 11 and 12 are among the four most important sources of

channel population fluctuations under voltage clamp, they are not even among the top ten
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contributors to ISI variance, when taken singly. Even though edges 17 and 18 are “hidden”,

meaning they do not directly change the instantaneous channel conductance, these edges

are nevertheless the second most important pair under current clamp. Therefore, when we

implement the stochastic-shielding based approximation, we include the pairs 17-18 and

19-20 in equation (6.47). We refer to the approximate SS model driven by these six most

important edges as the 14× 6D HH model.

Given the other parameters we use for the HH model (cf. Tab. B.1 in Appendix B),

the input current of Iapp = 10 nA is slightly beyond the region of multistability associated

with a subcritical Andronov-Hopf bifurcation. In order to make sure the results are robust

against increases in the applied current, we tried current injections ranging from 20 to 100

nA. While injecting larger currents decreased the ISI variance, it did not change the rank

order of the contributions from the most important edges (cf. Fig. 6.3).
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Figure 6.2: Logarithm of variance of ISI for stochastic shielding under current clamp. Cyan
bar is the mean of ISI, and magenta plots 95% confidence interval of the mean ISI (see text
for details). The applied current is 10 nA with other parameters specified in the Appendices.
For the K+ kinetics, the largest contribution edge is 7, and 8 is slightly smaller ranking the
second largest. For the Na+ kinetics, the largest contribution pair is 19 and 20, with 20
slightly smaller than 19. Moreover, edge 17 and 18 is the second largest pair.
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Figure 6.3: Robustness of edge-importance ordering under current clamp for K+ (column
A1-C1) and Na+ (column A2-C2). Under each set of applied currents, the largest
contribution to ISI variance comes from edge 7 followed by edge 8, of the K+ kinetics.
For the Na+ kinetics, the largest contribution comes from pair 19-20, and edges 17 and 18
form the second largest pair for Na+.
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Part III

Model Comparison
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Chapter 7

Pathwise Equivalence for a Class of

Langevin Models

Fox and Lu’s method was widely used since its appearance (see references in [49, 12,

61]), and the “best” approximation for the underlying Markov Chain (MC) model has

been a subject of ongoing discussion for decades. Several studies [12, 81, 111] attested

to discrepancies between Fox’s later approach in [40] and the discrete-state MC model,

raising the question of whether Langevin approximations could ever accurately represent

the underlying fluctuations seen in the “gold standard” MC models. An influential review

paper [49] found that these discrepancies were due to the way in which noise is added to

the stochastic differential equations (3.1)-(3.3). Recent studies including [20, 21, 41, 48,

49, 56, 60, 61, 73, 90, 93] discussed various ways of incorporating channel noise into HH

kinetics based on the original work by Fox and Lu [39, 40], some of which have the same

SDEs but with different boundary conditions. Different boundary conditions (BCs) are not

expected to have much impact on computational efficiency. Indeed, if BCs are neglected,
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the main difference between channel-based (or conductance-based) models is the diffusion

matrix S in the Langevin euqations (3.2) and (3.3). As the discussion about where and how

to incorporate noise into the HH model framework goes on, [41] recently asked whether

there is a way of relating different models with different S matrices. We give a positive

answer to this question below.

In §7.1 we will demonstrate the equivalence (neglecting the boundary conditions) of a

broad class of previously proposed channel-based Langevin models including: [20, 21, 39,

41, 49, 60, 90, 93] and the 14D Langevin HH model with 28 independent noise sources (one

for each directed edge in the channel state transition graph), i.e. our “14× 28D” Langevin

model.

7.1 When are Two Langevin Equations Equivalent?

Two Langevin models are pathwise equivalent if the sample paths (trajectories) of one

model can be made to be identical to the sample paths of the other, under an appropriate

choice of Gaussian white noise samples for each. To make this notion precise, consider two

channel-based Langevin models of the form dX = f(X) dt + G(X)dW with the same

mean dynamics f ∈ Rd and two different d× n matrices (possibly with different values of

n1 and n2), G1 and G2. Denote

f : Rd → Rd, (7.1)

G1 : Rd → Rd×n1 , (7.2)

G2 : Rd → Rd×n2 . (7.3)
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Let X(t) = [X1(t), X2(t), . . . , Xd(t)]
ᵀ and X∗(t) = [X∗1 (t), X∗2 (t), . . . , X∗d(t)]ᵀ be tra-

jectories produced by the two models and let W(t) = [W1(t),W2(t), . . . ,Wn1(t)]
ᵀ and

W∗(t) = [W ∗
1 (t),W ∗

2 (t), . . . ,W ∗
n2

(t)]ᵀ be vectors of Wiener processes. That is, Wi(t), i =

1, 2, . . . , n1 andW ∗
j (t), j = 1, 2, . . . , n2 are independent Wiener processes with 〈Wi(s)Wj(t)〉 =

δijδ(t − s) and 〈W ∗
i (s)W ∗

j (t)〉 = δijδ(t − s). Note that n1 and n2 need not be equal. As

defined in [2], the stochastic differential equation (SDE) models

dX = f(t,X(t))dt+G1(t,X(t))dW(t) (7.4)

and

dX∗ = f(t,X∗(t))dt+G2(t,X
∗(t))dW∗(t) (7.5)

are pathwise equivalent if systems (7.4) and (7.5) posses the same probability distribution,

and moreover, a sample path solution of one equation is also a sample solution to the

other one. In [2], the authors proved a theorem giving general conditions under which

the trajectories of two SDEs are equivalent. We follow their construction closely below,

adapting it to the case of two different Langevin equations for the Hodgkin-Huxley system

represented in a 14-dimensional state space.

As in §6, channel-based Langevin models for the stochastic dynamics of HH can be

written as

dX = f(X) dt+ S(X)dW(t) (7.6)

where the 14-component random vector X = (V ;M;N) and f(x) =
[
dV
dt

; dM
dt

; dN
dt

]
is the
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same as the mean-field, eqns. (5.7)-(5.9). Recall that x = [v,m,n]ᵀ. Here we write

S(x) =


01×m 01×n

SNa(m) 08×n

05×m SK(n)

 , with

SNa : R8 → R8×m, (7.7)

for the Na+ channel, and

SK : R5 → R5×n, (7.8)

for the K+ channel. Here, m is the number of independent white noise forcing terms

affecting the sodium channel variables, while n is the number of independent noise sources

affecting the potassium gating variables. We write

W(t) = [W1(t),W2(t), . . . ,Wm+n(t)]ᵀ

for a Wiener process incorporating both the sodium and potassium noise forcing. Given

two channel-based models with diffusion matrices

SNa,1 : R8 → R8×m1 , (7.9)

SNa,2 : R8 → R8×m2 , (7.10)
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for the Na+ channel, and

SK,1 : R5 → R5×n1 , (7.11)

SK,2 : R5 → R5×n2 , (7.12)

for the K+ channel, we construct the diffusion matrix D = SSᵀ. In order for the two

models to generate equivalent sample paths, it suffices that they have the same diffusion

matrix, i.e.

D = S1Sᵀ1 =


01×1 01×8 01×5

08×1 DNa 08×5

05×1 05×8 DK

 = S2Sᵀ2 .

The SDEs corresponding to the two channel-based Langevin models are

dX = f(t,X(t))dt+ S1(t,X(t))dW(t), (7.13)

dX∗ = f(t,X∗(t))dt+ S2(t,X∗(t))dW∗(t). (7.14)

The probability density function p(t,x) for random variable X in eqn. (7.13) satisfies

the Fokker-Planck equation

∂p(t,x)

∂t
=

1

2

8∑
i=1

8∑
j=1

∂2

∂xixj

[
p(t,x)

m1+n1∑
l=1

S(i,l)
1 (t,x)S(j,l)

1 (t,x)
]

−
8∑
i=1

∂

∂xi

[
fi(t,x)p(t,x)

]
=

1

2

8∑
i=1

8∑
j=1

∂2

∂xixj

[
D(i,j)(t,x)p(t,x)

]
−

8∑
i=1

∂

∂xi

[
fi(t,x)p(t,x)

]
(7.15)
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where S(i,j)
1 (t,x) is the (i, j)th entry of the diffusion matrix S1(t,x). Eqn. (7.15) holds

because

D(i,j)(t,x) =

m1+n1∑
l=1

S(i,l)
1 (t,x)S(j,l)

1 (t,x).

If z1, z2 ∈ R14 and z1 6 z2, then

P (z1 6 X(t) 6 z2) =

∫ z2,14

z1,14

∫ z2,13

z1,13

· · ·
∫ z2,1

z1,1

p(t,x)dx1dx2 · · · dx8.

Note that (7.13) and (7.14) have the same expression (7.15) for the Fokker-Planck equation,

therefore, X and X∗ possess the same probability density function. In other words, the

probability density function of X in eqn. (7.6) is invariant for different choices of the

diffusion matrix S.

7.2 Map Channel-based Langevin Models to Fox and Lu’s

Model

We now explicitly construct a mapping between Fox and Lu’s 14D model [39] and any

channel-based model (given the same boundary conditions). We begin with a channel-

based Langevin description

dX = f(t,X(t))dt+ S(t,X(t))dW(t), (7.16)

and Fox and Lu’s model [39]

dX∗ = f(t,X∗(t))dt+ S0(t,X∗(t))dW∗(t), (7.17)
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where S is a d by m matrix satisfying SSᵀ = D (note that S is not necessarily a square

matrix), and S0 =
√
D.

Let T be the total simulation time of the random process in equations (7.16) and (7.17).

For 0 6 t 6 T , denote the singular value decomposition (SVD) of S as

S(t) = P (t)Λ(t)Q(t)

where P (t) is an d × d orthogonal matrix (i.e., P ᵀP = PP ᵀ = Id) and Q(t) is an m ×m

orthogonal matrix, and Λ(t) is a d × m matrix with rank(Λ) = r 6 d positive diagonal

entries and d− r zero diagonal entries.

First, we prove that given a Wiener trajectory, W(t), t ∈ [0, T ] and the solution

to eqn. (7.16), X(t), there exists a Wiener trajectory W∗(t) such that the solution to

eqn. (7.17), X∗, is also a solution to eqn. (7.16). In other words, for a Wiener process

W(t) we can construct a W∗(t), such that X∗(t) = X(t), for 0 ≤ t ≤ T .

Following [2], we construct the vector W∗(t) of d independent Wiener processes as

follows:

W∗(t) =

∫ t

0

P (s)
[(
Λ(s)Λᵀ(s)

) 1
2

]+
Λ(s)Q(s)dW(s) +

∫ t

0

P (s)dW∗∗(s) (7.18)

for 0 6 t 6 T , where W∗∗(t) is a vector of length d with the first r entries equal to

0 and the next d − r entries independent Wiener processes, and
[(
Λ(s)Λᵀ(s)

) 1
2

]+
is the
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pseudoinverse of
(
Λ(s)Λᵀ(s)

) 1
2 . Consider that

D(t) = S(t)Sᵀ(t) = P (t)Λ(t)Q(t)
[
P (t)Λ(t)Q(t)

]ᵀ
(7.19)

= P (t)Λ(t)Λᵀ(t)P ᵀ(t) (7.20)

= [S0(t)]2, (7.21)

where S0(t) = P (t)
(
Λ(t)Λᵀ(t)

) 1
2
P ᵀ(t) is a square root of D, by construction.

The diffusion term on the right side of (7.17) with X∗(t) replaced by X(t) satisfies

S0(t,X(t))dW∗(t)

=S0(t)
(
P (t)

[(
Λ(t)Λᵀ(t)

) 1
2

]+
Λ(t)Q(t)dW(t) + P (t)dW∗∗(t)

)
=P (t)

(
Λ(t)Λᵀ(t)

) 1
2
P ᵀ(t)P (t)

[(
Λ(t)Λᵀ(t)

) 1
2

]+
Λ(t)Q(t)dW(t)

+ P (t)
(
Λ(t)Λᵀ(t)

) 1
2
P ᵀ(t)P (t)dW∗∗(t)

= {P (t)Λ(t)Q(t)}dW(t). (7.22)

From the SVD of S=PΛQ, we conclude that

S0(t,X(t))dW∗(t) = S(t,X(t))dW(t). (7.23)

Hence, dX = f(t,X(t))dt + S0(t,X(t))dW∗
t , i.e., X(t) is a sample path solution of

equation (7.17).

Similarly, given a Wiener trajectory W∗(t) and the solution to eqn. (7.17) X∗(t), we

can construct a vector W(t) of m independent Wiener processes as

W(t) =

∫ t

0

Qᵀ(s)Λ+(s)
[
Λ(s)Λᵀ(s)

]1/2
P ᵀ(s)dW∗(s) +

∫ t

0

Qᵀ(s)dW∗∗∗(s) (7.24)
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for 0 6 t 6 T , where W∗∗∗(t) is a vector of length m with the first r entries equal to 0

and the next m− r entries independent Wiener processes, and Λ+(s) is the pseudoinverse

of Λ(s). Then, by an argument parallel to (7.22), we conclude that

S(t,X∗(t))dW (t) = S0(t,X∗(t))dW∗(t). (7.25)

Hence, dX∗ = f(t,X∗(t))dt + S(t,X∗(t))dW(t), that is, X∗(t) is also a solution to

(7.16). Therefore we can conclude that the channel-based Langevin model in eqn. (7.16) is

pathwise equivalent to the Fox and Lu’s model.

To illustrate pathwise equivalence, Fig. 7.1 plots trajectories of the 14× 28D stochastic

HH model and Fox and Lu’s model, using noise traces dictated by the preceding construc-

tion. In panel A, we generated a sample path for eqn. (7.16) and plot three variables in X:

the voltage V , Na+ channel open probability M31 and K+ channel open probability N4.

The corresponding trajectory, X∗, for Fox and Lu’s model was generated from eqn. (7.17)

and the corresponding Wiener trajectory was calculated using eqn. (7.18). To see that

these trajectories are pathwise equivalent, in the top three subplots in panel A (resp. B)

we superposed the voltage V ∗, Na+ channel open probability M∗
31 and K+ channel open

probability N∗4 in X∗ against those in X. The bottom three subplots in panel A (resp. B)

plot the point-wise differences of each variable. Eqns. (7.16) and (7.17) are numerically

solved in Matlab using the Euler-Maruyama method with a time step dt = 0.001ms. The

slight differences observed arise in part due to numerical errors in calculating the singular

value decomposition of S (in eqn. (7.16)); another source of error is the finite accuracy

of the Euler-Maruyama method.1 As shown in Fig. 7.1, most differences occur near the

spiking region, where the system is numerically very stiff and the numerical accuracy of

1The forward Euler method is first order accurate for ordinary differential equations, but the forward
Euler-Maruyama method is only O(

√
dt) accurate for stochastic differential equations [68].
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the SDE solver accounts for most of the discrepancies (analysis of which is beyond the

scope of this thesis). We can conclude from the comparison in Fig. 7.1 that the 14 × 28D

Langevin model is pathwise equivalent with the Fox and Lu’s model. Similarly, the same

analogy applies for other channel-based Langevin models such that with the same diffusion

matrix D(X).

We have shown that our “14 × 28D” model, with a 14-dimensional state space and

28 independent noise sources (one for each directed edge) is pathwise equivalent to Fox

and Lu’s original 1994 model as well as other channel-based models (under corresponding

boundary conditions) including [41, 48, 49, 90, 93]. As we shall see in §8, the pathwise

equivalent models give statistically indistinguishable interspike interval distributions un-

der the same BCs. We emphasize the importance of boundary conditions for pathwise

equivalence. Two simulation algorithms with the same Ai and Si matrices will generally

have nonequivalent trajectories if different boundary conditions are imposed. For example,

[21] employs the same dynamics as [90] away from the boundary, where ion channel state

occupancy approaches zero or one. But where the latter allow trajectories to move freely

across this boundary (which leads only to small, short-lived excursions into “nonphysical”

values), Dangerfield imposes reflecting boundary conditions through a projection step at

the boundary. As we will see below (§8), this difference in boundary conditions leads to a

statistically significant difference in the ISI distribution, as well as a loss of accuracy when

compared with the “gold standard” Markov chain simulation.
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Figure 7.1: Pathwise equivalency of 14D HH model and Fox and Lu’s model. A: Given
a sample path of the 14 × 28D Langevin model in eqn. (7.16), we construct the noise by
eqn. (7.18) and generate the sample trajectory of Fox and Lu’s model using eqn. (7.17).
B: Given a sample path of Fox and Lu’s model in eqn. (7.17), we construct the noise by
eqn. (7.24) and generate the sample trajectory of the 14 × 28D Langevin model using
eqn. (7.16). We obtain excellent agreement in both directions. See text for details.
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Chapter 8

Model Comparison

In §6, we studied the contribution of every directed edge to the ISI variability and proposed

how stochastic shielding could be applied under current clamp. Moreover, in §7, we proved

that a family of Langevin models are pathwise equivalent.

Here we compare the accuracy and computational efficiency of several models, includ-

ing the “subunit model” [40, 49], Langevin models with different S matrices or boudary

conditions [21, 39, 49, 90, 93], the 14D HH model (proposed in §6.3), the 14D stochastic

shielding model with six independent noise sources (proposed in §6.5), and the “gold

standard” Markov Chain model (discussed in §6.2). Where other studies have compared

moment statistics such as the mean firing frequency (under current clamp) and stationary

channel open probababilies (under voltage clamp), we base our comparison on the entire

interspike interval (ISI) distributions, under current clamp with a common fixed driving

current. We use two different comparisons of ISI distributions, the first based on the L1

norm of the difference between two distributions (the Wasserstein distance, [124]), in §8.1

and the second based on the L∞ norm (the Kolmogorov-Smirnov test, [69, 117]), in §8.2.
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We find similar results using both measures: as expected, the models that produce pathwise

equivalent trajectories (Fox & Lu ’94, Orio & Soudry, and our 14 × 28D model) have

indistinguishable ISI statistics, while the non-equivalent models (Fox ’97, Dangerfield,

Goldwyn & Shea-Brown, our 14 × 6D stochastic-shielding model) have significantly dif-

ferent ISI distributions. Of these, the 14× 6D SS model is the closest to the models in the

14× 28D class, and as fast as any other model considered.

