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Applications of the Helmholtz-Hodge Decomposition to Networks and

Random Processes

Abstract

by

ALEXANDER STRANG

Cycle and potential decompositions are widely used mathematical tools for analyzing

systems across fields. The discrete Hodge-Helmholtz Decomposition (HHD) decomposes

an edge flow on a graph into two components. The first component is conservative, and

associated with the gradient of a potential function defined on the vertices. The second

component is cyclic, and is associated with the adjoint curl of a set of vorticities defined

on the loops of the network. We explore applications of the HHD to problems arising in

a variety of fields. We provide examples where the HHD is used as a descriptive tool for

characterizing structure, and as a predictive tool for understanding dynamics. To show

that the HHD can be used to describe the structure we apply it to tournaments arising

in politics, animal behavior, and sports. To show that the HHD can be used to predict

dynamics we apply the decomposition to discrete-space continuous-time Markov models

motivated by biophysical and ecological examples. It is shown that the HHD has a natural

thermodynamic interpretation, and can be used to construct analogous thermodynamics for

a generic class of Markov chains. We show that the HHD can be applied to understand

steady-state dynamics in either the strong noise, or weak rotation, limit and controls the

x



long-term production rate of observables. A formal expansion of steady-state distributions

and steady-state fluxes in the cyclic component of the HHD is introduced. Comparisons

to existing potential theories and cycle decompositions are made, and it is shown that the

HHD is a complementary decomposition to the quasipotential in the continuum limit.
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Chapter 1

Introduction

1.1 Outline

Potentials and cycle decompositions play a critical role in the analysis of many physical

systems. Problems in areas as diverse as physics, chemistry, and biology can often be

simplified by considering underlying potentials and tendencies to cycle. Potentials are a

classical topic with deep roots in physics [1, 2]. Cycle decompositions, in particular, cycle

decompositions on networks, are a topic of active interest in the analysis of biochemical

systems and in biophysics, since many cellular functions rely on molecular machinery that

can cycle through a set of states in order to complete a task (cf. [3, 4, 5, 6, 7]). Cycles are

of broad interest in biology in general, as cyclic are important at both the microscopic and

macroscopic levels.

This dissertation will explore applications of the Helmholtz-Hodge Decomposition (HHD).

The HHD separates a flow into a conservative component associated with the gradient of

a potential function, and a cyclic component associated with the adjoint curl of a set of

2



vorticities. The HHD generalizes the familiar Helmholtz decomposition widely used in

electromagnetism and fluid mechanics [2, 8]. The Helmholtz decomposition has broad

applications including computer graphics, flow visualization, astrophysics, imaging, and

robotics [9, 10, 11, 12, 13, 14]. A survey of applications is available in [8]. Notably, none

of the applications addressed in the survey are stochastic, or are based on a discrete state

space described by a network.

The combinatorial/discrete HHD generalizes the Helmholtz decomposition to edge

flows on networks [15, 16]. Our work is largely inspired by the Lek-Heng Lim’s work

on the combinatorial HHD (cf. [15] and [16, 17]). In this dissertation we illustrate the

usefulness of the HHD as both a descriptive and predictive analytic tool. The HHD can be

used to characterize structural properties of an edge flow on a network, and thus to describe

the flow. If the edge flow is chosen to reflect the dynamics of a process developing on the

network, then the HHD can be used to predict dynamics. The HHD has been used to solve

ranking problems that arise in data science [15, 16, 17], and to study optimal strategies in

games that involve cyclic structures [18]. We aim to illustrate the power of the HHD in

different settings. To show its descriptive value we apply the HHD to study the structure

of competition in tournaments. To show its predictive value we apply the HHD to Markov

processes on networks.

The dissertation is organized as follows. First, in Chapter 2, we define the decompo-

sition and review techniques for performing the decomposition. Basic properties of the

operators involved are discussed and special attention is devoted to planar networks in

order to highlight symmetries in the decomposition. The decomposition is characterized

using least squares, discrete Poission equations, and a novel “path integral" interpretation

that represents potential differences as the average work to move between two points over

randomly drawn paths. Two important generalizations to the HHD are then introduced.
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Solution methods for select networks are highlighted. In Chapter 3 explicit methods for

certain simple network topologies are provided. In order to understand the decomposition

when applied to square lattices we analyze the decomposition under graph products. The

chapter concludes with implicit numerical techniques for generic networks. These tech-

niques are designed to leverage sparsity for efficiency since application networks may be

very large.

Part II considers the application of the HHD to describe structure. Chapter 4 and

Chapter 5, consider the application of the HHD to competitive tournaments. These chapters

use the HHD to describe the structure of competition, and are based on a paper submitted

to SIAM Review and a following paper that is in preparation. Consequently, Chapters 4

and 5 are self-enclosed, and could be read independently.

Chapter 4 motivates the use of the HHD, and provides an interpretation of the compo-

nents, in the context of tournaments. This interpretation is essential since the descriptive

utility of the decomposition depends primarily on its interpretability. Chapter 4 concludes

by analyzing the expected structure of tournaments drawn from different null distributions.

Special attention is devoted to the class of trait-performance models, in which the proba-

bility one competitor beats another can be expressed as a function of their traits, which are

sampled from a trait distribution. By focusing on trait-performance models we can rigor-

ously define and prove heuristic statements about cyclic competition that appear throughout

the literature. Chapter 5 develops an estimation framework for applying the HHD to

data drawn from real-world tournaments. Bayesian point estimation, posterior sampling,

interval estimation, and hypothesis testing are all discussed and details are provided in the

Appendix (see Appendix A, Appendix B, and Appendix C). The methods are then applied

to examples from politics, animal behavior, and sports. The political examples include

analysis of the 2016 and 2020 presidential elections. The interpretation and significance of
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the decomposition for each example area is discussed, and the structure of competition is

compared across examples.

Part III considers the use of the HHD to analyze and predict dynamics of random

processes on graphs. Chapter 6 introduces Markov chains on networks, and develops the

rudiments of the decomposition when applied to random walks. Special attention is paid

to the detailed balance case. A physical interpretation of the components of the HHD

is developed. The physical interpretation closely mirrors Schnakenberg’s formulation of

nonequilibrium statistical mechanics [5, 19], and the axiomatic thermodynamics proposed

by Qian [20, 21, 4, 22].