8.1 L1 Norm Difference of ISIs

We first evaluate the accuracy of different stochastic simulation algorithms by comparing

their ISI distributions under current clamp to that produced by a reference algorithm,

namely the discrete-state Markov Chain (MC) algorithm.

Let X1, X2, . . . , Xn be n independent samples of ISIs with a true cumulative distri-

bution function F . Let Fn(·) denote the corresponding empirical cumulative distribution

function (ECDF) defined by

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}, x ∈ R, (8.1)

where we write 1A to denote the indicator function for the set A. Let Q and QM be the

quantile functions of F and FM , respectively. The L1-Wasserstein distance between two

CDF’s FM and F can be written as [114] (page 64)

ρ1(F, F
M) =

∫ ∞
0

∣∣F (x)− FM(x)
∣∣ dx =

∫ 1

0

∣∣Q(x)−QM(x)
∣∣ dx. (8.2)

Note that ρ1 has the same units as “dx”. Thus the L1 distances reported in Tab. 8.1 have

units of milliseconds.
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When two models have the same number of samples, n, (8.2) can be estimated by

∫ 1

0

∣∣Q(x)−QM(x)
∣∣ dx ≈ 1

n

n∑
i=1

|Xi − Yi| := ρ1(Fn, F
M
n ), (8.3)

where X1, · · · , Xn and Y1, · · · , Yn are n independent samples sorted in ascending order

with CDF F and FM , respectively.

We numerically calculate ρ1(Fn, F
M
n ) to compare several Langevin models against

the MC model. We consider the following models: “Fox94” denotes the original model

proposed by [39], which requires a square root decomposition (S =
√
D) for each step in

the simulation, see equations (3.1)-(3.3). “Fox97” is the widely used “subunit model” of

[40], see equations (3.4)-(3.5). “Goldwyn” denotes the method taken from [49], where they

restrict the 14D system (V , 5 K+ gates and 8 Na+ gates) to the 4D multinomial submanifold

(V, m, n, and h, see p. 35 above), with gating variables truncated to [0, 1]. We write

“Orio” for the model proposed by [90], where they constructed a rectangular matrix S such

that SSᵀ = D (referred to as Spaired in Tab. 8.1) combining fluctuations driven by pairs

of reciprocal edges, thereby avoiding taking matrix square roots at each time step. The

model “Dangerfield” represents [21], which used the same S matrix as in [90] but added

a reflecting (no-flux) boundary condition via orthogonal projection (referred to as SEF in

Tab. 8.1). Finally, we include the 14× 28D model we proposed in §6.3, or “14D” (referred

to as Ssingle in Tab. 8.1); “SS” is the stochastic shielding model specified in §6.5.

For each model, we ran 10,000 independent samples of the simulation, holding channel

number, injected current (Iapp = 10 nA), and initial conditions fixed. Throughout the thesis,

we presume a fixed channel density of 60 channels/µm2 for sodium and 18 channels/µm2

for potassium in a membrane patch of area 100µm2, consistent with prior work such as

[49, 90]. The initial condition is taken to be the point on the deterministic limit cycle at
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which the voltage crosses upwards through −60 mV. An initial transient corresponding

to 10-15 ISIs is discarded, to remove the effects of the initial condition. See Tab. B.1

in Appendix B for a complete specification of simulation parameters. We compared the

efficiency and accuracy of each model through the following steps:

1. For each model, a single run simulates a total time of 84000 milliseconds (ms) with

time step 0.008 ms, recording at least 5000 ISIs.

2. For each model, repeat 10,000 runs in step one.

3. Create a reference ISI distribution by aggregating all 10,000 runs of the MC model,

i.e. based on roughtly 5× 107 ISIs.

4. For each of 104 individual runs, align all ISI data into a single vector and calculate

the ECDF using equation (8.1).

5. Compare the ISI distribution of each model with the reference MC distribution by

calculating the L1-difference of the ECDFs using equation (8.3).

6. To compare the computational efficiency, we take the average execution time of the

MC model as the reference. The relative computational efficiency is the ratio of the

average execution time of a model with that of the MC model (c. 3790 sec.).

Table 8.1 gives the empiricially measured L1 difference in ISI distribution between

several pairs of models.1 The first row (“MC”) gives the average L1 distance between

individual MC simulations and the reference distribution generated by aggregating all

MC simulations, in order to give an estimate of the intrinsic variability of the measure.

1Runtimes in Tab. 8.1, rounded to the nearest integer number of seconds, were obtained by averaging the
runtimes on a distribution of heterogeneous compute nodes from Case Western Reserve University’s high-
performance computing cluster.
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Model Variables S Matrix Noise Dim. L1 Norm (msec.) Runtime
V+M+N Na+K (Wasserstein Dist.) (sec.)

MC 1+8+5 n/a 20+8 2.27 e-4± 7.15 e-5 3790
Fox94 1+7+4 S =

√
D 7+4 4.74 e-2± 1.93 e-4 2436

Fox97 1+2+1 n/a 3 8.01 e-1± 9.48 e-4 67
Dangerfield 1+8+5 SEF 10+4 2.18 e-1± 2.14 e-4 655
Goldwyn 1+8+5 S =

√
D 8+5 1.83 e-1± 1.93 e-4 2363

Orio 1+8+5 Spaired 10+4 4.52 e-2± 2.08 e-4 577
14× 28D 1+8+5 Ssingle 20+8 4.93 e-2± 1.94 e-4 605
SS 1+8+5 Sss 4+2 7.62 e-2± 7.57 e-5 73

Table 8.1: Summary of the L1-Wasserstein distances of ISI distributions for Langevin type
Hodgkin-Huxley models compared to the MC model. Model (see text for details): MC:
Markov-chain. Fox1994: model from [39]. Fox97: [40]. Goldwyn: [49]. Dangerfield:
[21, 20]. 14 × 28D: model proposed in §6.3. SS: stochastic-shielding model (§6.5).
Variables: number of degrees of freedom in Langevin equation representing voltage,
sodium gates, and potassium gates, respectively. S Matrix: Form of the noise coefficient
matrix in equations (3.1)-(3.3). Noise Dimensions: number of independent Gaussian white-
noise sources represented for sodium and potassium, respectively. L1 Norm: Empirically
estimated L1-Wasserstein distance between the model’s ISI distribution and the MC
model’s ISI distribution. For MC-vs-MC, independent trials were compared. a ± b:
mean±standard deviation. Runtime (in sec.): see text for details. n/a: not applicable.
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Figure 8.1: The probability density of interspike intervals (ISIs) for Fox97 (blue) and the
MC model (red). The probability densities were calculated over more than 5.4× 107 ISIs.

Figure 8.2 plots the L1-Wasserstein differences versus the relative computational efficiency

of several models against the MC model. These results suggest that the Fox94, Orio,

and 14 × 28D models are statistically indistinguishable, when compared with the MC

model using the L1-Wasserstein distance. This result is expected in light of our results

(§7) showing that these three models are pathwise-equivalent. (We will make pariwise

statistical comparisons between the ISI distributions of each model in §8.2.) Among these

equivalent models, however, the 14× 28D and Orio models are significantly faster than the

original Fox94 model (and the Goldwyn model) because they avoid the matrix square root

computation. The Dangerfield model has speed similar to the 14× 28D model, but the use

of reflecting boundary conditions introduces significant inaccuracy in the ISI distribution.

The imposition of truncating boundary conditions in the Goldwyn model also appears to

affect the ISI distribution. Of the models considered, the Fox97 subunit model is the fastest,

however it makes a particularly poor approximation to the ISI distribution of the MC model.

Note that the maximum L1-Wasserstein distance between two distributions is 2. The ISI
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distribution of Fox97 subunit model to that of the MC model is more than 0.8, which is

ten times larger than the L1-Wasserstein distance of the SS model, and almost half of the

maximum distance. As shown in Fig. 8.1, the Fox97 subunit model fails to achieve the spike

firing threshold and produces longer ISIs. Because of its inaccuracy, we do not include the

subunit model in our remaining comparisons. The stochastic shielding model, on the other

hand, has nearly the same speed as the Fox97 model, but is over 100 times more accurate

(in the L1 sense). The SS model is an order of magnitude faster than the 14× 28D model,

and has less than twice the L1 discrepancy versus the MC model (L1 norm 76.2 versus 49.3

microseconds). While this difference in accuracy is statistically significant, it may not be

practically significant, depending on the application (see §12 for further discussion of this

point).

8.2 Two-sample Kolmogorov-Smirnov Test

In addition to using the L1-Wasserstein distances to test the differences between two CDFs,

we can also make a pairwise comparison between each model by applying the Dvoretzky-

Kiefer-Wolfowitz inequality [28] and the two-sample Kolmogorov-Smirnov (KS) test [69,

117]. While the Wasserstein distance is based on the L1 norm, the KS statistic is based on

the L∞ (or supremum) norm.

The Dvoretzky-Kiefer-Wolfowitz inequality [28] establishes confidence bounds for the

CDF. Specifically, the interval that contains the true CDF, F (·), with probability 1 − α, is

given by

|Fn(x)− F (x)| ≤ ε where ε =

√
ln 2

α

2n
. (8.4)

When comparing samples XM
1 , X

M
2 , . . . , X

M
n obtained from an approximate model M
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Figure 8.2: The L1-Wasserstein distances and relative computational efficiency vs. the
MC model. “Fox94” (green circle), “Goldwyn” (black cross), “Orio” (cyan square),
“14D” (blue star), “SS” (magenta downward pointing triangle), “Dangerfield” (red upward
pointing triangle), and the “MC” (brown diamond) model. The L1 error for ISI distribution
was computed using the L1-Wasserstein distance (8.3), with discrete time Gillespie/Monte-
Carlo simulations as a reference. The relative computational efficiency is the ratio of the
recorded run time to the mean recorded time of the MC mode (3790 seconds). The mean
and 95% confidence intervals were calculated using 100 repetitions of 10, 000 runs each
(5× 109 ISIs total).
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against the gold standard, in §8.1 we computed the L1 difference of the empirical density

functions, as an approximation for the L1 difference of the true distributions. Instead, we

work here with the L∞ norm,

ρ∞(Fn, F
M
n ) = lim

p→∞

(∫ ∞
0

∣∣FM
n (x)− Fn(x)

∣∣p dx)1/p

= sup
0≤x<∞

(∣∣FM
n (x)− Fn(x)

∣∣) .
(8.5)

For each x ≥ 0, equation (8.4) bounds the discrepancy between the true and empirical

distribution differences as follows. By the triangle inequality, and independence of the Xi

from the XM
i , the inequality

|FM − F | = |FM − FM
n + Fn − F + FM

n − Fn|

≤ |FM − FM
n |+ |Fn − F |+ |FM

n − Fn|

≤ 2ε+ |FM
n − Fn|, (8.6)

holds with probability (1− α)2. Similarly,

|FM
n − Fn| = |FM

n − FM
n + F − Fn + FM − F |

≤ |FM − FM
n |+ |Fn − F |+ |FM − F |

≤ 2ε+ |FM − F | (8.7)

also holds with probability (1 − α)2. Together, (8.6)-(8.7) indicate that the discrepancy

between the difference of empirical distributions and the difference of true distributions is

bounded as ∣∣∣|FM − F | − |FM
n − Fn|

∣∣∣ ≤ 2ε (8.8)

with probability (1− α)2, for ε =

√
ln 2
α

2n
.
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We will use the pointwise difference of the ECDF’s for a large sample as an estimate for

the pointwise difference between two true CDFs. The two-sample Kolmogorov-Smirnov

(KS) test [69, 117] offers a statistics to test whether two samples are from the same distri-

bution. The two-sample KS statistic is

Dn,m = sup
x
|F1,n(x)− F2,m(x)|, (8.9)

where F1,n and F2,m are two ECDFs for two samples defined in (8.1), and the sup is the

supremum function. The reference statistic, Rn,m(α), depending on the significance level

α, is defined as

Rn,m(α) =

√
− log(α/2)

2

√
n+m

nm
, (8.10)

where n and m are the sample sizes. The null hypothesis that “the two samples come from

the same distribution” is rejected at the significance level α if

Dn,m > Rn,m(α). (8.11)

Figure 8.3 plots the logarithm of ratio of the two-sample KS statistics, Dn,m
Rn,m(0.01)

, for

“Fox94” [39], “Goldwyn” [49],“Dangerfiled” [21], “Orio” [90], “14D” (the 14×28D model

we proposed in §6.3). Data of “self-comparison” (e.g. Fox94 vs. Fox 94) was obtained by

comparing two ISI ECDF’s from independent simulations. As shown in Fig. 8.3, models

that we previously proved were pathwise equivalent in §7, namely the “Fox94”, “Orio”

and the “14D” model, are not distinguishable at any confidence level justified by our data.

Note that those three models use the same boundary conditions (free boundary condition as

in [90]) and the ratio Dn,m/Rn,m(α) of pairwise comparison is on the same magnitude of

that for the self-comparisons. However, as pointed out above, these statistically equivalent
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Figure 8.3: Logarithm of the ratio of Kolmogorov-Smirnov test statistic Dn,m/Rn,m(α),
eqns. (8.9)-(8.10), for samples from the ISI distribution for each pair of models. Top: Box
and whisker plots showing mean and 95% confidence intervals based on 10,000 pairwise
comparisons. The first five plots show self-comparisons (green bars); the remainder
compare distinct pairs (grey bars). A:“Fox94” [39], B:“Orio” [90], C: “14D” (14 × 28D
model §6.3), D: Dangerfield [21], E: Goldwyn [49]. Bottom: Mean logarithms (as in top
panel) for all pairwise comparisons.
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simulation algorithms have different computational efficiencies (Fig. 8.2). Among these

methods, Orio and Soundry’s algorithm (14 dimensional state space with 14 undirected

edges as noise sources) and our method (14 dimensional state space with 28 directed edges

as noise sources) have similar efficiencies, with Orio’s method being about 5% faster than

ours method. Our 14 × 28D method provides the additional advantage that it facilitates

further acceleration under the stochastic shielding approximation (see §12).

In contrast to the statistically equivalent Orio, 14×28D and Fox ’94 models, algorithms

using different boundary conditions are not pathwise equivalent, which is again verified in

Fig. 8.3. Algorithms with subunit approximation and truncated boundary condition (i.e.,

“Goldwyn”) and the reflecting boundary condition (i.e. “Dangerfield”) are significantly

different in accuracy (and in particular, they are less accurate) than models in the 14× 28D

class.
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Part IV

Applications of the 14× 28D Langevin Model
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Chapter 9

Definitions, Notations and Terminology

In this chapter, we will present definitions, notations and terminology that are necessary

for the main applications of the 14 × 28D HH model. We adopt the standard convention

that uppercase symbols (e.g. V,M,N) represent random variables, while corresponding

lowercase symbols (e.g. v,m,n) represent possible realizations of the random variables.

Thus P(V ≤ v) is the probability that the random voltage V does not exceed the value v.

We set vectors in bold font and scalars in standard font.

9.1 The HH Domain

Recall the 14× 28D Langevin model

C
dV

dt
= Iapp(t)− ḡNaM8 (V − VNa)− ḡKN5 (V − VK)− gleak(V − Vleak), (9.1)

dM

dt
= ANaM + SNaξNa, (9.2)

dN

dt
= AKM + SKξK. (9.3)
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The drift matrices ANa and AK, SNa and SK are given in §6.3, ξNa ∈ R20 and ξK ∈ R8 are

vectors of independent Gaussian white noise processes with zero mean and unit variance.

Reversal potentials Vion for physiological ions are typically confined to the range ±150mV.

For the 4-D and the 14-D HH models, the reversal potentials for K+ and Na+ are -77mV and

+50mV respectively [32]. In Lemma 3, we establish that the voltage for conductance-based

model in eqn. (9.1)-(9.3) is bounded. Therefore we can find a voltage range [vmin, vmax]

that is forward invariant with probability 1, meaning that the probability of any sample

path leaving the range vmin ≤ V (t) ≤ vmax is zero. At the same time, the channel state

distribution for any channel with k states is restricted to a (k − 1)-dimensional simplex

∆k−1 ⊂ Rk, given by y1 + . . . + yk = 1, yi ≥ 0. Therefore, the phase space of any

conductance-based model of the form eqn. (9.1)-(9.3) may be restricted to a compact

domain in finite dimensions.

Definition 1. We define the HH domain D to be

D ∆
= [vmin, vmax]×∆7 ×∆4 (9.4)

where ∆7 is the simplex occupied by the Na+channel states, and ∆4 is occupied by the

K+channel states.

We thus represent the “14-D” HH model in a reduced phase space of dimension 1+7+4=12.

Lemma 3. For a conductance-based model of the form in eqn. (9.1)-(9.3), and for any

bounded applied current I− ≤ Iapp ≤ I+, there exist upper and lower bounds vmax and

vmin such that trajectories with initial voltage condition v ∈ [vmin, vmax] remain within this

interval for all times t > 0, with probability 1, regardless of the initial channel state.

Proof. Let V1 = min
ion
{Vion} ∧ Vleak, and V2 = max

ion
{Vion} ∨ Vleak, where ion ∈ {Na+,K+}.

Note that for both the Na+ and K+ channel, 0 ≤ M8 ≤ 1, 0 ≤ N5 ≤ 1, with probability
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1. Moreover, gi > 0, gleak > 0, therefore when V ≤ V1

dV

dt
=

1

C
{Iapp(t)− ḡNaM8 (V − VNa)− ḡKN5 (V − VK)− gleak(V − Vleak)} (9.5)

≥ 1

C
{Iapp(t)− ḡNaM8 (V − V1)− ḡKN5 (V − V1)− gleak(V − V1)} (9.6)

≥ 1

C
{Iapp(t)− 0×M8 (V − V1)− 0×N5 (V − V1)− gleak(V − V1)} (9.7)

=
1

C
{Iapp(t)− gleak(V − V1)} . (9.8)

Inequality (9.6) holds with probability 1 because V1 = min
i∈I
{Vi} ∧ Vleak, and inequality

(9.7) follows because V − V1 ≤ 0, gi > 0 and M8 ≥ 0, N5 ≥ 0 with probability 1. Let

Vmin := min
{

I−
gleak

+ V1, V1

}
. When V < Vmin, dV

dt
> 0 with probability 1. Therefore, V

will not decrease beyond Vmin with probability 1.

Similarly, when V ≥ V2

dV

dt
=

1

C
{Iapp(t)− ḡNaM8 (V − VNa)− ḡKN5 (V − VK)− gleak(V − Vleak)} (9.9)

≤ 1

C
{Iapp(t)− ḡNaM8 (V − V2)− ḡKN5 (V − V2)− gleak(V − V2)} (9.10)

≤ 1

C
{Iapp(t)− 0×M8 (V − V2)− 0×N5 (V − V2)− gleak(V − V2)} (9.11)

=
1

C
{Iapp(t)− gleak(V − V2)} . (9.12)

Inequality (9.10) and inequality (9.11) holds with probability 1 because V2 = max
i∈I
{Vi}∨

Vleak, V − V2 ≥ 0, gi > 0 and M8 ≥ 0, N5 ≥ 0 with probability 1. Let Vmax =

max
{
Iapp

gleak
+ V2, V2

}
. When V > Vmax,

dV
dt

< 0 with probability 1. Therefore, V will

not go beyond Vmax with probability 1.

We conclude that if V takes an initial condition in the interval [Vmin, Vmax], then V (t)

remains within this interval for all t ≥ 0 with probability 1.
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Throughout this thesis, we use the parameters of the standard Hodgkin-Huxley model,

with constant applied current Iapp = 10 nano Amperes (see Tab. B.1). For these parameters,

Vmin = −77 mV and Vmax ≈ +83.33 mV.

Remark 3. Lemma 3 implies that the per capita transition rates along a finite collection of

edges, {αk(v)}Kk=1 are bounded above by a constant αmax, as v ranges over vmin ≤ v ≤ vmax.

This fact will help establish Theorem 4.

9.2 Interspike Intervals and First Passage Times

Figure 9.1 shows a voltage trajectory generated by the 14-D stochastic HH model, under

current clamp, with injected current in the range supporting steady firing. The regular

periodicity of the deterministic model vanishes in this case. Nevertheless, the voltage

generates spikes, which allows us to introduce a well defined series of spike times and inter-

spike intervals (ISIs). For example, we may select a reference voltage such as vth = −20

mV, with the property that within a neighborhood of this voltage, trajectories have strictly

positive or strictly negative derivatives (dV/dt) with high probability.

In [100], they suggested that the stochastic (Langevin) 4-D HH model has a unique

invariant stationary joint density for the voltage and gating variables, as well as producing

a stationary point process of spike times. The ensemble of trajectories may be visualized

by aligning the voltage spikes (Figure 9.1b), and illustrates that each trace is either rapidly

increasing or else rapidly decreasing as it passes vth = −20 mV.

In order to give a precise definition of the interspike interval, on which we can base a

first-passage time analysis, we will consider two types of Poincaré section of the fourteen-
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Figure 9.1: Example voltage trace for the 14-D stochastic HH model (eqn. (9.1)-(9.3)). A
Voltage trace generated by the full 14-D stochastic HH model with Iapp=10 nA; for other
parameters see §B. The red dashed line indicates a threshold voltage at -20Mv, which is
set at the rising phase of the spike. B Ensemble of voltage traces constructed by aligning
traces with a voltage upcrossing at vth = −20 mV (red star) for more than 1000 cycles.
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dimensional phase space: the “nullcline” surface associated with the voltage variable,

V0 = {(v,m,n) ∈ D | f(v,m,n) = 0}, (9.13)

where the rate of change of voltage is instantaneously zero, and an iso-voltage sections of

the form

Su = {(v,m,n) ∈ D | v = u}. (9.14)

(In §9.5 we will define a third type of Poincaré section, namely isochrons of the mean–

return-time function T (v,n) [75].) Figure 9.2 illustrates the projection of V0 (green hori-

zontal line) and Su for u ∈ {−40, 10} (red vertical lines) onto the (V, dV/dt) plane.

For any voltage u we can partition the voltage-slice Su into three disjoint components

Su = Su0
⊔
Su+
⊔
Su−, defined as follows:

Definition 2. Given the stochastic differential equations (6.42) defined on the HH domain

D, and for a given voltage u, the “null” surface, Su0 is defined as

Su0
∆
= Su ∩ V0 = {(v,m,n) ∈ D | v = u & f(v,m,n) = 0} ,

the “inward current” surface, Su+ is defined as

Su+
∆
= {(v,m,n) ∈ D | v = u & f(v,m,n) > 0} ,

and the “outward current” surface is defined as

Su−
∆
= {(v,m,n) ∈ D | v = u & f(v,m,n) < 0} .

Figure 9.2 plots dV/dt versus V for roughly 1000 cycles, and shows that for certain
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Figure 9.2: Sample trace of X(t) over 1000 cycles. A: View of X(t) (blue trace) in (V, dV/dt)
phase plane. Red vertical line: projections of voltage slices S−40, S−20 and S+10. Green horizontal
line: projection of V -nullcline V0; solid portion corresponds to voltage range in second panel. B:
Projection of X(t) on three coordinates (V,m31, n4). Gray surface: subset of v-nullcline with
−40 mV ≤ v ≤ +10 mV. For this voltage range, trajectories remain a finite distance away from
V0 with high probability.
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Figure 9.3: Intersections of a trajectory (blue trace) with a voltage slice (S−20, grey
surface) and V -nullcline (V0, cyan surface). A: Trajectory X(t) crosses S−20+ with
increasing voltage component (green arrow). Subsequently, the trajectory crosses S−20−
with decreasing voltage component (red arrow). With probability one, the trajectory X(t)
does not intersect with the null space for voltage in the range of [−40, 10]mV. B: A special
case for A with the null component S−200 (black diagonal line) indicated for v = −20mV.
The intersection of the stochastic trajectory and v = −20mV is partitioned into an inward
component S−20+ (green arrow shows trajectory crossing with dV/dt > 0) and an outward
component S−20− (red arrow shows trajectory crossing with dV/dt < 0). Note that with
probability one, the null component S−200 does not intersect with the trajectory.
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values of v, the density of trajectories in a neighborhood of V0 is very small for a finite

voltage range (here shown as −40 to +10 mV). Indeed for any u, the intersection of the

null set Su0 has measure zero relative to the uniform measure on Su, and the probability of

finding a trajectory at precisely V = u and dV/dt = 0 is zero. From this observation, and

because dV/dt is conditionally deterministic, given n, it follows that a trajectory starting

from x ∈ Su+ will necessarily cross Su− before crossing Su+ again (with probability one).

First-Passage Times Based on this observation, we can give a formal definition of the

first passage time as follows.

Definition 3. Given a section S ⊂ D, we define the first passage time (FPT) from a point

x ∈ D to S, for a stochastic conductance-based model as

τ(x,S)
∆
= inf{t > 0 |X(t) ∈ S &X(0) = x}. (9.15)

Note that, more generally, we can think of τ as τ(x,S, ω), where ω is a sample from the

underlying Langevin process sample space, ω ∈ Ω.1 For economy of notation we usually

suppress ω, and may also suppress S, or x when these are clear from context.

In the theory of stochastic processes a stopping time, τ , is any random time such that

the event {τ ≤ t} is part of the σ-algebra generated by the filtration Ft of the stochastic

process from time 0 through time t. That is, one can determine whether the event defining

τ has occurred or not by observing the process for times up to and including t (see [89],

§7.2, for further details).

Remark 4. Given any section S ⊂ D and any point x ∈ D, the first passage time τ(x,S)

is a stopping time. This fact will play a critical role in the proof of our main theorem.
1For the 14 × 28D Langevin Hodgkin-Huxley model, Ω may be thought of as the space of continuous

vector functions on [0,∞) with 28 components – one for each independent noise source.
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As Figure 9.2 suggests, for −40 ≤ v ≤ +10 mV, the probability of finding trajectories

in an open neighborhood of Sv0 can be made arbitrarily small by making the neighborhood

around Sv0 sufficiently small. This observation has two important consequences. First,

because the probability of being near the nullcline Sv0 is vanishingly small, interspike

intervals are well defined (cf. Def. 5, below), even for finite precision numerical simulation

and trajectory analysis. In addition, this observation lets us surround the nullcline with a

small cylindrical open set, through which trajectories are unlikely to pass. This cylinder-

shaped buffer will play a role in defining the mean–return-time phase in §9.5.

Moreover, as illustrated in Figure 9.2, when V = −20mV, the stochastic trajectory x

intersects S−20 at two points within each full cycle, where one is in S−20+ and one in S−20− . In

addition, the trajectory crosses S−20− before it crosses S−20+ again. This is a particular feature

for conductance-based models in which dV/dt is conditionally deterministic, i.e. the model

includes no current noise.2

Definition 4. Given any set S ⊂ D (for instance, a voltage-section) and a point x ∈ D,

the mean first passage time (MFPT) from x to S,

T (x,S)
∆
= E[τ(x,S)], (9.16)

and the second moment of the first passage time is defined as

S(x,S)
∆
= E

[
τ(x,S)2

]
. (9.17)

2In this dissertation, we focus on a Langevin equation, rather than models with discrete channel
noise. Therefore, our trajectories are diffusions, that have continuous sample paths (with probability one).
Therefore, the FPT τ(x,S) is well defined. For discrete channel-noise models, a slightly modified definition
would be required.
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Interspike Intervals Starting from x ∈ Sv0+ , at time t = 0, we can identify the sequence

of (τ,x) pairs of crossing times and crossing locations as

(τu0 = 0,xu0 = x), (τ d1 ,x
d
1), (τ

u
1 ,x

u
1), . . . , (τ dk ,x

d
k), (τ

u
k ,x

u
k), . . . ,

with 0 = τu0 < τ d1 < τu1 < τ d2 < τu2 < . . . < τ dk < τuk , . . .

(9.18)

where τ dk = inf{t > τuk−1 | x ∈ S
v0
− } is the kth down-crossing time, xdk ∈ S

v0
− is the kth

down-crossing location, τuk = inf{t > τ dk | x ∈ S
v0
+ } is the kth up-crossing time, and

xuk ∈ S
v0
+ is the kth up-crossing location, for all k ∈ N+.

Under constant applied current, the HH system has a unique stationary distribution

with respect to which the sequence of crossing times and locations have well-defined

probability distributions [100].We define the moments of the interspike interval distribution

with respect to this underlying stationary probability distribution.

Definition 5. Given a sequence of up- and down-crossings, relative to a reference volt-

age v0 as above, the kth interspike interval (ISI), Ik (in milliseconds), of the stochastic

conductance-based model is a random variable that is defined as

Ik
∆
= τuk+1 − τuk (9.19)

where τuk is the kth up-crossing time. The mean ISI is defined as

I
∆
= E[Ik] (9.20)

and the second moment of the ISI is defined as

H
∆
= E

[
I2k
]

(9.21)
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The variance of the ISI is defined as

σ2
ISI

∆
= E

[
(I − Ik)2

]
, (9.22)

where k = 1, 2, · · · .

It follows immediately that σ2
ISI = H − I2.

9.3 Asymptotic phase and infinitesimal phase response curve

Figure 9.4: Sample trace on the limit cycle and its corresponding phase function θ(t). Top:
voltage trace for the deterministic system dx = F (x) dt showing a period of T0 ≈ 14.63
ms. Bottom: The phase function of time saceled from [0, 2π).

Given parameters in App. B with an applied current Iapp = 10 nA, the deterministic HH

model,
dx

dt
= F (x) (9.23)
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fires periodically with a period T0 ≈ 14.63 msec, as shown in Fig. 9.4. We assume that the

deterministic model has an asymptotically stable limit cycle, γ(t) = γ(t + T0). The phase

of the model at time t can be defined as [110]

θ(t) =
(t+ T0

ϕ
2π

) modT0
T0

× 2π, (9.24)

where mod is the module operation, and θ(t) = 0 sets the spike threshold for the model.

The constant ϕ ∈ [0, 2π] is the relative phase determined by the initial condition, and there

is a one-to-one map between each point on the limit cycle and the phase. In general, the

phase can be scaled to any constant interval; popular choices include [0, 1), [0, 2π), and

[0, T ). Here we take θ ∈ [0, 2π) (see Fig. 9.4).

Winfree and Guckenheimer extended the definition of phase from the limit cycle to

the basin of attraction, which laid the foundation for the asymptotic phase function φ(x)

[54, 130, 131]. For the system in Eqn. (9.23), let x(0) and y(0) be two initial conditions,

one on the limit cycle and one in the basin of attraction, respectively. Denote the phase

associated to x(0) as θ0(t). If the solutions x(t) and y(t) satisfy

lim
t→∞
|x(t)− y(t)| = 0, i.e. lim

t→∞
|φ(y(t))− θ0(t)| = 0,

then y(0) has asymptotic phase θ0. The set of all points sharing the same asymptotic phase

comprises an isochron, a level set of φ(x). We also refer to such a set of points as an iso-

phase surface [109]. By construction, the asymptotic phase function φ(x) coincides with

the oscillator phase θ(t) on the limit cycle, i.e. θ(t) = φ(γ(t)). We will assume that φ(x)

is twice-differentiable within the basin of attraction.

The phase response curve (PRC) is defined as the change in phase of an oscillating

system in response to a given perturbations. If the original phase is defined as θb and the
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phase after perturbation as θa, then the PRC is the shift in phase

∆(θ) = θa − θb.

In the limit of small instantaneous perturbations, the PRC may be approximated by the

infinitesimal phase response curve (iPRC) [110, 131]. For a deterministic limit cycle, the

iPRC Z(t) obeys the adjoint equation [11]

dZ

dt
= −J (γ(t))ᵀZ, (9.25)

Z(0) = Z(T0), (9.26)

Z(0)ᵀF(γ(0)) = 1 (9.27)

where T0 is the period of the deterministic limit cycle, γ(t) is the periodic limit cycle

trajectory (for the HH equations (9.23), γ(t) ∈ R14) and J (t) = DF(γ(t)) is the Jacobian

of F evaluated along the limit cycle. The iPRC Z(t) is proportional to the gradient of the

phase function φ(x) evaluated on the limit cycle. For any point x in the limit cycle’s basin

of attraction, we can define a timing sensitivity function Z̃(x)
∆
= T0

2π
∇xφ(x). For the limit

cycle trajectory γ(t), we have Z(t) = Z̃(γ(t)). The first component of Z, for example, has

units of msec/mv, or change in time per change in voltage.

9.4 Small-noise expansions

In the governing Langevin equation (6.42), the stochastic forcing components in G dW

are implicitly scaled by factors proportional to 1/
√
Nion, the number of sodium or potas-

sium channels in the membrane. The larger the number of channels, the smaller the
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noise. In their comparative study of different Langevin models, Goldwyn and Shea-Brown

considered a patch of excitable membrane containing Mref = 6000 sodium channels and

Nref = 1800 potassium channels [49].

Here, we make the dependence on system size (number of channels) explicit, by in-

troducing a small parameter ε ∝ N−1ion . We therefore consider a one-parameter family of

Langevin equations,

dX = F(X) dt+
√
εG(X) dW(t), (9.28)

with effective numbers of Mtot = Mref/ε sodium and Ntot = Nref/ε potassium channels.

For sufficiently small values of ε, the solutions remain close to the determinstic limit cycle;

the (stochastic) interspike intervals will remain close to the deterministic limit cycle period

T 0. If X(t) is a trajectory of (9.28), and φ(x) is any twice-differentiable function, then

Ito’s lemma [89] gives an expression for the increment of φ during a time increment dt,

beginning from state X:

dφ(X(t)) = (∇φ(X)) · dX +
ε

2

∑
ij

∂2φ(X)

∂xi∂xj
dt (9.29)

=

(
F(X) · ∇φ(X) +

ε

2

∑
ij

∂2φ(X)

∂xi∂xj

)
dt+

√
ε (∇φ(X))ᵀ G(X) dW

= L†[φ(X)] dt+
√
ε (∇φ(X))ᵀ G(X) dW (9.30)

up to terms of order dt. The operator L† defined by (9.29)-(9.30) is the formal adjoint of the

Fokker-Planck or Kolmogorov operator [99], also known as the generator of the Markov

process [89], or the Koopman operator [72].