Analysis of steady-state, steady-state fluxes, and observable production is continued

in Chapter 7. In Chapter 7 we show that, for any discrete-space Markov Chain satisfying

microscopic reversibility, the problem of finding a nonequilibrium steady-state can always

be transformed into the problem of finding a nonequilibrium steady-state for a process

that is purely cyclic. Thus the generic steady-state of nonequilibrium processes can be

understood by understanding the steady-state of purely cyclic processes. It is then shown

that, in the weak rotation limit, the steady-state distribution, steady-state fluxes, and long

term production rate of observables can all be expanded using an recursive sequence of

Helmholtz-Hodge Decompositions. Therefore the decomposition is fundamental to the

dynamics of nonequilibrium Markov processes that are close to satisfying detailed balance

(close to an equilibrium process). We also present a limiting analysis of nonequilibrium

steady states for processes that are dominated by diffusion, and process that are dominated

by drift. It is shown that in the former case that the HHD is the appropriate cycle space

decomposition for understanding the steady state, and the steady state is asymptotically

described by the associated potential. In a strong drift limit a different potential is needed.

This potential mimics the quasipotential [23] that is widely used to analyze steady states of
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stochastic differential equations (SDE) in a small noise limit.

In Chapter 8 we analyze the convergence of the decomposition in a system size limit.

It is shown that, under regularity conditions on the network, in a continuum limit the HHD

converges to a Helmholtz decomposition of a vector field associated with the diffusive

process achieved as a limit of the discrete space process. The associated equations are

compared to the equations defining the Friedlin-Wentzell quasipotential [23, 24, 25] which

is widely used to analyze steady-states and first-passage times in the weak noise limit. The

path integral interpretation of the HHD is then compared to the WKB approximation. It is

shown that the steady-state distribution of a generic Stochastic Differential Equation (SDE)

is a PDE whose operator is a weighted combination of the operators defining the Helmholtz

potential and the quasipotential. When noise is weak the quasipotential term dominates, but

when noise is strong the Helmholtz term dominates. Thus the potential associated with the

HHD is most relevant to diffusive processes in the strong noise limit.

We discuss our results and possible future work in Chapter 9.
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Part II

The Decomposition
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Chapter 2

The Decomposition

2.1 Preface

This chapter introduces the discrete Helmholtz-Hodge decomposition (HHD). The rest

of the dissertation is devoted to applications of the HHD. The decomposition is defined

(Section 2.2), properties of the operators and subspaces associated with the decomposition

are discussed, solution methods are presented, and different interpretations are proposed

(Section 2.3). The chapter concludes by introducing two generalizations that are useful

when applying the HHD to certain networks, and when studying the relationship between

the HHD and the dynamics of a Markov process (Section 2.4).
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2.2 The Helmholtz-Hodge Decomposition

2.2.1 The Decomposition in the Continuum: A Brief Review

Since the proposed decomposition is inspired by potentials on conservative vector fields it is

natural to start with the familiar formalism. This section is used to review the basic features

of a conservative vector fields and the Helmholtz decomposition [2]. These properties can

then be generalized to networks.

Suppose that for every point x ∈ Ω ⊆ R3 there exists a vector v(x) ∈ R3. Then v(x) is

a vector field v : Ω→ R3. We will assume that the domain Ω is simply connected.

Now consider a continuous path y(t) through R3 from point a to point b. Here the path

is parametrized in t, however no parametrization is necessary. The path integral of v(x)

over y(t) is defined:

I(y|v) =

∫ b

a

v · dy.

The path integral represents how much work the vector field does along the path.

A vector field is conservative if the path integral over any closed cycle is zero. If v(x)

is conservative then any path integral depends exclusively on the endpoints, not the path

taken. That is, the path integral is path independent.

These two properties are the heart of conservative vector fields. The first requires that

v(x) has no tendency to circulate. The second requires that the work done by v(x) over a

path depends exclusively on the end points of the path.

It follows that there must exist a scalar function φ(x) such that:

I(y|v) = I(a, b|v) =

∫ b

a

v · dy = φ(a)− φ(b)
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and:

v(x) = −∇φ(x). (2.1)

Equation (2.1) is the standard connection between a scalar potential φ and a conserva-

tive vector field v. The vector field points along the direction of steepest descent of the

potential. Local maxima in the potential correspond to sources in the vector field, and local

minima correspond to sinks. Consider the motion of a system driven by the vector field

v. If x(t) represents the state of the system at time t, then d
dt
x(t) = v(x) = −∇φ(x). In

this context x flows downhill along the potential. It is clear that equilibria correspond to

extrema in the potential since the system stops moving where∇φ(x) = 0. Stable equilibria

correspond to local minima, and unstable equilibria correspond to local maxima or saddle

points.

Equation (2.1) lays the groundwork for finding a network potential. Where there is

an analogy to a path integral which is zero over all closed cycles, we can apply the same

formalism to find a scalar potential whose gradient recovers the original field.

The Helmholtz-Hodge Decomposition generalizes this picture by decomposing arbi-

trary vector fields into the ranges of two differential operators. The first differential operator

is the gradient, and is associated with the scalar potential φ. The second differential

operator is the curl, and is associated with the vector potential [8]. Depending on the

boundary conditions an additional harmonic vector field may also be needed which de-

scribes translation. The curl of a vector field, denoted ∇ × v(x), expresses the tendency

of v to circulate at x. Formally the curl maps each point in a vector field to a vector that

represents the circulation of the original field. The magnitude of the output vector describes

how much the field circulates; the direction of the output vector describes the direction of

circulation.
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The curl can be defined as the limit of path integrals over closed cycles. Consider a path

y that forms a closed cycle C in a plane oriented normal to the direction n̂ about the point x

containing an area A. Then the curl is the value of the path integral in the limit that its area

goes to zero:

(∇× v(x)) · n̂ = lim
A→0

1

A

∮
C
v · dy. (2.2)

If a vector field is conservative then the curl is zero everywhere. Conveniently the

converse is also true under appropriate assumptions on the domain. If the curl of a vector

field is zero everywhere, and Ω is simply connected, then the vector field is conservative.

The proof follows from Stokes’ Theorem. Stokes’ Theorem relates the path integral

over a closed cycle to the total curl of the vector field inside the cycle. Loosely, the path

integral over a cycle is the integral over the curl inside the cycle. Formally:

∮
C
v · dy =

x

S

(∇× v(x)) · n̂dx

where the path integral is taken over loop C, which contains the oriented surface S with

orientation n̂. The orientation of the surface is chosen to match the orientation of the path

integral. Here (∇× v(x)) · n̂ is the component of the curl at x in the orientation of the path

integral. If the cycle is precessed clockwise then (∇×v(x)) · n̂ is the clockwise component

of the curl minus the counterclockwise component of the curl.