Dynkin’s formula, which we will use to prove our main result, is closely related to

equation (9.30). Let x ∈ D and let Ex denote the probability law for the ensemble of
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stochastic trajectories beginning at x. Dynkin’s theorem ([89], §7.4) states that if φ is a

twice-differentiable function on D, and if τ is any stopping time (cf. Remark 4) such that

Ex[τ ] <∞, then

Ex[φ(X(τ)] = φ(x) + Ex

[∫ τ

0

L†[φ(X(s)] ds

]
. (9.31)

9.5 Iso-phase Sections

For the deterministic model, the isochrons form a system of Poincaré sections Sϕ, ϕ ∈

[0, 2π], each with a constant return time equal to the oscillator period T0. When the system

is perturbed by noise, ε > 0 in (9.28), we consider a set of “iso-phase sections” based on

a mean–return-time (MRT) construction, first proposed by [109] and rigorously analyzed

by [75]. As shown in [75], the MRT iso-phase surfaces S are the level sets of a function

Tε(x) satisfying the MRT property. Namely, if S is an iso-phase section, then the mean

time taken to return to S, starting from any x ∈ S, after one full rotation, is equal to the

mean period, T ε.

The construction in [75] requires that the Langevin equation (9.28) be defined on a

domain with the topology of an n-dimensional cylinder, because finding the MRT function

Tε(x) involves specifying an arbitrary “cut” from the outer to the inner boundary of the

cylinder. Conductance-based models in the steady-firing regime, where the mean-field

equations support a stable limit cycle, can be well approximated by cylindrical domains. In

particular, their variables are restricted to a compact range, and there is typically a “hole”

through the domain in which trajectories are exceedlingly unlikely to pass, at least for small

noise.

As an example, consider the domain for the 14D HH equations (recall Defs. 1), namely
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D ∆
= [vmin, vmax] × ∆7 × ∆4. The p-dimensional simplex ∆p is a bounded set, and, as

established by Lemma 1, the trajectories of (9.28) remain within fixed voltage bounds with

probability 1, so our HH system operates within a bounded subset of R14. To identify a

“hole” through this domain, note that the set

Su0
∆
= Su ∩ V0 = {(v,m,n) ∈ D | v = u & f(v,m,n) = 0} ,

which is the intersection of the voltage nullcline V0 with the constant-voltage section Su,

is rarely visited by trajectories under small noise conditions (Fig. 9.2B).

For r > 0, we define the open ball of radius r around Su0 as

Br(Su0 )
∆
=

{
x ∈ D

∣∣∣ min
y∈Su0

(||x− y||) < r

}
. (9.32)

For the remainder of the thesis, we take the stochastic differential equation (9.28) to be

defined on

D0 = D\Br(Sv0 ). (9.33)

For sufficiently small r > 0, D0 is a space homeomorphic to a cylinder in R14. To see this,

consider the annulus A = I1 × B13, where I1 = [0, 2π], and B13 is a simply connected

subset of R13. That space is homotopy equivalent to a circle S1 by contracting the closed

interval parts to a point, and contracting the annulus part to its inner circle.

To complete the setup so that we can apply the theory from [75], we set boundary

conditions
∑

ij ni(GGᵀ)ij∂jTε = 0 at reflecting boundaries with outward normal n on both

the innner and outer boundaries of the cylinder. In addition, we choose an (arbitrary)

section transverse to the cylinder, and impose a jump condition Tε → Tε + T ε across

this section, where T ε is mean oscillator period under noise level ε.
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As showed in [75], this construction allows us to establish a well defined MRT function

for a given noise level ε, T ε(x). We then obtain the iso-phase sections as level sets of T ε(x).

We give a formal definition as follows.

Definition 6. Given a fixed noise level ε ≥ 0, and an iso-phase surface S for eqn. (9.28),

we define the kth iso-phase interval (IPI) as the random variable

∆k
∆
= µk − µk−1, (9.34)

where {µk}k∈N+ is a sequence of times at which the trajectory crosses S. The mean IPI is

defined as

T ε
∆
= E[∆k] (9.35)

and the second moment of the IPI is defined as

Sε
∆
= E

[
∆2
k

]
. (9.36)

The variance of the IPI is defined as

σ2
φ
∆
= E

[
(T ε −∆k)

2
]
. (9.37)

The moments (9.35)-(9.37) are evaluated under the stationary probability distribution.

It follows immediately that for a given noise level ε, we have σ2
φ = Sε −∆2

ε .

Remark 5. Each iso-phase crossing time, {µk}k∈N+ , in Definition 6, is a stopping time.

Remark 6. Because (9.28) is a diffusion with continuous sample paths, it is possible that

when ε > 0 a stochastic trajectory X(t) may make multiple crossings of an iso-phase
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section S in quick succession. Should this be the case, we condition the crossing times µk

on completion of successive circuits around the hole in our cylindrical domain. That is,

given µk, we take µk+1 to be the first return time to S after having completed at least one

half a rotation around the domain.
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Chapter 10

Noise Decomposition of the 14-D

Stochastic HH Model

Ermentrout et al. [31] studied the variance of the infinitesimal phase response curve for a

neuronal oscillator driven by a white noise current, using a four-dimensional version of the

Hodgkin-Huxley model as an example. As a corollary result, they obtained an expression

for the variance of the interspike interval, by setting the size of the perturbing voltage pulse

to zero.

Stochastic shielding [102] allows one to resolve the molecular contributions (per di-

rected edge in the ion channel state transition graph E , cf. Fig. 3.1) to the variance of

ion channel currents [104, 105], and provides a numerical method for accurate, efficient

simulation of Langevin models using a small subset of the independent noise forcing (only

for the “most important edges”) [95].

Here we combine the stochastic shielding method with Cao et al.’s mean–return-time

phase analysis [75] to obtain an analytical decomposition of the molecular sources of timing
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variability under current clamp.

Prior analysis of stochastic shielding ( [104, 105]) assumed voltage clamp conditions,

under which the ion channel state process is a stationary Markov process. Under current

clamp, however, fluctuations of channel state determine fluctuations in current, which in

turn dictate voltage changes, which then influence channel state transition probabilities,

forming a closed loop of statistical interdependence. Therefore, the variance of ISI under

current clamp becomes more difficult to analyze. Nevertheless, in this section, we seek

a decomposition of the interspike-interval variance into a sum of contributions from each

edge k ∈ E , e.g.

σ2
ISI(ε) = ε

∑
k∈E

σ2
ISI,k +O(ε2) (10.1)

σ2
φ(ε) = ε

∑
k∈E

σ2
φ,k +O(ε2) (10.2)

to leading order as ε→ 0.

Theorem 4 below gives the detailed form of the decomposition. As preliminary evi-

dence for its plausibility, Fig. 10.1 shows the coefficient of variation (standard deviation

divided by mean) of the ISI under the stochastic shielding approximation for Langevin

model in different scenarios: including noise along a single directed edge at a time (blue

bars), or on edges numbered 1 to k inclusive (numbering follows that in Fig. 3.1). For

large noise (Fig. 10.1a,c), the effects of noise from different edges combine subadditively.

For small noise (Fig. 10.1b,d) contributions of distinct edges to firing variability combine

additively. Edges with small contribution to steady-state occupancy under voltage clamp

(edges 1-6 for K+, edges 1-18 for Na+, cf. Fig. 3.1) contribute additively even in the large-

noise regime. Thus even in the large-noise regime, stochastic shielding allows accurate

simulation of ISI variability using significantly fewer edges for both the sodium and potas-
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sium channels.

Figure 10.1: Approximate decomposition of interspike interval (ISI) variance into a sum
of contributions from each edge for Hodgkin-Huxley model with stochastic K+ and
deterministic Na+ gates (a,b) or stochastic Na+ and deterministic K+ gates (c,d). Bar n
shows ISI coefficient of variation (CV) when noise on edge n is included (a,c: ε = 1, large
noise; b,d: ε = 0.01, small noise). Blue line shows the CV of ISI when noise on all edges
numbered ≤ n are included. Red line shows CV predicted by a linear superposition of the
form (10.8).

10.1 Assumptions for Decomposition of the Full Noise Model

Consider a Langevin model for a single-compartment conductance-based neuron (9.28).

We organize the state vector into the voltage component followed by fractional gating
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variables as follows:

x = (v, q1, q2, . . . , qN)ᵀ. (10.3)

Here, N is the number of nodes in the union of the ion channel state graphs. For example,

for the HH system, N = 13, and we would write q1 = m00, . . . , q8 = m31 for the sodium

gating variables, and q9 = n0, . . . , q13 = n4 for the potassium gating variables. Similarly,

we enumerate the K edges occurring in the union of the ion channel state graphs, and write

the stoichiometry vector ζk ∈ RN+1 for transition k, taking source i(k) to destination j(k),

in terms of (N + 1)-dimensional unit vectors eN+1
i ∈ RN+1 as ζk = −eN+1

i(k) + eN+1
j(k) . In

order to study the contributions of individual molecular transitions to spike-time variability,

we develop asymptotic expansions of the first and second moments of the distribution of

iso-phase surface crossing times (iso-phase interval distribution see Def. 6 above) in the

small ε limit.

Before formally stating the theorem, we make the following assumptions concerning

the system (9.28):

A1 We assume the deterministic dynamical system dX
dt

= F(x) has an asymptotically,

linearly stable limit cycle x = γ(t) with finite period T0, and asymptotic phase func-

tion φ(x) defined throughout the limit cycle’s basin of attraction such that dφ(x(t))
dt

=

2π
T0

along deterministic trajectories, and a well defined infinitesimal phase response

curve (iPRC), Z(t) = ∇φ(γ(t)).

A2 We assume that the (N + 1)×K matrix G has the form

G(x) =
K∑
k=1

(ζkrk)
√
αk(v)qi(k) (10.4)

where rk =
(
eKk
)ᵀ is an K-dimensional unit row vector with all zero components
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except in the kth entry, αk(v) is the voltage-dependent per capita transition rate along

the kth directed edge, and the qi(t) denote channel state occupancy probabilities as

described above (cf. (10.3)).

Remark 7. The product ζkrk is a (N + 1)×K sparse matrix, containing zeros everywhere

except in the kth column. Each column conveys the impact of an independent noise source

on the state vector [95].

A3 We assume that for sufficiently small noise, 0 < |ε| � 1, we have a well defined

joint stationary probability distribution in the voltage V and the gating variables

Q1, . . . , QN with a well defined mean period T ε and mean–return-time phase func-

tion Tε(x). Moreover, we assume that the mean period, the MRT function, and the

second moment function all have well defined series expansions:

T ε = T 0 + εT 1 +O(ε2) (10.5)

Tε(x) = T0(x) + εT1(x) +O(ε2) (10.6)

Sε(x) = S0(x) + εS1(x) +O(ε2), (10.7)

as ε→ 0.

Remark 8. Note that the expansions (10.5)-(10.7) may break down in the small-ε limit for

noise-dependent oscillators, such as the heteroclinic oscillator [121] or ecological quasi-

cycles [80], but should remain valid for finite-period limit cycles such as the Hodgkin-

Huxley system in the periodic spiking regime.
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10.2 Noise Decomposition Theorem

Theorem 4 (Noise Decomposition Theorem). Let x = (V0,Q0) ∈ S0 be the point on the

deterministic limit cycle such that φ(x) = 0 (i.e. assigned to “phase zero”), and let Ex

denote expectation with respect to the law of trajectories with initial condition x, for fixed

ε ≥ 0. Under assumptions A1-A3, the variance σ2
φ of the S0-isochron crossing times (iso-

phase intervals, or IPI) for conductance-based Langevin models (eqn. (6.42)) decomposes

into additive contributions from each channel-state transition, in the sense that

σ2
φ =

∑
k∈all edges

σ2
φ,k (10.8)

=ε
∑
k

∫ T 0

0

Ex

(
αk(V (t))Qi(k)(t)

(
ζᵀk Z̃(X(t))

)2)
dt+O

(
ε2
)
, (10.9)

as ε→ 0+. The function X(t) = (V (t), Q1(t), . . . , QN(t))ᵀ denotes a stochastic trajectory

of (9.28) with initial condition x.

Remark 9. The theorem holds independently of the choice of the initial point x on the

deterministic limit cycle, in the sense that choosing a different base point would just shift

the endpoints of the interval of integration; since the deterministic limit cycle is periodic

with period T 0, the resulting expression for σ2
φ is the same. See Corollary 7.

Remark 10. The proof relies on Dynkin’s formula, first–passage-time moment calcula-

tions, and a small noise expansion. The right hand side of (10.8) leads to an approximation

method based on sampling stochastic limit cycle trajectories, which we show below gives

an accurate estimate for σ2
φ.

Remark 11. Although the interspike intervals (ISI) determined by voltage crossings are not

strictly identical to the iso-phase intervals (IPI) defined by level crossings of the function
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Tε(x), we nevertheless expect that the variance of the IPI, and their decomposition, will

provide an accurate approximation to the variance of the ISI. In §11 we show numerically

that the decomposition given by (10.8) predicts the contribution of different directed edges

to the voltage-based ISIs with a high degree of accuracy.

Before proving the theorem, we state and prove two ancillary lemmas.

Lemma 5. Fix a cylindrical domainD0 (as in equation (9.33)) and an iso-phase section S0

transverse to the vector field F. If the mean period T ε and MRT function Tε(x) have Taylor

expansions (10.5) and (10.6), then the unperturbed isochron function T0 and the sensitivity

of the isochron function to small noise T1 satisfy

F(x) · ∇T0(x) = −1, (10.10)

F(x) · ∇T1(x) = −1

2

∑
ij

(GGᵀ)ij∂2ijT0(x), (10.11)

∑
ij

ni(GGᵀ)ij∂jT1

∣∣∣∣∣
∂D

= 0, (10.12)

where T1 → T1 + T 1 and T0 → T0 + T 0 across S0, and n is the outward normal to the

boundary ∂D.

Note that T 1 may be determined from the stationary solution of the forward equation

for 0 < ε, or through Monte Carlo simulations (in some cases T 1 ≡ 0).

Proof. For all noise levels ε ≥ 0, from [43] (Chapter 5, equation 5.5.19), the MRT function

Tε(x) satisfies

L† [Tε] = F · ∇Tε +
ε

2

∑
ij

(GGᵀ)ij∂2ijTε = −1, (10.13)

together with adjoint reflecting boundary conditions at the edges of the domain D with
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outward normal vector n

∑
ij

ni(GGᵀ)ij∂jTε

∣∣∣∣∣
∂D

= 0 (10.14)

and the jump condition is specified as follows. When x increases across the reference

section S in the “forward direction”, i.e., in a direction consistent with the mean flow in

forwards time, the function Tε → Tε + T ε. Note that since T0 → T0 + T 0, we also have

T1 → T1 + T 1 across the same Poincaré section, for consistency.

Substituting the expansion (10.6) into (10.13) gives

−1 =F · ∇
(
T0(x) + εT1(x) +O(ε2)

)
+
ε

2

∑
ij

(GGᵀ)ij∂2ij
(
T0(x) + εT1(x) +O(ε2)

)
,

(10.15)

=F · ∇T0(x) + F · ∇
(
εT1(x) +O(ε2)

)
+
ε

2

∑
ij

(GGᵀ)ij∂2ijT0(x) (10.16)

+
ε

2

∑
ij

(GGᵀ)ij∂2ij
(
εT1(x) +O(ε2)

)
Note that, when ε = 0

F · ∇T0(x) = −1, (10.17)

consistent with T0 being equal to minus the asymptotic phase of the limit cycle (up to an

additive constant). On the other hand, for ε 6= 0, by comparing the first order term, the

sensitivity of the isochron function to small noise T1 satisfies

F · ∇T1(x) = −1

2

∑
ij

(GGᵀ)ij∂2ijT0,
∑
ij

ni(GGᵀ)ij∂jT1

∣∣∣∣∣
∂D

= 0, (10.18)

where T1 → T1 + T 1 across S, and n is the outward normal to the boundary ∂D, thus we
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proved Lemma 5.

Our next lemma concerns the second moment of the first passage time from a point

x ∈ D to a given iso-phase section S0, that is, Sε(x)
∆
= E [τ(x,S0)2], cf. (9.17).

Lemma 6. Suppose the assumptions of Lemma 5 hold, and assume in addition that Sε has

a Taylor expansion (10.7) for small ε. The second moment, S0(x), of the first passage time

τ(X,S) from a point x to a given isochron section S0 = {Tε(x) = const}, and its first

order perturbation, S1(x), satisfy

F · ∇S0 = −2T0 (10.19)

F · ∇S1 +
1

2

∑
ij

(GGᵀ)ij∂2ijS0 = −2T1. (10.20)

Proof. Following [43] (Chapter 5, equation 5.5.19), the second moment Sε(x) of the first

passage time from a point x to a given isochron Tε(x) = const, satisfies

L†[Sε] := F · ∇Sε +
ε

2

∑
ij

(GGᵀ)ij∂2ijSε = −2Tε.

Substituting in the Taylor expansions (10.5)-(10.7), we have to order O(ε)

F · ∇(S0 + εS1) +
ε

2

∑
ij

(GGᵀ)ij∂2ij(S0 + εS1) = −2(T0 + εT1) +O(ε2). (10.21)

Setting ε = 0, we see that

F · ∇S0 = −2T0. (10.22)

130



For ε > 0, the first order terms yield

F · ∇S1 +
1

2

∑
ij

(GGᵀ)ij∂2ijS0 = −2T1. (10.23)

Therefore, we complete the proof of Lemma 6.

10.3 Proof of Theorem 4

Proof. We divide the proof of the Theorem into three steps.

1. First, we will calculate the infinitesimal generator for the variance of the iso-phase

interval (IPI).

For fixed noise level ε > 0, the variance of IPI, σ2
φ is equal to the expected value of

Vε = Sε − T 2
ε , evaluated at the isochron T = const + T . Note that when ε = 0, the

system is deterministic and the iso-phase interval has a zero variance, i.e., V0 ≡ 0.

Expanding Sε = S0 + εS1 +O(ε2) and Vε = εV1 +O(ε2) to first order in ε� 1, then

Vε = V0 + εV1 +O(ε2) (10.24)

= Sε − T 2
ε (10.25)

= S0 + εS1 +O(ε2)−
(
T0(x) + εT1(x) +O(ε2)

)2 (10.26)

= S0 − T 2
0 + ε(S1 − 2T0T1) +O(ε2), (10.27)

thus,

S0 = T 2
0 (10.28)

S1 = V1 + 2T0T1. (10.29)
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Plug the above results into equation (10.23) (Lemma 6), we can obtain that

F · ∇(V1 + 2T0T1) +
1

2

∑
ij

(GGᵀ)ij∂2ijT 2
0 = −2T1. (10.30)

By the product rule and use equations (10.17), and (10.18),

F · ∇(2T0T1) = 2T1F · ∇(T0) + 2T0F · ∇(T1) (10.31)

= −2T1 − T0
∑
ij

(GGᵀ)ij∂2ijT0. (10.32)

Therefore,

F · ∇V1 − 2T1 − T0
∑
ij

(GGᵀ)ij∂2ijT0 +
1

2

∑
ij

(GGᵀ)ij∂2ijT 2
0 = −2T1. (10.33)

Since ∂2ijT
2
0 = ∂i(2T0∂jT0) = 2∂iT0∂jT0 + 2T0∂

2
ijT0, it follows that

F · ∇V1 − T0
∑

ij(GGᵀ)ij∂2ijT0 +
∑

ij(GGᵀ)ij∂iT0∂jT0 +
∑

ij(GGᵀ)ijT0∂2ijT0 = 0

F · ∇V1 = −
∑

ij(GGᵀ)ij∂iT0∂jT0 (10.34)

Finally,

L†[Vε] = L†[V0 + εV1 +O(ε2)] (10.35)

= εL†[V1] +O(ε2) (10.36)

= ε

(
F · ∇V1 +

ε

2

∑
ij

(GGᵀ)ij∂2ijV1

)
+O(ε2) (10.37)

= ε (F · ∇V1) +O(ε2) (10.38)

= −ε
∑
ij

(GGᵀ)ij∂iT0∂jT0 +O(ε2), (10.39)
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where we used V0 ≡ 0 and applied equation (10.34).

2. Secondly, we will show that for first-order transition networks underlying the molec-

ular ion channel process, the decomposition GGᵀ =
∑

k∈E GkG
ᵀ
k is exact.

To see this, note that G can be written as a sum of 29 sparse matrix with one zero

matrix and 28 rank one matrix. The kth rank one matrix consists of the transition due

to the kth edge and there are 28 edges in the 14-D HH model. The kth column of

the kth rank one matrix equals to a stoichiometry vector times the square root of the

corresponding state occupancy and zeros otherwise. For example, the kth column of

G is given by

Gk = ζk

√
αk(v)Xi(k),

where ζk is the stoichiometry vector, αk is the voltage-dependent per capita transi-

tion rate, and Xi(k) is the population vector component at the source node i(k) for

transition number k.

GGᵀ = (G1 + G2 + · · ·+ G28)(G1 + G2 + · · ·+ G28)ᵀ (10.40)

=
28∑
k=1

GkGᵀk (10.41)

=
28∑
k=1

αk(v)Xi(k)ζkζ
ᵀ
k (10.42)

where (10.41) holds because GiGᵀj = 0 when i 6= j.

Note that ∂iT0∂jT0 = ω−2∂iφ(x)∂jφ(x) = Z̃i(x)Z̃j(x), with ω ≡ 2π/T 0, because φ
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is normalized to range from 0 to 2π, and T0 ranges from 0 to T 0.

∑
ij

(GGᵀ)ij∂iT0∂jT0 =
∑
ij

(GGᵀ)ijZ̃iZ̃j (10.43)

=
29∑
k=2

∑
ij

(GkGᵀk)ijZ̃iZ̃j (10.44)

=
28∑
k=1

(
αk(v)Xi(k)

∑
ij

(ζkζ
ᵀ
k )ijZ̃iZ̃j

)
(10.45)

=
28∑
k=1

αk(v)Xi(k)

[
Z̃2
i(k) + Z̃2

j(k) − 2Z̃i(k)Z̃j(k)
]

(10.46)

=
28∑
k=1

αk(v)Xi(k)

[
Z̃i(k) − Z̃j(k)

]2 (10.47)

=
28∑
k=1

αk(v)Xi(k)

(
ζᵀk Z̃

)2
, (10.48)

where i(k) and j(k) are the source and sink nodes for transition number k. Equation

(10.46) holds because the kth edge only involves two nodes.

3. Finally, we will apply Dynkin’s formula to complete the rest of the proof.

For a stopping time τ(x) with Ex (τ) <∞, by Dynkin’s formula (9.31), the expected

IPI variance starting from x is

Ex (Vε(X(τ))) = Vε(x) + Ex

(∫ τ

0

L†[Vε(X(s))]ds

)
(10.49)

The first return time τ is the time at which the trajectory X(t) first returns to the

isochron S0, therefore X(τ) ∈ S0 and the time left to reach S0 from the random

location X(τ) is guaranteed to be zero. That is, Vε(X(τ)) = 0 with probability 1.

Hence, Ex (Vε(X(τ))) ≡ 0 for all x ∈ S0.
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Fix a mean–return-time isochron S0, the mean return time from any initial location

x ∈ S0 back to S0, after completing one rotation is exactly T ε, by construction.

However, in principle, the variance of the return time might depend on the initial

location within the isochron. We next show that, to leading order in ε, this is not the

case, that is, the MRT isochrons have uniform first and second moment properties.

Using equations (10.39), (10.48) and (10.49), we obtain

Vε(x) = −Ex

(∫ τ

0

L† [Vε(X(s))] ds

)
(10.50)

= Ex

(∫ τ

0

ε
∑
ij

(GGᵀ)ij∂iT0∂jT0ds

)
+O

(
ε2
)

(10.51)

= ε
28∑
k=1

Ex

(∫ τ

0

αk(v)Xi(k)

(
ζᵀk Z̃

)2
ds

)
+O

(
ε2
)
, (10.52)

where the integrals are evaluted along a stochastic trajectory X(t) with X(0) = x

and X(τ) ∈ S0, one rotation later. Holding the deterministic zero-phase isochron S0

fixed, and choosing an arbitrary point y ∈ D, we have, by definition,

Ey[τ(y)] = Tε(y) = T0(y) + εT1(y) +O
(
ε2
)
. (10.53)

Therefore, starting from an initial condition x ∈ S0 one period earlier, we have

Ex

(∫ τ

0

αk(v)Xi(k)

(
ζᵀk Z̃

)2
ds

)
= Ex

(∫ T 0

0

αk(v)Xi(k)

(
ζᵀk Z̃

)2
ds

)
+O

(
ε2
)
.

(10.54)
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This relation follows immediately from our assumptions, because, for x ∈ S0,∣∣∣∣∣Ex

(∫ τ

0
αk(V (s))Xi(k)(s)

(
ζᵀk Z̃(s)

)2
ds

)
− Ex

(∫ T 0

0
αk(V (s))Xi(k)(s)

(
ζᵀk Z̃(s)

)2
ds

)∣∣∣∣∣
=

∣∣∣∣Ex

(∫ τ

T 0

αk(V (s))Xi(k)(s)
(
ζᵀk Z̃(s)

)2
ds

)∣∣∣∣ (10.55)

≤ C1

∣∣Ex(τ(x)− T 0)
∣∣ = C1

∣∣Ex(τ(x))− Ex(T 0)
∣∣ = C1

∣∣T ε − T 0

∣∣ (10.56)

= εC1T 1 +O
(
ε2
)
. (10.57)

Here C1 is a positive constant bounding the integrand αk(v(t))Xi(k)(t)
(
ηᵀkZ̃(t)

)2
.

From Remark 3, αk ≤ αmax. By definition, 0 ≤ Xi ≤ 1 for each i. For each edge

k, |ζk| =
√

2. Since Z̃ is continuous and periodic, |Z̃| is bounded by some constant

zmax. Therefore setting C1 =
√

2αmaxzmax satisfies (10.57).

Because the initial point x ∈ S0 was located at an arbitrary radius along the specified

mean–return-time isochron, the calculation above shows that σ2
φ = E[Vε(x) |x ∈ S0]

is uniform across the isochron S0, to first order in ε. Thus, for small noise levels,

the MRT isochrons enjoy not only a uniform mean return time, but also a uniform

variance in the return time, at least in the limit of small noise.

Finally, we note that σ2
φ (equivalently, and Vε(x)) combine a sum of contributions

over a finite number of edges. From equations (10.52) and (10.54), the variance of

the inter-phase interval is given by

σ2
φ = ε

28∑
k=1

Ex

(∫ T 0

0

αk(V (s))Xi(k)(s)
(
ζᵀk Z̃(s)

)2
ds

)
+O

(
ε2
)
. (10.58)
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To complete the proof, note that (10.9) follows from (10.59) by exchange of expec-

tation Ex[·] with (deterministic) integration
∫ T 0

0
[·] dt. This completes the proof of

Theorem 4.

The choice of the initial reference point x or isochron S0 in (10.59) was arbitrary and

the variance of IPI is uniform to the first order. Therefore, the inter-phase-interval variance

may be uniform (to first order) almost everywhere in D. We can then replace the integral

around the limit cycle in (10.59) with an integral over D with respect to the stationary

probability distribution. Thus we have the following

Corollary 7. Under the assumptions of Theorem 4, the inter-phase-interval variance sat-

isfies

σ2
φ = εT 0

28∑
k=1

E
(
αk(V )Xi(k)

(
ζᵀk Z̃(X)

)2)
+O

(
ε2
)
, (10.59)

as ε → 0, where E denotes expectation with respect to the stationary probability density

for (9.28).

Remark 12. Because the variance of the IPI, σ2
φ, is uniform regardless the choice of the

reference iso-phase section, we will henceforth refer it as σ2
IPI throughout the rest of this

thesis.

Now we can say we have generalized the edge important measure introduced in [105]

for the voltage-clamp case to the current clamp case with weak noise. In the next chapter

we leverage Theorem 4 to estimate the inter-phase interval variance in two different ways:

by averaging over one period of the deterministic limit cycle (compare (10.58)) or by

averaging over a long stochastic simulation (compare (10.59)). As we will see below,
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both methods give excellent agreement with direct measurement of the inter-phase interval

variance.
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Chapter 11

Decomposition of the Variance of

Interspike Intervals

Theorem 4 and Corollary 7 assert that for sufficiently weak levels of channel noise, the

contributions to inter-phase interval variance made by each individual edge in the channel

state transition graph (cf. Fig. 3.1) combine additively. Moreover, the relative sizes of these

contributions provide a basis for selecting a subset of noise terms to include for running

efficient yet accurate Langevin simulations, using the stochastic shielding approximation

[95]. In this chapter, we test and illustrate several aspects of these results numerically.

First, we confront the fact that the inter-phase-intervals and the inter-spike-intervals are

not equivalent, since iso-voltage surfaces do not generally coincide with isochronal surfaces

[128]. Indeed, upon close examination of the ISI variance in both real and simulated

nerve cells, we find that the voltage-based σ2
ISI is not constant, as a function of voltage,

while the phase-based σ2
IPI remains the same regardless of the choice of reference isochron.

Nevertheless, we show that the voltage-based ISI variance is well approximated – to within
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a few percent – by the phase-based IPI variance, and therefore, the linear decomposition of

Theorem 4 approximately extends to the ISI variance as well.

Second, after showing that the linear decomposition of the ISI variance holds at suf-

ficiently small noise levels, we explore the range of noise levels over which the linear

superposition of edge-specific contributions to ISI variance holds. Consistent with the basic

stochastic shielding phenomenon, we find that the variability resulting from noise along

edges located further from the observable transitions scales linearly with noise intensity, ε

even for moderate noise levels, while the linear scaling of eqn. (10.58) breaks down sooner

with increasing noise for edges closer to observable transitions.

Finally, we explore the accuracy of a reduced representation using only the two most

important edges from the K+channel and the four most important edges from the Na+channel,

over a wide range of noise intensities. Here, we find that removing the noise from all but

these six edges still gives an accurate representation of the ISI variance far beyond the weak

noise regime, despite the apparent breakdown of linearity.

In this section, the variance of ISIs and IPIs are calculated to compare with the pre-

dictions using Theorem 4. First, we numerically show that there is a small-noise region

within which Theorem 4 holds, for each individual edge, as well as for the whole Langevin

model (cf. (9.28)). We have two numerical approaches to evaluating the theoretical con-

tributions. The first method involves integrating once around the deterministic limit cycle

while evaluating the local contribution to timing variance at each point along the orbit.

This approach derives from the theorem, cf. (10.9) or (10.58), which we refer as the

“limit cycle prediction”. The second approach derives from the corollary, (10.59): we

average the expected local contribution to timing variation over a long stochastic trajectory.

More specifically, equation (10.59) gives a theoretical value of the average leading-order

140



contribution mass function, Pk, for the kth edge, as

Pk := E
[
αk(V )Xi(k)

(
ζᵀk Z̃(X)

)2]
, (11.1)

where E(·) is the mean with respect to the stationary probability distribution of the stochas-

tic limit cycle. Given a sample trajectory X(t), we approximate the iPRC near the limit

cycle, Z̃(X(t)), by using the phase response curve of the deterministic limit cycle

Z̃(X(t)) ≈ Ẑ(X(t))
∆
= Z

(
argmin

s

∣∣∣∣(γ(s)−X(t)

)ᵀ
Z(s)

∣∣∣∣) , (11.2)

where γ is a point on the deterministic limit cycle and Z is the infinitesimal phase response

curve on the limit cycle (cf. §9.3). The predicted contribution of the kth edge to the IPI

variance with average period T0, is therefore

From Corollary 7 we have

σ2
IPI ≈ εT 0

∑
k

Pk. (11.3)

We call Pk the point mass prediction for the contribution of the kth edge to the inter-phase

interval variance.

For small noise, both approaches give good agreement with the directly measured IPI

variance, as we will see in Fig. 11.3.

To numerically calculate the contribution for each directed transition in Fig. 3.1, we

apply the stochastic shielding (SS) technique proposed by [102], simulating the Langevin

process with noise from all but a single edge suppressed. Generally speaking, the SS

method approximates the Markov process using fluctuations from only a subset of the

transitions, often the observable transitions associated to the opening states. Details about

how stochastic shielding can be applied to the 14 × 28D Langevin model is discussed in
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§6.5.

All numerical simulations for the Langevin models use the same set of parameters,

which are specified in Tab. B.1 with given noise level ε in eqn. (9.28). We calculate

the following quantities: the point mass prediction Pk, using exact stochastic trajectories

(11.1); the predicted contributions by substituting the stochastic terms in (10.58) with the

deterministic limit cycle; the variance and standard deviation of the interspike intervals

(σ2
ISI); and the variance and standard deviation of the isophase intervals (σ2

IPI).

In addition to numerical simulations, we will also present several observations of ex-

perimental recordings. Data in Fig. 11.1 and Fig. 11.2 were recorded in vitro in Dr. Friel’s

lab from intact wild type Purkinje cells with synaptic input blocked, with voltage sampled

at 20KHz and digitized at 1/32 mV resolution. We analyzed fourteen different voltage

traces from cerebellar Purkinje cells from wild type mice, and seventeen from mice with

the leaner mutation. The average number of full spike oscillations is roughly 1200 for wild

type PCs (fourteen cells) and 900 for leaner mutation (seventeen cells).

11.1 Observations on σ2
ISI, and σ2

IPI

When analyzing voltage recordings from in vitro Purkinje cells (PCs) and from simulation

of the stochastic HH model, we have the following observations. First, given a particular

(stochastic) voltage trace, the number of interspike intervals (cf. Def. 5) varies along with

the change in voltage threshold used for identifying spikes. Second, within a range of

voltage thresholds for which the number of ISIs is constant, the variance of the inter-

spike interval distribution, σ2
ISI (cf. Def. 5), which is obtained directly from the voltage

recordings, nevertheless varies as a function of the threshold used to define the spike times.

Thus the ISI variance, a widely studied quantity in the field of computational neuroscience
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[57, 74, 86, 112, 118], is not invariant with respect to the choice of voltage threshold.

To our knowledge this observation has not been previously reported in the neuroscience

literature.1

Fig. 11.1 plots the histogram of voltage from a wild type PC and number of spikes cor-

responding to voltage threshold (Vth) in the range of [−60,−10] mV. Setting the threshold

excessively low or high obviously will lead to too few (or no) spikes. As the threshold

increases from excessively low values, the counts of threshold-crossing increases. For

example, when Vth is in the after hyper-polarization (AHP) range (roughly −58 . Vth .

−48 mV in Fig. 11.1) the voltage trajectory may cross the threshold multiple times before

it finally spikes. As illustrated in Fig. 11.1, the number of spikes is not a constant as

the threshold varies, therefore, the mean and variance of ISI are not well-defined in the

regions where extra spikes are counted. To make the number of spikes accurately reflect the

number of full oscillation cycles, in what follows we will only use thresholds in a voltage

interval that induces the correct number of spikes. Note that, for a given voltage trace and

duration (Ttot), if two voltage threshold generate the same number of spikes (Nspike), the

mean ISI would be almost identical, approximately Ttot/Nspike. This observation holds for

both experimental recordings and numerical simulations.

Next we address the sensitivity of the interspike interval to the voltage threshold, within

the range over which the number of ISIs is invariant.

From the earliest days of quantitative neurophysiology, the extraction of spike timing

information from voltage traces recorded via microelectrode has relied on setting a fixed

voltage threshold (originally called a Schmitt trigger, after the circuit designed by O.H.