Now suppose the the curl is zero everywhere. Then the path integral around any closed

cycle is also zero:

∮
C
v · dy =

x

S

(∇× v(x)) · n̂dx =
x

S

0dx = 0.

It follows that a vector field is conservative if the curl of the vector field is zero every-
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where. That is, irrotational vector fields are conservative if the domain is simply connected.

A guide to terminology is in Table 2.1. Moreover, since∇×∇φ(x) = 0 for any φ(x), any

conservative vector field is curl-free. Therefore:

Lemma 1 (Conservative Vector Fields). If Ω ⊂ R3 is a simply-connected domain then a

continuously differentiable vector field v(x) on Ω is conservative if and only if∇×v(x) = 0

for all x ∈ Ω.

Lemma 1 sets the stage for a more general discussion of the desired decomposition.

Suppose we are given two linear operators A and B. For continuous vector fields these

may be thought of as differential operators, and for networks may be thought of as matrices.

The nullspace of an operator is defined as the space of objects that return zero when acted

on by the operator. Lemma 1 states that conservative vector fields live in the nullspace of

the curl. The range of an operator is the space of possible outputs of the operator. Since

any conservative field is the gradient of a scalar potential it follows that any conservative

field lives in the range of the gradient. Therefore the range of the gradient is contained in

the nullspace of the curl.

If B is associated with the gradient, and A with the curl, then:

AB = 0. (2.3)

since the range of the gradient is in the nullspace of the curl. This orthogonality is the heart

of the Hodge decomposition [15], and is a weaker form of Lemma 1.

From the fundamental theorem of linear algebra, any finite dimensional vector space

V can be decomposed into the nullspace of a linear operator, and the range of its conju-

gate transpose [26]. A stricter equivalent statement for vector fields is the fundamental
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theorem of vector calculus, or Helmholtz’s theorem, which states that any continuously

differentiable vector field in R3 that decays sufficiently fast can be expressed as the sum of

a conservative vector field (range of gradient) and an incompressible vector field (nullspace

of divergence) [2, 27]. Helhomtz’s theorem is a special case of the Hodge decomposition

theorem [27]. That is:

V = null{A} ⊕ range{A∗}. (2.4)

Since range{B} ∈ null{A} we can decompose null{A} into its intersection with the

range of B and the nullspace of B∗:

V = range{B} ⊕ (null{B∗} ∩ null{A})⊕ range{A∗}. (2.5)

Equation (2.5) defines the Helmholtz Hodge Decomposition (HHD) [15] for an arbi-

trary pair of linear operators satisfying Equation (2.3). If we associate B with the gradient

then the range of B is the space of conservative vector fields. If we associate A with

the curl then the range of A∗ is the space of rotational (solenoidal) vector fields. The

middle term represents the shared null space of the two operators. The Hodge Laplacian

is defined A∗A + BB∗. The shared null space (null{B∗} ∩ null{A}) is equivalent to the

nullspace of the Hodge Laplacian. Vector fields in the null space of the Hodge Laplacian

are harmonic (the value of the field at an interior node is equal to an average of the field

over the neighboring nodes) [8, 15].

So, given any vector field v we can write:

v(x) = vcon(x) + vrot(x) + h(x) = −∇φ(x) +∇× A(x) + h(x) (2.6)

for some scalar potential φ(x), vector potential A(x) and harmonic vector field h(x) [8].
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The range of the gradient vcon(x) is the component of the vector field that tends to diverge

away from sources and converge towards sinks. This is the conservative field. The range of

the adjoint curl vrot(x) is the component of v(x) that tends to rotate. This is the rotational,

or solenoidal, field. It is used to describe incompressible fluid flow and the magnetic field in

electromagnetism. Since the conservative field is in the nullspace of the curl it is sometimes

referred to as the irrotational field.

Names Meaning Properties

Irrotational null{∇×} Curl Free, Path Independent
Incompressible, Solenoidal null{∇·} Divergence Free, Dynamic Equilibrium

Conservative range{∇} Reversible, Static Equilibrium, Detailed Balance
Rotational range{∇×} Divergence Free

Table 2.1: Terminology from different fields describing the range and nullspace of the
differential operators.

The harmonic field h(x) is the component of v(x) that neither converges, nor rotates.

Since h(x) lives in the nullspace of two differential operators we can think of h(x) as a

constant background flow that corresponds to translation [2]. Vector fields in h(x) neither

originate from sources, or flow into any sinks. They also never form any closed cycles. As

a result, if the boundaries of the vector field are closed (no flow out of or into the boundary)

then h(x) must be zero. This follows from the maximum principle for harmonic functions.

A harmonic function can only achieve its maximum on its boundary [28]. So, if the flow

through the boundary is zero then h(x) must be zero everywhere. More subtly, if the vector

field is infinite, and the flows converge to zero faster than the surface area of the boundary

of the domain diverges (as we expand the boundaries towards infinity) then h(x) is also

zero [29].

Therefore, at least for domains with closed boundaries, there exists a unique decompo-

sition of v(x) into a conservative and rotational field [29, 8].
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To prove uniqueness we must show that the nullspace of the curl is the range of the

gradient for vector fields on a closed domain. From Lemma 1 all conservative vector fields

live in the nullspace of the curl. If a vector field is conservative (in the range of the gradient),

then it is impossible for any path integral to be nonzero since it is impossible to move in

a closed cycle and end higher or lower than one started on the scalar potential. This is not

necessarily true if the domain has open boundaries or is infinite [30].

Lemma 2 (Uniqueness for Closed and Bounded Domains). If the domain Ω containing

vector field v(x) is bounded, the boundary of the domain is closed, and v(x) is twice

continuously differentiable, then there exists a unique decomposition:

v(x) = vcon(x) + vrot(x) = −∇φ(x) +∇× A(x). (2.7)

Lemma 2 is a weaker form of a more uniqueness general theorem which specifies the

flow through the boundary of an open domain [31].

We will mostly restrict our discussion to the case when h(x) = 0, since for any

finite network the harmonic component is necessarily zero. A more general discussion

including treatment of h(x) is included in the section on the open boundary problem (see

Section 2.4.3).