Schmitt [106]). To our knowledge, it has invariably been assumed that the choice of the

1Throughout this section, we use the term “threshold” in the data analysis sense of a Schmitt trigger [106],
rather than the physiological sense of a spike generation mechanism.
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Figure 11.1: Histogram of voltage and number of spikes as a function of voltage threshold
(Vth) for one wild type Purkinje cell (same data as in Fig. 4.1A & C). The number of ISIs
is found by counting up-crossing times as defined in Def. 5. For this particular trajectory,
the AHP phase locates roughly in the interval [−58,−48] mV. The trajectory has 1248
full oscillation cycles. When Vth is near −60 mV, it captures fewer spikes than the true
value, and when Vth ∈ [−57,−48], it tends to overestimate the number of spikes. For
Vth ∈ [−48,−10], the number of spikes is a constant (1248) that matches the number of
full oscillations.
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threshold or trigger level was immaterial, provided it was high enough to avoid background

noise and low enough to capture every action potential [44, 84]. This assumption is

generally left implicit. Here, we show that, in fact, the choice of the trigger level (the

voltage threshold used for identifying spike timing) can cause a change in the variance of

the interspike interval for a given spike train by as much as 5%.

Fig. 11.2 provides evidence both from experimental traces recorded in vitro, and from

numerical simulations, that σ2
ISI is sensitive to the voltage threshold defining spike times.

In Fig. 11.2 A, we superimpose ISI standard deviations from fourteen wild type Purkinje

cells, plotted as functions of the the trigger voltage Vth. We rescale each plot by the standard

deviation of the ISI for each cell at Vth = −20 mV, which we define as σ̄. As shown in

Fig. 11.2 A, the cells recorded in vitro have a clear variability in the standard deviation

as the voltage threshold changes. Specifically, the standard deviation of ISI gradually

increases as voltage threshold increases and then remains constant as the threshold ap-

proaches the peak of the spikes. Two of the cells have larger variations in the standard

deviation, with roughly a 3%−4% change; nine of them have a 1%−3% change; and three

of them show 0.1%− 1% change.

We applied a similar analysis to seventeen PCs with leaner mutations. In this case, one

cell had a variation of roughly 1% in the standard deviation, five cells with variations around

0.2%, and the remaining without an obvious change (data not shown). This difference

between cells derived from wild type and leaner mutant mice is an interesting topic for

future study.

We observe a similar variability of σ2
ISI in numerical simulations using our stochastic

Langevin HH model (cf. eqn. (9.28)). Fig. 11.2 B and C plots two examples showing

the change in σ2
ISI as voltage threshold varies. For a given noise level (ε) and a voltage

threshold (Vth), a single run simulates a total time of 9000 milliseconds (ms), with a time
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Figure 11.2: Standard deviation of the interspike intervals (
√
σ2

ISI, cf. Def. 5) and standard
deviation of the iso-phase intervals (

√
σ2

IPI, cf. Def. 6) as a function of voltage threshold.
A: Rescaled ISI standard deviation (σ̂) obtained from experimental data recordings from
14 wild type Purkinje cells (data recorded in Dr. Friel’s laboratory). For each cell,

√
σ2

ISI is
calculated using voltage threshold ranging from -55 mV to -20 mV, and scaled by dividing
the stand deviation at voltage=-20 mV. B, C: standard deviation of ISI when ε = 1 and√
ε = 0.028 in equation (9.28), respectively. For each voltage threshold, 500 different

traces are generated with each trace containing roughly 1000 interspike intervals. Error
bars indicate the 95% confidence interval of

√
σ2

ISI at each threshold. Note the vertical
axis is in µsec. In C, each value of σ2

IPI is calculated for the mean–return-time isochron
intersecting the deterministic limit cycle at the voltage specified.
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step of 0.008 ms, consisting of at least 600 ISIs, which was collected as one realization

for the corresponding σISI(ε, Vth). The mean and standard deviation of the σISI(ε, Vth) is

calculated for 1,000 realizations of the aforementioned step for each pair of ε and Vth. The

error bars in Fig. 11.2 B and C indicate 95% confidence intervals of the standard deviation.

As illustrated in Fig. 11.2 B and C, the standard deviation gradually increases as the trigger

threshold increases during the AHP, and this trend is observed for both small and large

noises. When ε = 1, the noisy system in eqn. (9.28) is not close to the deterministic

limit cycle, and there is not a good approximation for the phase response curve. When
√
ε = 0.028, the system eqn. (9.28) can be considered in the small-noise region and thus

we can find a corresponding phase on the limit cycle as the asymptotic phase. As shown

in Fig. 11.2 C, unlike the variance of ISI, the variance of IPI is invariant with the choice of

the phase threshold (φ).

11.2 Numerical Performance of the Decomposition Theo-

rem

In this section, we will apply estimation methods based on Theorem 4 and Corollary 7 to

the decomposition of variance of interspike intervals (ISIs, σ2
ISI) and variance of inter-phase

intervals (IPIs, σ2
IPI), and numerically test their performance.

Fig. 11.3 presents a detailed comparison of the predicted and measured values of σ2
ISI

and σ2
IPI, when the simulations only include noise from the K+ channels. The channel noise

generated by the Na+ edges is suppressed by applying the stochastic shielding (SS) method

to eqn. (9.28). For each plot in Fig. 11.3, 1000 repeated trials are collected and each trial

simulates a total time of 15,000 milliseconds which generates more than 1000 ISIs or IPIs.

Given our previous observation that σ2
ISI depends on the choice of voltage threshold, we
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Figure 11.3: Variance of ISIs (σ2
ISI) and IPIs (σ2

IPI) with only K+ edges included using the
stochastic shielding method. Cyan dots: point mass prediction (cf. eqn. (11.2)). Solid
blue line: limit cycle prediction. 1000 repeated simulations are plotted and for each of
the simulation, more than 1000 ISIs (or IPIs) are recorded. Each sample point in the plot
represents the variance of ISIs and IPIs for one realization. A1-4: Voltage threshold Vth =
−55,−50,−20, 0 mV, with noise level

√
ε = 0.028 (effective number of K+ channels

Ntot ≈ 2.30× 106). B: Iso-phase section is the mean-return-time isochron intersecting the
deterministic limit cycle at Vth = −50 mV.
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selected four different voltage thresholds for comparison.

In Fig. 11.3, red dots in panels A1-A4 mark the ISI variance measured directly from

simulated voltage traces, using the indicated Vth as the trigger voltage. Green stem-and-

line marks show the mean and 95% confidence intervals of the direct ISI variance measure,

calculated from all 1000 samples. The blue dotted line shows the ISI variance predicted

from the limit cycle based estimate of the IPI variance (eq. (10.58)), and cyan squares show

individual estimates using the point-mass prediction (eq. (11.3)). Note each point mass

is an independent random variable; these estimates cluster tightly around the limit cycle

based estimate. Panel B shows the variance of the inter-phase intervals calculated directly

from the same 1000 trajectories (as described below), marked in black circles. Green stem-

and-line marks show the mean and 95% C.I. for the IPI variance. The blue dotted line and

cyan squares represent the same LC-based and point mass based IPI variance estimates as

in A1-A4.

As shown in Fig. 11.3 (A1, A2, A3, A4 and B) the point mass prediction and the LC

prediction of the IPI variance give almost the same result. Specifically, the LC prediction≈

3.84×10−3 and the mean of the point mass predictions≈ 3.83×10−3 with a variance of≈

6.3×10−11. Therefore, the LC prediction based on Corollary 7 gives a good approximation

to the point mass prediction based directly on Theorem 4. For a given edge (or a group

of edges) the LC prediction depends linearly on the scaling factor, ε, and can be easily

calculated for various noise levels. Throughout the rest of this section, we will use the LC

prediction as our predicted contribution from the decomposition theorem.

The asymptotic phase is calculated using equation (11.2) for each point on the stochastic

trajectory. For a given voltage threshold, Vth, the corresponding iso-phase section is the

mean-return-time isochron intersecting the deterministic limit cycle at Vth. As previously

observed, the variance of the IPIs is invariant with respect to the choice of the reference iso-
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phase section. As shown in Fig. 11.3 B, the prediction of variance of IPIs (≈ 3.83 × 10−3

ms2) has a good match with the mean value of numerical simulations (≈ 3.85 × 10−3

ms2). The 95% confidence interval of the IPIs are also plotted in Fig. 11.3 B, which further

indicates the reliability of the prediction.

As shown in Fig. 11.3 (A1, A2, A3 and A4), with Vth ∈ [−55, 0] mV, the numerical re-

alizations of σ2
ISI are close to the predictions from the main theorem. However, the accuracy

depends on the choice of the voltage threshold. As noted above, when the trigger voltage

Vth is set below −50mV (for example, −55mV in Fig. 11.3,A1), the measured variance

of ISIs falls below the value predicted from the IPI variance. When Vth ≈ −50mV, the

empirically observed value of σ2
ISI gives the best match to the IPI variance (cf. Fig. 11.2,C).

When the trigger voltage Vth exceeds −50mV (for example, −20mV in Fig. 11.3,A3, and

0mV in Fig. 11.3,A4), the empirically observed variance of the ISIs is consistently higher

than the IPI variance. Nevertheless, although the empirically observed numerical values

of σ2
ISI (≈ 4.00 × 10−3ms2) overestimate the IPI-derived value when Vth > −50mV, they

remain close to the IPI value. Fig. 11.3 panels A1-4 show that even though the IPI-based

prediction of the ISI variance works best when the trigger voltage is set to Vth ≈ −50mV,

the IPI-based variance falls within the 95% confidence interval of σ2
ISI regardless of the

value of Vth chosen. Therefore, we can conclude that Theorem 4 and Corollary 7 give a

good approximation to the value of σ2
ISI, at least at noise level

√
ε = 0.028.

Practically, the voltage-based interspike interval variance, σ2
ISI, is a more widely used

quantity [57, 74, 86, 112, 118] because it can be calculated directly from electrophysio-

logical recordings. The inter-phase interval variance, σ2
IPI, however, can not be directly

measured or calculated. Even given the stochastic model with its realizations, calculating

the asymptotic phase and finding the IPIs are numerically expensive. Despite its lack of

consistency, as shown in Fig. 11.3 (A3 and A4), the σ2
ISI can approximately be decom-
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posed using Theorem 4 and Corollary 7, which offer predicted values that fall in the 95%

confidence interval of σ2
ISI.

Fig. 11.4 summarizes the overall fit of the decomposition of variance of ISIs to the

prediction from Theorem 4 and Corollary 7. We applied the stochastic shielding method

by including each directed edge separately in the transition graph (cf. Fig. 3.1). In Fig. 11.4

(B and D), the variance of the ISIs is compared with the value obtained with the limit cycle

based prediction from eqn. (10.58).

Fig. 11.4 (A and C) shows the log-log plot for the ISI variance (σ2
ISI) of each individual

edge as a function of the noise level, ε, in the range of [e−10, e5], measured via direct

numerical simulation using Vth = −20 mV. The color for each edge ranges from red to blue

according an ascending order of edge numbers (1-8 for K+ and 1-20 for Na+). The total

effective number of Na+ channels is Mtot = Mref/ε and of K+ channels is Ntot = Nref/ε,

where the reference channel numbers are Mref = 6000 and Nref = 1800 (described in §9.4).

That is, we consider ranges of channel numbers 40 . Mtot . 1.3 × 108 for Na+ and

12 . Ntot . 4.0 × 107 for K+. Thus, we cover the entire range of empirically observed

single-cell channel populations (cf. Tab. 3.1).

As shown in Fig. 11.4 (A and C), the linear relation between σ2
ISI and ε predicted from

Theorem 4 is numerically observed for all 28 directed edges in the Na+ and K+ transition

graphs (cf. 3.1) for small noise. The same rank order of edge importance discussed in §6.5

is also observed here in the small noise region. Moreover, the smaller the edge importance

measure for an individual edge, the larger the value of ε before observing a breakdown of

linearity.

Fig. 11.4 (B and D) presents the log-log plot for the ISI variance (σ2
ISI, black solid line)

when including noise only from the K+ edges and Na+ edges, respectively. As in panels

A and C, the noise level, ε is in the range of [e−10, e5]. The LC prediction for eqn. (10.58)
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Figure 11.4: Numerical performance of the decomposition for the ISI variance for Na+ and
K+ kinetics. A&C: σ2

ISI for individual K+ (A) and Na+ (C) edges. Ek marks the kth edge,
k ∈ {1, . . . , 8} for K+ and k ∈ {1, . . . , 20} for Na+. B&D: Linearity of superposition
for K+ (B) and Na+ (D) channels. See text for details. σ2

ISI with noise from all K+ (Na+)
edges included (black line), with only the most significant edges using stochastic shielding
(red line) included, and the linear prediction from Theorem 4 (blue dashed line).

152



from Theorem 4 when including noise from only the K+ (or Na+) channels is plotted in

dashed blue. For example, the linear noise prediction for the potassium channels alone is

σ2
ISI ≈

EK∑
k=1

σ2
ISI,k (11.4)

where EK = 8 (similarly, ENa = 20), and σ2
ISI,k is the LC prediction for the kth edge.

As shown in Fig. 11.4 panel B, the linear prediction matches well with the numerically

calculated σ2
ISI up to ln(ε) ≈ −3.0 (indicated by the blue arrow) which corresponds to

approximately 36,000 K+ channels. For Na+, the theorem gives a good prediction of the

numerical σ2
ISI up to ln(ε) ≈ −1.9 (indicated by the blue arrow) which corresponds to

approximately 40,000 Na+ channels. These channel population sizes are consistent with

typical single-cell ion channel populations, such as the population of Na+ channels in the

node of Ranvier, or the Na+ and K+ channels in models of the soma of a cerebellar Purkinje

cell (cf. Tab. 3.1).

Finally, we apply stochastic shielding (SS) to both the K+and Na+channels by only

including noise from the edges making the largest contributions in Fig. 11.4 panels A and

C. For the K+ channel, we include edges 7 and 8, and for Na+, we include edges 17, 18,

19 and 20. As shown in Fig. 11.4 panels B and D, the SS method (solid red line) gives

a good match to the overall σ2
ISI for all noise intensities ε ∈ [e−10, e5], with numbers of

K+ channels ≥ 12 and Na+ channels ≥ 40.

Fig. 11.5 shows the overall performance of the prediction of σ2
ISI based on Theorem 4,

when noise from all 28 directed edges are included (black line). The theorem is stated as an

asymptotic result in the limit of weak noise. The predicted ISI variance using the theorem

(dashed blue curve) matches the ISI variance obtained from the full numerical simulation

for modest noise levels, up to ln(ε) ≤ −3.9, corresponding to & 90,000 K+ channels and
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Figure 11.5: Numerical performance of the decomposition for the ISI variance of the full
system. A: Log-log plot of σ2

ISI for ε ∈ [e−10, e5]. ISI variance contribution σ2
ISI with

noise from all 28 edges included (black line), only from 8 K+ edges (dashed grey), only
from 20 Na+ edges (solid grey), and SS using noise from six edges (red line, see text
for details). The linear prediction from Theorem 4 for the whole system is plotted for
comparison (dashed blue line). B: Coefficient of variation (C.V.), or mean ISI divided by√
σ2

ISI, vs. log(ε). Same color scheme as A. Compare Fig. 4.1, which shows data from two
cerebellar Purkinje cells, a wild-type cell with C.V.≈ 0.039 and a cell from a leaner mouse
with C.V. ≈ 0.30.
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& 300,000 Na+ channels. These population sizes are at the high end of the range of typical

numbers of channels neurons (cf. Tab. 3.1).

For smaller ion channel populations (larger noise levels), the linear approximation

breaks down, but the stochastic shielding approximation remains in good agreement with

full numerical simulations. Fig. 11.5 shows σ2
ISI from simulations using the SS method

including only noise from the six most important edges (edges 7-8 in K+ and 17-20 in

Na+), plotted in solid red. For ln(ε) & −3.5, both the full simulation and the SS simulation

show a rapid increase in σ2
ISI with increasing noise level. This dramatic increase in timing

variability results when increasing noise causes the neuron to “miss” spikes, that is, to

generate a mixture of regular spiking and small subthreshold oscillations [101]. Including

noise from all 20 Na+ channel edges (gray line) or all eight K+ channel edges (gray dashed

line) shows a similar jump, albeit delayed to higher values of ε for the Na+ channel. Note

also the Na+ channel alone has a quantitatively smaller contribution to ISI variability for

the stochastic HH model than the K+ channel for all noise levels in the linear region.

For larger noise levels (ln(ε) & −2), all simulations become sufficiently noisy that

ln(σ2
ISI) collapse to a similar level, approximately 3. As the interspike interval is a non-

negative random quantity with a constrained mean (bounded by the reciprocal of the firing

rate), once the spike train has maximal variability, further increasing the strength of the

channel noise does not drive the ISI variance appreciably higher. However, although the

ISI variance appears approximately to saturate with increasing noise, the coefficient of

variation (C.V.,
√
σ2

ISI/I) continues to increase (Fig. 11.5B), because the mean ISI (I)

decreases with increasing noise (the firing rate increases with increasing noise, data not

shown).
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Part V

Conclusions and Discussion
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Chapter 12

Conclusions

12.1 Summary

The exact method for Markov chain (MC) simulation for an electrotonically compact (sin-

gle compartment) conductance-based stochastic model under current clamp is a hybrid

discrete (channel state) / continuous (voltage) model of the sort used by [4, 18, 87]. While

MC methods are computationally expensive, simulations based on Gaussian/Langevin ap-

proximations can capture the effects of stochastic ion channel fluctuations with reason-

able accuracy and excellent computational efficiency. Since Goldwyn and Shea Brown’s

work focusing the attention of the computational neuroscience community on Fox and

Lu’s Langevin algorithm for the Hodgkin-Huxley system [39, 49], several variants of this

approach have appeared in the literature.

In this thesis, as in [95], we advocate for a class of models combining the best features

of conductance-based Langevin models with the recently developed stochastic shielding

approximation [102, 104, 105]. We propose a Langevin model with a 14-dimensional
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state space, representing the voltage, five states of the K+ channel, and eight states of the

Na+ channel; and a 28-dimensional representation of the driving noise: one independent

Gaussian noise term for each directed edge in the channel-state transition graph. We

showed in §5.3 that the corresponding mean-field 14D ordinary differential equation model

is consistent with the classical HH equations in the sense that the latter correspond to an

invariant submanifold of the higher-dimensional model, to which all trajectories converge

exponentially quickly. Fig. 5.1 illustrated the relation between the deterministic 4D and

14D Hodgkin Huxley systems. Building on this framework, we introduced the 14 × 28D

model, with independent noise sources corresponding to each ion channel transition (§6).

We proved in §7 that, given identical boundary conditions, our 14×28D model is pathwise

equivalent both to Fox and Lu’s original Langevin model, and to a 14-state model with 14

independent noise sources due to [90].

The original 4D HH model, the 14D deterministic HH model, and the family of equiv-

alent 14D Langevin models we consider here, form a nested family, each contained within

the next. Specifically, (i) the 14D ODE model is the “mean-field” version of the 14D

Langevin model, and (ii) the 4D ODE model forms an attracting invariant submanifold

within the 14D ODE model, as we establish in our Lemma 2. So in a very specific sense,

the original HH equations “live inside” the 14D Langevin equations. Thus these three

models enjoy a special relationship. In contrast, the widely used 4D Langevin equations,

originally studied in [40], do not bear an especially close relationship to the other three.

In addition to rigorous mathematical analysis we also performed numerical compar-

isons (§8) showing that, as expected, the pathwise equivalent models produced statistically

indistinguishable interspike interval (ISI) distributions. Moreover, the ISI distributions for

our model (and its equivalents) were closer to the ISI distribution of the “gold standard”

MC model under two different metric space measures. Our method (along with Orio and
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Soudry’s) proved computationally more efficient than Fox and Lu’s original method and

Dangerfield’s model [21]. In addition, our method lends itself naturally to model reduction

(via the stochastic shielding approximation) to a significantly faster 14×6D simulation that

preserves a surprisingly high level of accuracy.

We prove in §10 that the numerically calculated edge importance can be quantified from

the molecular-level fluctuations of the stochastic Hodgkin-Huxley (HH) kinetics. Specif-

ically, we combine the stochastic shielding approximation with the re-scaled Langevin

models (eqn. (9.28)) of the HH model to derive analytic results for decomposing the vari-

ance of the cycle time (the iso-phase intervals) for mean–return-time isochrons of the

stochastic HH models. We prove in theory, and confirm via numerical simulations, that

in the limit of small noise, the variance of the iso-phase intervals decomposes linearly into

a sum of contributions from each edge. We show numerically that the same decomposition

affords an efficient and accurate estimation procedure for the interspike intervals, which

are experimentally observable. Importantly, our results apply to current clamp rather than

to voltage clamp conditions. Under current clamp, a stochastic conductance-based model

is an example of a piecewise-deterministic Markov process (PDMP). We show in §11.2

that our theory is exact in the limit of small channel noise (equivalently, large ion channel

population size); through numerical simulations we demonstrate its applicability even in a

range of small to medium noise levels, consistent with experimentally inferred single-cell

ion channel population sizes. In addition, we present the numerical performance of the

SS method under different scenarios and argue that the stochastic-shielding approximation

together with the 14× 28D Langevin representation give an excellent choice of simulation

method for ion channel populations spanning the entire physiologically observed range.
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Chapter 13

Discussions

13.1 Discrete Gillespie Markov Chain Algorithms

The discrete-state Markov chain algorithm due to Gillespie is often taken to be the gold

standard simulation for a single-compartment stochastic conductance-based model. Most

former literature on Langevin HH models, such as [49, 60, 73, 90], when establishing a

reference MC model, consider a version of the discrete Gillespie algorithm that assumes

a piecewise-constant propensity approximation, i.e. that does not take into account that

the voltage changes between transitions, which changes the transition rates. This approx-

imation can lead to biophysically unrealistic voltage traces for very small system sizes

(cf. Fig. 2 of [67], top trace with N = 1 ion channel) although the differences appear to be

mitigated for N & 40 channels [4]. In the present thesis, our MC simulations are based on

6000 Na+ and 1800 K+ channels (as in [49]), and we too use the ISI distribution generated

by a piecewise-constant propensity MC algorithm as our reference distribution. Given the

range of physiologically observed single-cell ion channel population sizes (Tab. 3.1), it ap-
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pears the piecewise-constant–propensity approximation is sufficient for naturally occurring

cells.

However, as shown in Tab. 8.1 and Fig. 8.2, the computation time for the MC sim-

ulations is one order of magnitude larger than efficient methods such as [21, 90] and

the 14 × 28D model. The computational cost of the MC model increases dramatically

as the number of ion channels grows, therefore, even the approximate MC algorithm is

inapplicable for a large number of channels.

13.2 Langevin Models

It is worth pointing out that the accuracy of Fox and Lu’s original Langevin equations has

not been fully appreciated. In fact, Fox and Lu’s model [39] gives an approximation to

the MC model that is just as accurate as [90] both in the gating variable statistics [49] and

also in the ISI distribution sense (see §8) – because as we have established, these models

are pathwise equivalent! However, the original implementation requires taking a matrix

square root in every timestep in the numerical simulation, which significantly reduces its

computational efficiency.

Models based on modifications of [39]’s work can be divided into three classes: the

subunit model [40]; effective noise models [56, 73], and channel-based Langevin models

such as [21, 49, 60, 90, 93].

Subunit model The first modification of Fox and Lu’s model is the subunit model [40],

which keeps the original form of the HH model, and adds noise directly to the gating

variables (m, h, and n) [49, 40]. The subunit approximation model was widely used

because of its computational speed. However, as [12] and others pointed out, the inaccuracy
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of this model remains significant even for large number of channels. Moreover, [49] and

[61] found that the subunit model fails to capture the statistics of the HH Na+ and K+ gates.

In this thesis, we also observed that the subunit model is more efficient than channel-based

Langevin models, but tends to delay spike generation. As shown in Fig. 8.1, the subunit

model generates significantly longer ISIs than the MC model.

Effective noise models Another modification to Fox and Lu’s algorithm is to add colored

noise to the channel open fractions. We did not include colored noise models such as [73,

56] in our model comparison. However, [61] found that both these effective noise models

generate shorter ISIs than the MC model with the same parameters. Though the comparison

we provided in §8 only include the Fox and Lu 94, Fox97, Goldwyn, Dangerfield, Orio, SS

and the 14 × 28D model, combining the results from [49] and [61], the 14 × 28D model

could be compared to a variety of models including [21, 39, 40, 49, 56, 60, 73, 90].

Channel-based Langevin models The main focus of Part III (§7-§8) of this thesis is the

modification based on the original Fox and Lu’s matrix decomposition method, namely, the

channel-based (or conductance-based) Langevin models. We proved in §7 that under the

same boundary conditions, Fox and Lu’s original model, Orio’s model and our 14 × 28D

model are pathwise equivalent, which was also verified from our numerical simulations

in §7 and §8. In §7, we discussed channel-based Langevin models including [21, 39,

41, 49, 90]. We excluded Fox’s more recent implementation [41] in §8 for two reasons.

First, the algorithm is pathwise equivalent to others considered there. And moreover, the

method is vulnerable to numerical instability when performing the Cholesky decomposi-

tion. Specifically, some of the elements in the S matrix from the Cholesky decomposition

in [41] involve square roots of differences of several quantities, with no guarantee that the
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differences will result in nonnegative terms – even with strictly positive values of the gating

variables. Nevertheless, this model would be in the equivalence class and in any case would

not be more efficient than Orio’s model, because of the noise dimension and complicated

operations (e.g. taking multiple square roots) in each time step.

13.3 Model Comparisons

If two random variables have similar distributions, then they will have similar moments,

but not necessarily vice-versa. Therefore, comparison of the full interspike-interval dis-

tributions produced by different simulation algorithms gives a more rigorous test than

comparison of first and second moments of the ISI distribution. Most previous evaluations

of competing Langevin approximations were based on the accuracy of low-order moments,

for example the mean and variance of channel state occupancy under voltage clamp, or the

mean and variance of the interspike interval distribution under current clamp [21, 48, 49,

60, 61, 73, 90, 102]. In this thesis, we compare the accuracy of the different algorithms

using the full ISI distribution, but using the L1 norm of the difference (Wasserstein metric)

and the L∞ norm (Kolmogorov-Smirnov test). The paper [52] previously compared the ISI

distributions generated by the Markov chain (Gillespie algorithm) to the distribution gener-

ated by different types of Langevin approximations (LA), including the original Langevin

models [39, 49], the channel-based LA with colored noise [56, 73], and LA with a 14× 14

variant of the diffusion coefficient matrix S [90]. They concluded that Orio and Soudry’s

method provided the best match to the Markov chain model, specifically “Fox-Goldwyn,

and Orio-Kurtz1 methods both generate ISI histograms very close to those of Micro2” [52].

We note that the comparison reported in this paper simply superimposed plots of the ISI

1We refer to this model as to as “Orio”
2This is the model we refer to as the Markov-chain model.
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distributions, allowing a qualitative comparison, while our metric-space analysis is fully

quantitative. In any case, their conclusions are consistent with our findings; we showed

in §7 that the Fox-Goldwyn and the Orio-Kurtz model are pathwise equivalent (when

implemented with the same boundary conditions), which accounts for the similarity in the

ISI histograms they generate. In fact, because of pathwise equivalence, we can conclude

that the true distributions for these models are identical, and any differences observed just

reflect finite sampling.

13.4 Stochastic Shielding Method

The stochastic shielding (SS) approximation [102] provides an efficient and accurate method

for approximating a Markov process using only a subset of transitions to generate fluctu-

ations, namely those directly involving observable states. For conductance-based models,

rather than aggregating ion channel states, SS effects dimension reduction by selectively

eliminating those independent noise sources (channel state transitions) that have the least

impact on current fluctuations. Recent work in [93] compared previous methods such as

[21, 46, 60, 90, 102] in accuracy, applicability and simplicity as well as computational

efficiency. They concluded that for mesoscopic numbers of channels, stochastic shielding

methods combined with diffusion approximation methods can be an optimal choice. That

is precisely the combination of methods that we advocate in this thesis.

Like [90], the stochastic shielding method proposed by [93] assumed detailed balance

of transitions between adjacent states and used edges that are directly connected to the open

gates of HH Na+ and K+. We calculated the edge importance in §6.5 and found that the

four (out of twenty) most important directed edges for the Na+ gates are not the four edges

directly connected to the conducting state, as assumed in previous application of the SS
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method [102], but rather the two pairs of edges “upstream” of the open state, which are the

transitions typically leading to initiation of a voltage spike.

13.5 Which Model to Use?

Among all the modifications of Fox and Lu’s method considered here, Orio and Soudry’s

approach, and our 14× 28D model, provide the best approximation to the “gold standard”

MC model, with the greatest computational efficiency. Several earlier models were studied

in the review paper by [49], where they rediscovered that the original Langevin model pro-

posed by Fox and Lu is the best approximation to the MC model among those considered.

Later work ([61]) further surveyed a wide range of Langevin approximations for the HH

system including [39, 40, 49, 56, 60, 73, 90] and explored models with different boundary

conditions. The survey [61] concluded that the bounded and truncated-restored Langevin

model [60] and the unbounded [90]’s model provide the best approximation to the MC

model.

As shown in §7 and §8, the 14 × 28D Langevin model naturally derived from the

channel structure is pathwise equivalent to the Fox and Lu ‘94, Fox ‘18, and the Orio-

Soudry models under the same boundary conditions. The 14 × 28D model (with open

boundary conditions) is more accurate than models with the reflecting boundary condition

method of [21], and also better than the approximation method proposed by [49], when

the entire ISI distribution is taken into account. We note that [61, 111] treated Goldwyn’s

method [49] as the original Fox and Lu model in their comparison, however, the simulation

in [49] uses the 4D multinomial submanifold to update the gating variables. Our analysis

and numerical simulations suggest that the original Fox and Lu model is indeed as accurate

as the Orio-Soudry model, while the computational cost still remains a major concern.
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Though the 14×28D model has similar efficiency and accuracy with [90], it has several

advantages. First, the rectangular S matrix (in eqn. (3.2)-(3.3)) in Orio’s model merges

the noise contributions of reciprocal pairs of edges. However, this dimension reduction

assumes, in effect, that detailed balance holds along reciprocal edges, which our results

show is not the case, under current clamp (Fig. 6.2). Moreover, the 14 × 28D model

arises naturally from the individual transitions of the exact evolution equations (eqn.(6.14)-

(6.15)) for the underlying Markov chain model, which makes it conceptually easier to

understand. In addition, our method for defining the 14 × 28D Langevin model and

finding the best SS model extends to channel-based models with arbitrary channel gating

schemes beyond the standard HH model. Given any channel state transition graph, the

Langevin equations may be read off from the transitions, and the edge importance under

current clamp can be evaluated by applying the stochastic shielding method to investigate

the contributions of noise from each individual directed edge. Finally, in exchange for

a small reduction in accuracy, the stochastic shielding method affords a significant gain in

efficiency. The 14×28D model thus offers a natural way to quantify the contributions of the

microscopic transitions to the macroscopic voltage fluctuations in the membrane through

the use of stochastic shielding. For general ion channel models, extending a biophysically-

based Langevin model analogous to our 14× 28D HH model, together with the stochastic

shielding method, may provide the best available tool for investigating how unobservable

microscopic behaviors (such as ion channel fluctuations) affect the macroscopic variability

in many biological systems.
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13.6 Variance of Interspike Intervals

There are several different methods for detecting spikes and quantifying interspike intervals

(ISIs). In one widely used approach [44, 57, 74, 84, 86, 112, 118], we can define the

threshold as the time of upcrossing a fixed voltage, which is also called a Schmitt trigger

(after O.H. Schmitt [106]). We primarily use this method in this thesis.

As an alternative, the time at which the rate of change of voltage, dV/dt, reaches its

maximum value (within a given spike) has also been used as the condition for detecting

spikes [7]. However, in contrast with the voltage-based Schmitt trigger, using the maximum

of dV/dt to localize the spike does not give a well-defined Poincaré section. To see this,

consider that for a system of the form (7.6) we would have to set

d2V

dt2
=

d

dt
f(V,N) (13.1)

= f(V,N)
∂f

∂V
(V,N)− dM8

dt
gNa(V − VNa)−

dN5

dt
gK(V − VK)

equal to zero to find the corresponding section. The difficulty is evident: for the Langevin

system the open fraction M8 (resp. N5) of sodium (resp. potassium) channels is a diffusion

process, and is not differentiable, so “dM8/dt” and “dN5/dt” are not well defined. More-

over, even if we could interpret these expressions, the set of voltages V and gating variables

N for which (13.1) equals zero depends on the instantaneous value of the noise forcing,

so the corresponding section would not be fixed within the phase space. For a discrete

state stochastic channel model, the point of maximum rate of change of voltage could be

determined post-hoc from a trajectory, but again depends on the random waiting times

between events, and so is not a fixed set of points in phase space. For these reasons we do

not further analyze ISIs based on this method of defining spikes, although we nevertheless

167



include numerical ISI variance based on this method, for comparison (see Fig. 13.1 below).

As a third possibility, used for example in [57], one sets the voltage nullcline (dV/dt =

0), at the top of the spike, as the Poincaré section for spike detection. That is, one uses

a surface such as Speak = {(v,n) | f(v,n) = 0} ∩ {v > −40}. This condition does

correspond to a well-defined Poincaré section, albeit one with a different normal direction

than the voltage-based sections.

In contrast to the ISI variance, which depends to some degree on the choice of spike-

timing method used, the mean ISI is invariant. Both in numerical simulations and from

experimental recordings, the mean interspike interval using any of the three methods above

is very stable. But the apparent ISI variance changes, depending on the method chosen.

We observe in both real and simulated voltage traces that the ISI variance, σ2
ISI, depends

not only on the method for identifying spikes, but also on the voltage used for the Schmitt

trigger. To our knowledge this sensitivity of ISI variance to trigger voltage has not been

previously reported. Generally speaking, from analyzing both simulation and recorded

data from in vitro studies, the ISI variance is not a constant, but increases slightly as the

voltage threshold defining a “spike” is increased (cf. §11.1). Thus the ISI variance is not an

intrinsically precisely invariant quantity for model or real nerve cells.