This completes the basics of the Helmholtz-Hodge Decomposition (HHD) needed to

build an analogous theory on networks. Before moving on it is worth taking a moment to

review the operators involved, and their significance.

1. The gradient, ∇, computes the direction and magnitude of the fastest route of ascent

along the surface of a scalar function. In Rn ∇ = [∂1, ∂2, ...∂n]ᵀ. Since the analogous

network operators are matrices, we will let G represent the network gradient. Con-

servative vector fields live in the range of G and can be written as the gradient of an
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underlying scalar potential. The gradient maps from scalar functions to vector fields.

2. The divergence ∇·, is the adjoint of the gradient. The divergence measures the

tendency of a vector field to diverge from a point. This can be expressed as the

transpose of the gradient, or, the limit of the net-flux out of a bounded domain as

the domain shrinks to zero. The analogous discrete operator is denoted D = −Gᵀ.

The divergence of a rotational field is always zero. The divergence maps from vector

fields to scalar functions, and obeys the divergence theorem.

3. The curl ∇×, measures the rotation of a vector field at a single point. In continuous

space the curl maps from the space of vector fields on R3 to the space of vector fields

on R3. In the discrete case, the matrix C represents the curl. Conservative vector

fields live in the nullspace of the curl. The curl operator obeys Stokes’ theorem.

4. The adjoint curl ∇∗×, is the conjugate transpose of the curl operator. The discrete

adjoint curl is Cᵀ. In the continuous case, the adjoint curl maps from the space of

vector fields on R3 to the space of vector fields on R3 and is equivalent to the curl.

In the discrete case, the curl and adjoint curl will not map to the same spaces, so we

will be careful to distinguish them.

Finally, the operators are orthogonal:

∇ · (∇∗×) = 0 = ∇× (∇). (2.8)

In order to define a meaningful network HHD we need to find matrices G and C such

that Equation (2.8) is satisfied (GᵀCᵀ = 0 = CG), and the operators retain their qualitative

significance. In addition we would like the discrete operators to retain as many of the

properties of the differential operators as possible. In Section 2.2.3 we will check that
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G and C retain the appropriate product rules, and that both the divergence theorem and

Stokes’ theorem still apply.

The stage is now set to generalize the HHD to networks.

2.2.2 The Discrete Decomposition

In order to extend the HHD to networks we need to decide what to decompose. The natural

choice is an edge flow.

Let G� = {V , E�} be a network consisting of vertices V and edges E�. Assume that

the network is finite and connected, and does not include multi-edges or self-loops. If the

network is not connected then the same analysis can be applied to each separate component

independently. Assume that all edges are directed, i.e. there is at most one edge pointing

from one vertex to another. In addition, assume that, if there is an edge from i to j, then

there is necessarily an edge from j back to i. Then for every pair of directed edges there

is an undirected edge. Let G be the undirected version of G� with one undirected edge

for every pair of directed edges in E� [32]. Let V = |V| be the number of vertices and

E = |E|= |E�|/2 be the number of edges in the undirected version of G�. Equivalently, E

is the number of pairs of connected vertices.

Consider a function f on the directed edges of a network that maps from edges in E�

to R. This function is alternating if fij = −fji where i, j are a pair of connected vertices.

An alternating function on the edges is an edge flow [16].

Edge flows are analogous to vector fields in the continuum. Throughout this dissertation

we will treat edge flows as vectors in RE . This is accomplished by introducing a reference

orientation for each undirected edge. The corresponding directed graph is an orientation

of G [33]. Index the undirected edges from 1 to E. Then for edge k let i(k) and j(k)

represent the start of the edge and the end of the edge. Then fk = fi(k)j(k), so the flow
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f ∈ RE . Choosing which endpoint of an edge is the start and which is the end is an

arbitrary sign convention. This sign convention defines a reference orientation for the flow.

If fk is positive then the flow is in the direction assigned by the reference orientation, and if

fk is negative then the flow points backwards against the reference orientation. Note that,

if f is written with a single index then the index refers to the edge, and if f is indexed with

a pair of indices then the first index is the start of the edge and the second is the end of the

edge.

Next, we need a discrete equivalent to the gradient operator. The gradient should map

from the space of scalar functions on the vertices to edge flows. Let G be the E×V matrix

such that:

[Gu]k = uj(k) − ui(k). (2.9)

This requires that the ki entry of G is zero unless i is the start or end of edge k. If i is

the start of edge k then Gki = −1 and if i is the end of edge k then Gki = 1. Therefore,

G is equal to the edge indicidence matrix for the directed network given by orienting each

undirected edge according to the chosen reference orientation.

The divergence operator can also be easily generalized. The divergence of a vector field

is the net flow out of any point in the field. So, by analogy the divergence at a node in the

network should be the net flow out of that node. Therefore the divergence should map from

the space of edge flows to scalar functions on nodes. LetNi be the neighborhood of vertex

i. Then the divergence D is the V × E matrix such that:

[Df ]i =
∑
j∈Ni

fij. (2.10)

Then:

D = −Gᵀ. (2.11)
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The fact that the divergence is the (negative) transpose of the gradient can be checked

easily. The ith column of G is zero for all edges k that do not connect to node i, is one

for all edges arriving at i, and negative one for all edges leaving i. Therefore −[Gᵀf ]i =∑
k|i(k)=i fk −

∑
k|j(k)=i fk =

∑
k|i(k)=i fij(k) −

∑
k|j(k)=i fi(k)i. The first sum runs over all

edges leaving i, and the second runs over all edges arriving at i. By the alternating property

of the edge flow −fi(k)i = fii(k) so the product at edge i is the sum of fij over all j ∈ Ni.

Since G and D are often large and sparse it is often easier to work with G and D

implicitly rather than explicitly.

The curl is a little less obvious. The curl at a point in a continuous vector field is the

tendency of the field to circulate about the point on infinitesimally small cycles. This is

defined by shrinking path integrals over closed cycles about the point. Since the domain is

continuous we can take a cycle to zero anywhere in the domain, so have a curl for every

point in the domain. This property does not hold on a network. There is no way to shrink a

cycle of states infinitesimally small since no cycle can ever include fewer than three states.

It follows that the discrete curl cannot map to functions whose domain is the states in the

network. Instead the curl must map to some set of functions whose domain are some set of

elementary cycles.