Fig. 13.1 shows σ2
ISI obtained empirically from electrophysiological recordings of Purk-

inje cells in vitro (upper plot) and from simulations of the stochastic Hodgkin-Huxley

system (lower plot) with a small noise amplitude (
√
ε = 0.028) using the three methods for

spike time extraction described above, for a single voltage trace comprising 785 interspike

intervals. The ISI variance as a function of trigger voltage increases steadily from below

7.8 ms2 to above 7.9 ms2 as the trigger voltage increases from -50 mV to -20 mV. In

contrast, the ISI variance obtained from the peak voltage (dV/dt ≈ 0, obtained using

linear interpolation of the first-order voltage difference) or the maximum slope condition
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Figure 13.1: Variance of interspike intervals using different threshold conditions. A: σ2
ISI

of spikes from a single trace of a wild type Purkinje cells comprising 785 ISIs. σ2
ISI =

7.9151 when setting dv/dt = 0 as the threshold (dashed red), and σ2
ISI = 7.9146 when

maximum dv/dt is set to be the threshold condition (blue). Different voltage thresholds
show increasing σ2

IS with voltage (gray). B: ISI variance from a Langevin HH (cf. eq. 9.28)
simulation with small noise (

√
ε = 0.028) comprising c. 1000 ISIs. Labels as in A. The

variance of the inter-phase intervals is constant regardless of the particular isochron chosen
(black).
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(d2V/dt2 ≈ 0 and dV/dt > 0, obtained using linear interpolation of the second-order

voltage difference) give nearly indistinguishable values (red and blue superimposed traces

in Fig. 13.1A) that lie slightly above the largest value of σ2
ISI at the upper range of the trigger

voltage.

A similar phenomenon occurs for Langevin simulations of the HH model with small

noise (Fig. 13.1B). In this case, the ISI variance based on maximum slope falls slightly

below the variance based on the spike peaks; both are similar to the variance obtained

with a Schmitt trigger close to −20 mV. This similarity at higher trigger voltages probably

occurs because the inflection point of each spike occurs at nearly the same voltage (at least,

for small noise).

As shown in §10.2 and §11.2, the inter-phase interval (IPI, also refered as iso-phase

interval), based on the crossing time of iso-phase sections, provides a uniform σ2
IPI for all

choices of reference iso-phase sections (cf. Fig. 11.3). Fig. 13.1B shows the IPI variance (in

black) for different mean–return-time isochronal sections, each passing through the limit

cycle trajectory at the specified voltage.

For experimental voltage recordings, we cannot specify the interphase variables without

a measurement or estimate of the entire state vector. Fortunately, the sensitivity of ISI vari-

ance to voltage threshold, while statistically significant, is relatively small (a few percent),

as voltage is the practical measure available for marking spike times. Moreover, as shown

§11.2, Theorem 4 and Corollary 7 can be is well suited to approximating the variance of

ISIs (σ2
ISI) despite its threshold-dependence.

For moderate to large noise Langevin model traces (ε ≈ 1), we also see a systematic

shift in σ2
ISI with increasing Schmitt-trigger voltage. However, the size of the shift is an

order of magnitude smaller than the variability of the variance across trials. Fig.13.2 plots

σ2
ISI versus trigger voltage, as well as the ISI variance based on the peak voltage and the
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Figure 13.2: Model simulation of σ2
ISI for the Langvin model (eqn. 9.28) using different

thresholds when ε = 1. Ten repeated simulations are plotted, with each containing roughly
1000 ISIs. Solid plus: σ2

ISI using different voltages as threshold. Dashed: dV/dt = 0 as the
spike condition. Diamonds: maximal dV/dt condition. Each color represents a different
sample with independent noise. Variance is in units of ms2.
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maximal slope conditions, for ten different samples of the Langevin HH model with ε = 1,

each comprising & 1000 interspike intervals. In each case σ2
ISI is a smoothly increasing

function of the trigger voltage, but the range of the increase in variance is approximately

0.25 ms2, while the sample variance of the ISI variance itself is approximately 3.5 ms2

across the ten trials, an order of magnitude larger. For comparison, the sample variance of

σ2
ISI across c. 4000 trials, cf. Fig. 11.3, is approximately 3 × 10−7 ms2. The source of the

variance for the larger noise value may involve the introduction of extra or missing spikes

from the regular spiking pattern, cf. Fig. 11.5. Thus, although σ2
ISI based on the standard

Schmitt trigger approach is sensitive to the trigger value, the IPI variance estimate given by

Theorem 4 lies within the range of this sensitivity, which for realistic noise levels is small

compared to the intrinsic variability of the variance across trials.
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Chapter 14

Limitations

All Langevin models, including our proposed 14× 28D model, proceed from the assump-

tion that the ion channel population is large enough (and the ion channel state transitions

frequent enough) that the Gaussian approximations by which the white noise forcing terms

are derived, are justified. Thus when the system size is too small, no Langevin system

will be an appropriate. Fortunately the Langevin approximation appears quite accurate for

realistic population sizes (cf. Tab. 3.1 and Figs. 11.4-11.5).

The 14×28D model uses more noise sources than other approaches. However, stochas-

tic shielding allows us to jettison noise sources that do not significantly impact the system

dynamics (the voltage fluctuations and ISI distribution). Moreover, in order to compare

the ISI distribution in detail among several variants of the Fox and Lu ’94 model versus

the Markov chain standard, we have considered a single value of the driving current, while

other studies have compared parametrized responses such as the firing rate, ISI variance,

or other moments, as a function of applied current. Accurate comparisons require large

ensembles of independent trajectories, forcing a tradeoff between precision and breadth;
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we opted here for precise comparisons at a representative level of the driving current.

From a conceptual point of view, a shortcoming of most Langevin models is the ten-

dency for some channel state variables x to collide with the domain boundaries x ∈ [0, 1]

and to cross them during numerical simulations with finite time steps. We adopted the

approach advocated by [90] of using “free boundaries” in which gating variables can make

excursions into the (unphysical) range x < 0 or x > 1. Practically speaking, these

excursions are always short, if the time step is reasonably small, as they tend to be self-

correcting.1 Another approach is to construct reflecting boundary conditions; different

implementations of this idea were used in [20],[39] and [103]. Dangerfield’s method proved

both slower and less accurate than the free boundary method. As an alternative method,

one uses a biased rejection sampling approach, testing each gating variable of the 14D

model on each time step, and repeating the noise sample for any time step violating the

domain conditions [39, 103]. We found that this method had accuracy similar to that of

Dangerfield’s method (L1-Wasserstein difference ≈ 4.4e-1 msec, cf. Tab. 8.1) and runtime

similar to that of the Fox and Lu 94 implementation, about 4 times slower than our 14D

Langevin model.

Table 8.1 gives the accuracies with which each model reproduces the ISI distribution,

compared to a standard reference distribution generated through a large number of samples

of the MC method. The mean L1 difference between a single sample and the reference

sample is about 0.227 microseconds. For a nonnegative random variable T ≥ 0, the

difference in the mean under two probability distributions is bounded above by the L1

difference in their cumulative distribution functions.2 Thus the L1 norm gives an idea of

1To avoid complex entries, we use |x| when calculating entries in the noise coefficient matrix.
2For a nonnegative random variable T with cumulative distribution function F (t) = P[T ≤ t], the mean

satisfies E[T ] =
∫∞
0

(1− F (t)) dt [53]. Therefore the difference in mean under two distributions F1 and F2

satisfies |E1[T ]− E2[T ]| =
∣∣∫∞

0
F1(t)− F2(t) dt

∣∣ ≤ ρ1(F1, F2).
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the temporal accuracy with which one can approximate a given distribution by another. The

mean difference between the ISI distribution generated by a single run of the full 14× 28D

model is about 49 µsec, and the discrepancy produced by the (significantly faster) SS model

is about 76 µsec. When would this level of accuracy matter for the function of a neuron

within a network? The barn owl Tyto alba uses interaural time difference to localize its

prey to within 1-2 degrees, a feat that requires encoding information in the precise timing

of auditory system action potentials at the scale of 5-20 microseconds [45, 83]. For detailed

studies of the effects of channel noise in this system, the superior accuracy of the MC

model might be preferred. On the other hand, the timescale of information encoding in

the human auditory nerve is thought to be in the millisecond range [50], with precision in

the feline auditory system reported as low as 100 µs [62] (see also [132]). For these and

other mammalian systems, the stochastic shielding approximation should provide sufficient

accuracy.

Another limitation of our approach is that the interphase interval variance, σ2
IPI, is only

well defined for the small noise region, and becomes prohibitively hard to calculate for large

noise levels. Additionally, even given a stochastic trajectory and the associated Langevin

model, σ2
IPI is computationally expensive to obtain. Fortunately, the theory we provided

in this thesis give a good approximation to the decomposition of variance of ISIs up to

a moderate noise level (cf. Figs. 11.4-11.5). Moreover, when we combine the stochastic

shielding method with our 14 × 28D Langevin model, the reduced moled gives a good

approximation to the full noise model for ion channel populations spanning the range of

[40, 105].

Like other approaches in the literature, our calculations are based on a linear approx-

imation to the effects of the noise. However, Ito’s formula (9.29) includes terms both of

order
√
ε and ε. The latter weights the Hessian matrix of the asymptotic phase function,
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∂2ijφ. In our main result (10.8) we neglected the contribution of this higher order term.

Similar truncations of either Taylor’s expansion or Ito’s formula are seen throughout the

literature, for example eqn. (3.2.8) in [70], eqn. (120) in [110], and eqn. (2) in [31]. These

authors favor an immediate phase reduction when ε is small, setting X(t) ≈ X0(θ(t)) and

dφ

dt
= 1 +

√
ε (∇φ(X))ᵀ · G(X) · dW(t) (14.1)

([110, 70]). As in Kuramoto’s original phase reduction approach [70], we also evaluate the

infinitesimal phase response curve Z on the limit cycle throughout this thesis. This ommis-

sion of the Hessian term could possible cause additional discrepancies. Recent advances

in the theory of nonlinear oscillators have provided means to obtain the asymptotic phase

Hessian [3, 127, 129] but we have not attempted to implement these calculations for our

14D HH model.
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Appendix A

Table of Common Symbols and

Notations

Symbol Meaning
C Membrane capacitance (µF/cm2)
v Membrane potential (mV )
VNa, VK, VL Ionic reversal potential for Na+, K+and leak (mV )
ḡion maximal conductance for ion ∈ {Na+,K+}
Iapp Applied current to the membrane (nA/cm2)
m, h, n Dimensionless gating variables for Na+ and K+ channels
αx, βx , x ∈ {m,n, h} Voltage dependent rate constant (1/msec)
x vector of state variables
M = [M1,M2, · · · ,M8] Eight-component state vector for the Na+ gates
[m00, · · · ,m30,m01, · · · ,m31]

ᵀ Components for the Na+gates
N = [N1,N2, · · · ,N5] Five-component state vector for the K+ gates
[n0, n1, n2, n3, n4]

ᵀ Components for the K+ gates
Mtot, Ntot Total number of Na+ and K+ channels

Table A.1: Common symbols and notations in this thesis (part I).
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Symbol Meaning
X 4-dimensional manifold domain for 4D HH model
Y 14-dimensional manifold domain for 14D HH model
∆k k-dimensional simplex in Rk+1

given by y1 + . . .+ yk+1 = 1, yi ≥ 0
M Multinomial submanifold within the 14D space
ANa, AK State-dependent rate matrix
D State diffusion matrix
G,S, S1, S2, SNa, SK Noise coefficient matrices
ξ Vector of independent δ-correlated Gaussian white

noise with zero mean and unit variance
X = [X1, X2, . . . , Xd] A d-dimensional random variable for sample path
W = [W1,W2, . . . ,Wn] A Wiener trajectory with n components
δ(·) The Dirac delta function
δij The Kronecker delta
Fn Empirical cumulative distribution function with n

observations (in §8, we use m, n as sample sizes)
eNa
i & eK

i ith standard unit vector in R8 & R5

ζ ion
k = eion

j(k) − eion
i(k) stoichiometry vector for the kth edge, for ion ∈ {Na+,K+}

αk(v) voltage-dependent per capita transition rate along kth edge
i(k) & j(k) source & destination nodes for kth edge
Mi(k) fractional occupancy of source node for kth edge
F(X) & f(x) deterministic part of the evolution equation (mean-field)
D domain of the (stochastic) differential equation
V0 “nullcline” surface associated with the voltage variable,

where f(v,m,n) = 0
S arbitrary section transverse to the deterministic limit cycle

Table A.2: Common symbols and notations in this thesis (part II).
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Symbol Meaning

Su isovoltage Poincaré section (where voltage is a constant u)

Su0 , Su+, & Su− “null”, “inward current” & “outward current” surface for voltage u

and f(v,m,n) = 0, f(v,m,n) > 0& f(v,m,n) < 0, resp.

τ(x,S) first passage time (FPT) from a point x ∈ D to section S
T (x,S) mean first passage time (MFPT) from point x ∈ D to set S
S(x,S) the second moment of the FPT from a point x ∈ D to section S
τuk & τ dk kth voltage surface upcrossing & downcrossing time

Ik kth interspike interval (ISI), for some reference voltage v0
I , H & σ2

ISI mean, 2nd moment, and variance of ISI

µk kth iso-phase crossing time

∆k kth iso-phase interval (IPI), for some reference phase φ0

T ε, Sε, σ2
IPI mean, 2nd moment, variance of iso-phase interval (for noise level ε)

σ2
φ,k & σ2

ISI,k contribution of kth edge to the IPI variance and the ISI variance, resp.

γ(t) deterministic limit cycle trajectory

T 0 period of deterministic limit cycle

φ(x) asymptotic phase function for deterministic limit cycle

Z(t) = ∇φ(γ(t)) infinitesimal phase response curve for deterministic limit cycle

T ε mean period for noise level set to ε

T 1 = ∂T ε
∂ε

∣∣∣
ε=0

sensitivity of the mean period to increasing noise level,

in the small-noise limit

Tε(x) mean–return-time (MRT) phase function for noise level set to ε

T1(x) = ∂Tε(x)
∂ε

∣∣∣
ε=0

sensitivity of the phase function to noise in the small-noise limit

T0(x) MRT phase function for ε = 0. Note T0(x) = const− T 0
φ(x)
2π

for an arbitrary constant

Table A.3: Common symbols and notations in this thesis (part III).
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Appendix B

Parameters and Transition Matrices

Symbol Meaning Value

C Membrane capacitance 1 µF/cm2

ḡNa Maximal sodium conductance 120 µS/cm2

ḡK Maximal potassium conductance 36 µS/cm2

gleak Leak conductance 0.3 µS/cm2

VNa Sodium reversal potential for Na+ 50 mV

VK Potassium reversal potential for K+ -77 mV

Vleak Leak reversal potential -54.4 mV

Iapp Applied current to the membrane 10 nA/cm2

A Membrane Area 100µm2

Mtot Total number of Na+ channels 6,000

Ntot Total number ofK+ channels 18,00

Table B.1: Parameters used for simulations in this thesis.
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Subunit kinetics for the Hodgkin and Huxley equations are given by

αm(v) =
0.1(25− v)

exp(2.5− 0.1v)− 1
(B.1)

βm(v) = 4 exp(−v/18) (B.2)

αh(v) = 0.07 exp(−v/20) (B.3)

βh(v) =
1

exp(3− 0.1v) + 1
(B.4)

αn(v) =
0.01(10− v)

exp(1− 0.1v)− 1
(B.5)

βn(v) = 0.125 exp(−v/80) (B.6)

AK(v) =



DK(1) βn(v) 0 0 0

4αn(v) DK(2) 2βn(v) 0 0

0 3αn(v) DK(3) 3βn(v) 0

0 0 2αn(v) DK(4) 4βn(v)

0 0 0 αn(v) DK(5)


,
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ANa =



DNa(1) βm 0 0 βh 0 0 0

3αm DNa(2) 2βm 0 0 βh 0 0

0 2αm DNa(3) 3βm 0 0 βh 0

0 0 αm DNa(4) 0 0 0 βh

αh 0 0 0 DNa(5) βm 0 0

0 αh 0 0 3αm DNa(6) 2βm 0

0 0 αh 0 0 2αm DNa(7) 3βm

0 0 0 αh 0 0 αm DNa(8)



,

where the diagonal elements

Dion(i) = −
∑
j:j 6=i

Aion(j, i), ion ∈ {Na,K}.
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Appendix C

Diffusion Matrix of the 14D Model

Define the state vector for Na+ and K+ channels as

M = [m00,m10,m20,m30,m01,m11,m21,m31]
ᵀ,

and N = [n0, n1, n2, n3, n4]
ᵀ, respectively. The diffusion matrices DNa and DK are given

by
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DK =



DK(1, 1) −4αnn0 − βnn1 0

−4αnn0 − βnn1 DK(2, 2) 3αnn1 − 2βnn2

0 −3αnn1 − 2βnn2 DK(3, 3)

0 0 −2αnn2 − 3βnn3

0 0 0

· · ·

· · ·

0 0

0 0

−2αnn2 − 3βnn3 0

DK(4, 4) −αnn3 − 4βnn4

−αnn3 − 4βnn4 DK(5, 5)


,
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D
(1:3)
Na =



DNa(1, 1) −3αmm00 − βmm10 0

−3αmm00 − βmm10 DNa(2, 2) −2αmm10 − 2βmm20

0 −2αmm10 − 2βmm20 DNa(3, 3)

0 0 −αmm20 − 3βmm30

−αhm00 − βhm01 0 0

0 −αhm10 − βhm11 0

0 0 −αhm20 − βhm21

0 0 0



,

D
(4:6)
Na =



0 −αhm00 − βhm01 0

0 0 −αhm10 − βhm11

−αmm20 − 3βmm30 0 0

DNa(4, 4) 0 0

0 DNa(5, 5) −3αmm01 − βmm11

0 −3αmm01 − βmm11 DNa(6, 6)

0 0 −2αmm11 − 2βmm21

−αhm30 − βhm31 0 0



,
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D
(7:8)
Na =



0 0

0 0

−αhm20 − βhm21 0

0 −αhm30 − βhm31

0 0

−2αmm11 − 2βmm21 0

DNa(7, 7) −αmm21 − 3βmm31

−αmm21 − 3βmm31 DNa(8, 8)



,

where

Dion(i, i) = −
∑
j : j 6=i

Dion(j, i), for ion ∈ {Na,K}.
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