Let C be a collection of simple closed loops, containing |C| loops. Assign each loop

a reference orientation. Then the curl operator assocated with the set of loops, C(C) is a

|C|×E matrix. Let Cl be the sequence of nodes {i1, i2, ...i|Cl| = i1} when precessed in its

positive direction. Then:

[C(C)f ]l =

|Cl|−1∑
h=1

fihih+1
. (2.12)

Then [C(C)f ]l is analogous to the path integral of f around the cycle Cl.

Lim and Jiang [15, 16] choose to use the set of connected three-cliques of nodes (tri-
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angles) to define the curl. This restricts the discrete curl to triangles, so misses circulation

on larger loops. We do not consider triangles more fundamental than larger loops, so will

define the curl using a more general set of elementary cycles. Instead we will require that

C is a cycle basis.

A cycle basis is a collection of irreducible simple closed circuits that cannot themselves

be decomposed, but can be combined to produce all other cycles in the network [33, 34, 35].

Formally, a cycle is is a subgraph of G for which, depending on the author, all nodes either

have degree 2, or even degree [36]. A circuit is a cycle where every node in the cycle

neighbors exactly two other nodes in the cycle, and the cycle is connected [33]. Linear

combination of cycles is defined by the following rule: include all edges that appear in one

of the cycles but not both. That is, the sum of two cycles is the symmetric difference of

the edge sets of the two cycles [37]. The set of cycles of a graph form a vector field with

addition defined via symmetric difference, or, integer addition modulo 2 [37]1. A cycle

basis is the basis for the cycle space of the network [34]. In electric circuit theory a cycle

basis is called a basis mesh, and the study of cycle bases can be traced back to Kirchoff

who introduced fundamental cycle bases when introducing his famous circuit laws [38].

Cycle bases appear across a wide variety of applications and are a classical topic in graph

theory (see [33] for a helpful review of cycle bases).

Most graphs do not admit a unique cycle basis, and as a consequence there are many

different classes of cycle bases each with different properties [35]. Considerable effort has

been devoted to the efficient construction of cycle bases that lie in a specific classes, or that

minimize some undesirable property, both for general networks, and for specific classes of

networks [39, 40, 41, 42, 43, 44].
1In some applications cycle bases are defined with respect to a different addition operation and field (cf.

[33]).
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Cycle bases are most intuitive on planar graphs. The set of faces of the network,

excluding one face, is a cycle basis for any planar network [37, 45]. More generally, a

cycle basis is “sparse” or a “2-basis” if no edge in the network is included in more than two

cycles. A network is planar if and only if it has a sparse cycle basis [35]. For this reason a

cycle 2-basis is also referred to as a planar basis.

Any finite connected network admits a cycle basis. This fact can be proved construc-

tively using a spanning tree. A spanning tree is a connected subgraph of G consisting of all

vertices in V , but with only a subset of the edges. The subset of edges must form a tree,

T , which spans the graph (connects all vertices) and does not contain any loops [33]. Any

edge not contained in the tree is chord. Suppose edge k is a chord. Then, since T is a

spanning tree there is a unique path from j(k) to i(k) in the tree. Therefore, if edge k is

added back into the tree, the combined network will contain exactly one cycle. That cycle

is the fundamental circuit associated with the chord [33]. Thus each chord left out by the

tree is associated with a cycle in the original graph. Moreover, these cycles are necessarily

independent since the cycle associated with chord k never contains any of the other chords.

Given a spanning tree T the set of cycles formed by adding each chord to the tree is a cycle

basis. Cycle bases associated with the chords of a spanning tree are fundamental cycle

bases [33, 37].

The dimension of the cycle space, sometimes called the cyclomatic or Betti number

[15, 35, 46], is the number of cycles needed to form a cycle basis. This dimension can

be easily computed using the spanning tree construction for fundamental cycle bases. A

fundamental cycle basis contains one cycle for each chord left out of the original network

by the tree T . The tree T connects V vertices. Any tree with V vertices has V − 1 edges.

The original network has E undirected edges, therefore the tree leaves out E − (V − 1) =

E − V + 1 chords. Then L = E − V + 1 is the dimension of the cycle space. Here we
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use L for “loop” to denote the dimension of the cycle space. Note that while there is not a

unique cycle basis for L > 1, all cycle bases will include L cycles [33].

Given a cycle basis we have the basic topology necessary to define a curl operator on

undirected networks. Let C be a cycle basis for the graph G, in which each pair of directed

edges in G� is replaced with an undirected edge. Assign an arbitrary reference orientation

to each cycle in the cycle basis. When possible, cycle orientation should be chosen so

that cycles sharing an edge cross it in opposite directions. This is possible by orienting all

cycles in a planar graph either clockwise or counterclockwise, but is not possible for all

cycles in non-planar graphs. Then the curl is the L×E matrix defined by Equation (2.12).

The lk entry of the curl is zero if edge k is not included in loop l, is one if loop l crosses

edge k in its forward direction, and negative one if loop l crosses edge k in its backward

direction. The curl maps from the space of edge flows to the space of alternating functions

on the chosen cycle basis. If the edge flow represents the work required to cross an edge,

then the curl measures the work to circumnavigate each basis cycle.

The adjoint curl is defined by taking the transpose of the curl operator. The adjoint curl

maps from the space of alternating functions on cycles to the space of alternating functions

on edges. In some sources the curl transpose is the cycle matrix associated with the basis

C [33].

In order to complete the decomposition we need to show that the range of the gradient

is in the nullspace of the curl (see Equation (2.3) and Equation (2.8)). This is trivial. If

f is in the range of the gradient then there exists a scalar function on the nodes, u, such

that f = Gu. But then the sum of f over any path is telescoping since fij + fjk =

(uj − ui) + (uk − uj) = uk − ui. Therefore the sum of f over any path is the difference

in u evaluated at the endpoints of the path. If the path is a cycle then this difference is zero

since the path ends where it starts. The curl evaluates the sum of f around the cycles in the
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cycle basis, therefore Cf = 0 if f ∈ range{G}. Thus:

CG = 0, and range{G} ⊆ null{C}. (2.13)

Transposing, the adjoint curl is contained in the nullspace of the divergence: DCᵀ =

−GᵀCᵀ = −(CG)ᵀ = 0ᵀ.

It follows immediately from Equation (2.5) that:

Lemma 3 (The Discrete HHD). If G = {V , E} is a finite connected undirected network,

then if G is the discrete gradient operator, and C is a discrete curl operator, the space of

edge flows RE can be decomposed:

RE = range{G} ⊕ (null{D} ∩ null{C})⊕ range{Cᵀ} (2.14)

where D = −Gᵀ is the divergence operator, and any edge flow f ∈ RE can be decom-

posed:

f = −Gφ+ h+ Cᵀθ (2.15)

where φ ∈ RV is a scalar-valued function on the vertices, h is a harmonic edge flow in the

null space of the Hodge-Laplacian CᵀC +GGᵀ, and θ ∈ RL is an alternating function on

the cycles of the cycle basis.

Here φ is analogous to the scalar potential, and θ is analogous to the vector potential in

the continuum. For a finite network with closed boundaries (no edges leaving the network)

the harmonic component h is necessarily zero. This condition will guarantee a unique

decomposition into just a conservative component, and a rotational component.
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Lemma 4. If G = {V , E} is a finite connected undirected network, and C is defined using

a fundamental cycle basis, then range{G} = null{C} so the harmonic component of the

HHD defined in Equation (2.15) is zero.

Proof. The orthogonality of C and G ensure range{G} ⊆ null{C}. Therefore, to show

range{G} = null{C} it is sufficient to show that null{C} ⊆ range{G}. That is, to show

that Cf = 0 implies there exists a scalar function on the nodes, u ∈ RE , such that f = Gu.

Let T denote the spanning tree associated with the fundamental cycle basis. Let u(i) be

the function defined by summing the edge flow over the path in T from the first vertex in

the graph to vertex i. Our goal is to show that if Cf = 0 then f = Gu. By construction

[Gu]k = fk on any edge k in the tree T . This leaves only the chords. Consider chord k

from node i(k) to node j(k). Since Cf = 0, the sum of f around the cycle in C containing

chord k equals zero. It follows that −fi(k)j(k) equals the sum of f over the path from j(k)

to i(k) in the tree. Since fk = [Gu]k for edges in the tree, the sum of f over paths in the tree

is telescoping in u. It follows that the sum over the path is ui(k) − uj(k). But since the curl

of f is zero this requires −fi(k)j(k) = −fk = ui(k) − uj(k) = −[Gu]k on all chords. Since

fk = [Gu]k on all edges of the tree, and all chords, f = Gu on all edges in the network.

Therefore, if f ∈ null{C} then f ∈ range{G} so null{G} = range{C}.

This equality implies the space of harmonic flows, (null{Gᵀ} ∩ null{C}) only contains

h = 0 since null{C} = range{G} and the range of any operator is orthogonal to the

nullspace of its transpose.

Corollary 4.1. If G is a finite connected undirected network and the curl C is defined with

respect to a cycle basis such that there exists an invertible matrix T so that C = TĈ where
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Ĉ is the curl for a fundamental cycle basis, then if Cᵀf = 0, then the curl of f around any

cycle is zero.

Proof. First, if C = TĈ for an invertible matrix T then null{C} = null{Ĉ}. By assump-

tion Ĉ is the curl defined with respect to a fundamental cycle basis so null{Ĉ} = range{G}.

It follows that null{C} = range{G}. Therefore, if f ∈ null{C} then f ∈ range{G} so

there exists a potential function φ such that f = −Gφ. Then, the sum of f over any path is

the difference in potential at either end, so the curl of f around any cycle is zero.

We are now prepared to state the key result that grounds the entire dissertation.

Theorem 5 (The Discrete HHD for Finite Networks). Let G = {V , E} be a finite connected

undirected network. If G is the discrete gradient operator and C is a discrete curl operator

defined with respect to a cycle basis such that there exists an invertible matrix T so that

C = TĈ where Ĉ is the curl for a fundamental cycle basis, then the space of edge flows

RE can be decomposed:

RE = range{G} ⊕ range{Cᵀ} (2.16)

and any edge flow f ∈ RE can be decomposed:

f = fcon + frot = −Gφ+ Cᵀθ (2.17)

where the components fcon ∈ range{G} and frot ∈ range{Cᵀ} are unique, φ ∈ RV is

unique up to the addition of a constant, and θ is unique.

Proof. First, if C = TĈ for an invertible matrix T then null{C} = null{Ĉ}. By assump-

tion Ĉ is the curl defined with respect to a fundamental cycle basis so null{Ĉ} = range{G}.
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It follows that null{C} = range{G}. Then the harmonic component is necessarily zero and

the subspaces range{G} and range{Cᵀ} are orthogonal. It follows that:

RE = null{C} ⊕ range{Cᵀ} = range{G} ⊕ range{Cᵀ}

and that the decomposition of f into fcon ∈ range{G} and frot ∈ range{Cᵀ} is unique.

The scalar function on the nodes, φ, is unique up to the addition of a constant since G

has a one-dimensional nullspace associated with the vector of all ones, 1. It is trivial to

see that G1 = 0 since 1 − 1 = 0. The nullspace of G only contains vectors whose entries

are all identical (vectors proportional to 1). Suppose Gu = 0 for some vector u. Then

[Gu]k = uj(k) − ui(k) = 0 implies uj(k) = ui(k) for all edges k. Thus any pair of nodes that

are connected by a path must have ui = uj . Since we assumed that G is connected ui = uj

for any i and j.

The alternating function on the cycle basis, θ, is unique if the nullspace of Cᵀ contains

only θ = 0. Since T is invertible, null{Cᵀ} = null{ĈᵀT ᵀ} = null{Ĉᵀ}. Therefore, if

null{Ĉ} = {0} then θ is unique. To show null{Ĉ} = {0} we show that Ĉ ∈ RL×E has

rank L. Recall that Ĉ is defined with respect to a fundamental cycle basis. Reindex the

edges so that the chords defining the cycle basis are all indexed first. Each chord appears

in exactly one basis cycle, therefore the first L × L block of Ĉ is diagonal with diagonal

entries ±1. Therefore, the Ĉ has rank L, the L columns of Ĉᵀ are linearly independent,

and null{Ĉᵀ} = {0}.

It is worth pausing to interpret this conclusion. Theorem 5 establishes that any edge

flow f on a finite network can be uniquely decomposed into two components, one which

is conservative and the other which is rotational. The conservative component can be
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Figure 2.1: An example Helmholtz-Hodge Decomposition of an edge flow on a pair of
linked triangles. The figure in the upper left shows the original edge flow. The edge flow is
represented with the black numbers next to each edge. The corresponding vector f , and its
conservative and rotational components are shown along the top. The figure in the bottom
left shows the conservative component of the flow. The values of the scalar potential, φ, at
each node is shown in grey. The figure in the bottom right shows the rotational component
of the flow, and the rotational potential φ assigned to each loop is shown in grey.

expressed as the negative gradient of a scalar function, φ, defined on the nodes of the

network. This is analogous to a scalar potential in the continuum (see Equation (2.7)).

Like the scalar potential, it is only uniquely determined up to the addition of a constant

since it is the difference in potential, not absolute potential, which determines the flow.

The rotational component can be expressed as the curl transpose applied to an alternating

function, θ, defined on the loops in the chosen cycle basis. This is analogous to the vector

potential, though we will avoid using the name vector potential since θ, like φ, is scalar

valued. Instead we will refer to θ as the rotational potential since it drives rotation. An

example decomposition is shown in Figure 2.1.

Note that we defined the discrete gradient in terms of how it mapped a scalar function

on the nodes to an edge flow (see Equation (2.9)). In contrast, the curl was defined as a

mapping from edge flows, to the space of loops. Since the rotational field is defined by
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Cᵀθ it is essential to understand how the transpose maps from an alternating function on

the loops to an edge flow.

The product Cᵀθ is a linear combination of the columns of Cᵀ. Each column of Cᵀ is

an edge flow around a basis loop. The lth column of Cᵀ corresponds to a unit flow around

the lth basis loop in its forward direction. Therefore, Cᵀθ is a linear combination of unit

edge flows around each loop in the cycle basis. The value of the rotational flow on edge

k, [Cᵀθ]k, is the sum of θl over all loops l including edge k in its positive direction, minus

the sum of θl over all loops l including edge k in its negative direction. Note that, since

CG = 0 the divergence of the adjoint curl, DCᵀ = −(CG)ᵀ, equals 0. It follows that the

divergence of the rotational flow, frot = Cᵀθ, is always zero.

2.2.3 Subspaces and Operators

Elementary Properties of the Subspaces

What is the dimension of the space of conservative edge flows, range{G}, and the space of

rotational edge flows, range{Cᵀ}?

In the proof of Theorem 5, we showed that the gradient has a one-dimensional nullspace

corresponding to vectors whose entries are all the same. Since G ∈ RE×V it follows that

range{G} has V − 1 dimensions. In the proof of Theorem 5, we also showed that the curl

has rank Lwhere L = E−(V −1) is the dimension of the cycle space. Since Cᵀ ∈ RE×L it

follows that range{Cᵀ} has L = E− (V −1) dimensions. Thus the decomposition into the

conservative and rotational subspaces decomposes an edge flow with E degrees of freedom

into an edge flow with V − 1 degrees of freedom, and an edge flow with L = E − (V − 1)

degrees of freedom.

Since CG = 0 the conservative subspace is orthogonal to the rotational subspace, all
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Figure 2.2: Pair of triangles sharing an edge.

conservative flows are curl-free, and all rotational flows are divergence free. Therefore

the HHD is a decomposition onto two orthogonal subspaces, the conservative flow is the

projection of the original flow onto the conservative subspace, and the rotational flow is the

projection of the original flow onto the rotational subspace.

Change of Cycle Basis

Decomposing the network into a conservative and rotational part required defining a do-

main for both the scalar potential φ and the rotational potential θ. The domain of φ is the

set of vertices, so is unique and fixed by V . The domain of θ is a particular cycle basis for

the network. All networks admit a cycle basis, however the choice of cycle basis is not,

in general, unique. This leads to the natural question, how does the rotational potential θ

depend on the choice of basis? And, implicitly, does the choice of cycle basis effect the

scalar potential φ?

Consider a pair of linked triangles sharing a common edge as shown in Figure 2.2. The

natural cycle basis for this pair is shown in the figure. In this basis the first loop moves

clockwise from node 1 to node 2 to node 4, and the second loop moves clockwise from

node 2 to node 3 to node 4.

Alternatively we could define a cycle basis using the loop from 1 to 2 to 4, and from 1
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to 4 to 3 to 2. That is, if I denotes the first loop, and II denotes the second loop, we can

define a cycle basis {I, II} or a cycle basis {I,−(I + II)} = {I, III}.

By definition, any loop in a network can be expressed as a linear combination of a set

of basis cycles. If a network admits multiple cycle bases, any cycle basis can be expressed

as a linear transformation of any other cycle basis.

In the example discussed above the linear transform is:

T =

 1 0

−1 −1

 .
Here T is invertible with dimension equal to the dimension of the cycle space.

Now suppose we are given two cycle bases whose curl is related by a transform T by:

Ĉ = TC. (2.18)

If the network is planar and C is a planar cycle basis, then the linear transform T will match

the linear combination of cycles used to define Ĉ given C. This equivalence can be verified

for the example. The first cycle basis has curl:

C =

 1 1 0 0 1

0 0 1 1 −1


and the second basis has curl:

Ĉ =

 1 1 0 0 1

−1 −1 −1 −1 0

 .
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Then it is easy to verify that:

Ĉ = TC.

The matrix T mapping from Ĉ to C may not match the linear transformation used

to move between Ĉ and C for all possible pairs of cycle bases since the rule for linear

combination of cycles is based on the symmetric difference of pairs of loops. This addition

rule is equivalent to the addition of integers modulo 2. In contrast the transform TC uses

the standard definition of addition. Provided only two cycles are combined then the sum of

two cycles in a cycle basis, Cl + Ch, amounts to adding or subtracting one row of the curl

from another. If the two cycles have the same orientation on their shared boundary then

one row should be subtracted from the other. If the two cycles have different orientations

on their shared boundary then the two rows of the curl should be added. Therefore, if Ĉ can

be reached from C by a sequence of combinations of pairs of cycles then C ′ can be reached

from C by a sequence of products with a series of matrices, each corresponding to the

appropriate elementary row operation. The product of these row operations, T , will match

the transform from C to Ĉ. If Ĉ cannot be reached by a sequence of pairwise combinations

of loops then T may not match the linear transform between the cycle spaces.

Regardless the choice of basis, Theorem 5 guarantees that the range of the curl is the

nullspace of the divergence. The nullspace of the divergence is the nullspace of Gᵀ, which

is uniquely defined and does not depend on the choice of cycle basis. It follows that the

range of the curl is independent of the choice of cycle basis. Therefore, if C and Ĉ are the

curl operators associated with two different cycle bases they are both matrices of the same

size that have the same range, so there must exist an invertible linear transform T such that

TC = C ′.

Since the range of the gradient and the curl are both independent of the choice of cycle
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basis, the projection of the edge flow f onto either subspace is independent of the choice

of cycle basis. Therefore fcon and frot are independent of the choice of cycle basis. Since

−Gφ = frot, the scalar potential φ is also independent of the choice of cycle basis. This

leaves only rotational potential θ. Since frot is independent of the choice of cycle basis:

Cᵀθ = frot = Ĉᵀθ̂ = CᵀT ᵀθ̂.

We have shown that Cᵀ is always full rank so Cᵀθ = CᵀT ᵀθ̂ implies:

θ = T ᵀθ̂, θ̂ = T−ᵀθ. (2.19)

Combined, these two results give a simple rule for moving between cycle bases. Given

two cycle bases whose curl is related by a linear transform T , the only component of the

HHD which changes is θ, which is replaced with θ̂ = T−ᵀθ.

Operator Duality for Planar Graphs

Here we illustrate that the curl and gradient operators are dual on planar graphs. Dual

relations of this kind have been used by some authors to investigate cyclic fluxes at the

steady state of Markov chains [46].

Suppose that G is a planar graph. Then the set of faces of G, excluding any single face,

is a cycle basis. Note that the set of faces of G includes the exterior when G is embedded

in the plane. A basis of this form is an example of a sparse cycle basis or 2-basis: a cycle

basis such that no edge in the network is included in more than two basis cycles [35]. The

reference orientation for each face on the graph can be chosen so that any edge shared

by two loops is crossed in opposite directions by those loops. This fact can be proved by

noting that, if two loops share an edge and both cross the edge in the same direction then
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Figure 2.3: A planar graph G and the corresponding dual D with the node corresponding
to the exterior face removed.

reversing the orientation of one loop, and removing any shared edges, leaves another larger

cycle all traversed in the same direction. Since we assumed the graph is planar none of

the other faces are changed if the conflicting edge is removed. Therefore, we can start by

arbitrarily orienting a particular loop, then choosing the orientation on a neighboring face

so that the two loops cross their shared boundary in opposite directions. Remove the shared

boundary from the network, and merge the two loops into one. Now iterate the process,

merging loops until every face in the graph is assigned a consistent reference orientation.

The dual graph associated with a planar graph has a node for every face in the original

planar graph and an edge for every edge in the original graph. The edges in the dual

connect the nodes corresponding to faces on opposite sides of the corresponding edges of

the original graph. Thus, if an edge in the original graph separates two faces h and l, there

is a matching edge in the dual connecting nodes h and l. Note that if the faces h and l share

multiple edges there may be multiple edges connecting nodes h and l in the dual. Also note

that if a face of the original graph appears on both sides of the same edge then the dual

will contain a self-loop connecting the corresponding node to itself. An example planar

graph, and its dual with the node corresponding to the exterior face removed is illustrated
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in Figure 2.3.

Let D denote the dual of G. The gradient of the dual, GD, is E × (L + 1), and where

the kth row of GD is equal to eh(k) − el(k) if edge k of the original graph separates loops

h and l. Note that, some of the rows of G may be identical since the dual may contain

multiple edges between the same pairs of nodes, and some may be empty since the dual

may include self-loops. Note that if an edge is bordered on opposite sides by the same

loop then the corresponding edge in the dual is a self-loop, so the corresponding row of the

gradient is all zeroes.

Let Ĉ denote the curl of the original graph with one row added corresponding to the

face removed from the cycle basis. Then Ĉᵀ is the gradient operator for the dual.

First, Cᵀ is E × L so Ĉᵀ is E × (L + 1). Next, the kth row of Ĉᵀ contains only

zeros, ones, and negative ones. Suppose edge k separates loops h and l and h 6= k. Since

no edge borders more than two basis cycles, and all basis cycles that share an edge cross

it in opposing directions, [Ĉᵀθ̂]k is either θh − θl or θl − θh depending on the choice of

reference orientation. If an edge borders the same loop twice then the corresponding entry

of ĈT θ = 0. Then the kth row of Ĉᵀ will be all zeros if edge k is bordered on both sides

by the external face. This matches the gradient of the dual, whose kth row is all zeros if the

corresponding edge in the dual is a self-loop. Therefore Ĉᵀ is the same as the gradient of

the dual.

Since all but one of the vertices of the dual correspond to the cycles in the cycle basis,

the action of the curl transpose on θ is equal to the action of GD on u where ul = θl on

all nodes l corresponding to loops in the cycle basis, and uL+1 = 0 on the node L + 1

corresponding to the external face. Therefore the action of Cᵀ on θ is the same as the

action of the gradient of the dual on an equivalent scalar potential, with the convention that

the scalar potential on the external face is always equal to zero.
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Name Continuous Discrete Mapping Meaning Properties

Gradient ∇ G vertices to edges Slope Curl-free
Divergence ∇· D edges to vertices Flux out D = −Gᵀ

Curl ∇× C edges to loops Cycling flux ...
Adjoint Curl ∇∗× Cᵀ loops to edges Rotation Divergence-free

Table 2.2: The operators.

Divergence Rule, Product Rules, and Stoke’s Theorem

Here we show that the network operators retain some of the important properties of the

analogous differential operators. We have already shown they are mutually orthogonal,

so admit a HHD. Since the operators are all linear they automatically inherit the linearity

of ∇. This section will show they also obey: the divergence theorem, Stokes’ theorem,

and analogous product rules. These relations lay the groundwork for solving Poisson’s

equations using Green’s functions. They also strengthen the analogy between the two

classes of operators, and help carry intuition from continuous domains to the network

potentials. Note that the results for the curl are restricted to planar graphs since they depend

on a geometric notion of interior that is not defined for general graphs. The results for the

gradient and divergence apply to all networks. A review of the operators is provided in

Table 2.2.

First, the discrete divergence, D, obeys the divergence theorem:

Lemma 6 (Divergence Theorem). Given a set of nodes Ω, denote the set of edges that pass

from nodes inside the set to nodes outside ∂Ω. Let nk equal 1 if edge k leaves Ω and -1

if edge k enters Ω. Then the total flux out of Ω is the sum of the divergence of f over all

nodes in Ω: ∑
i∈Ω

[Df ]i =
∑
k∈∂Ω

fknk. (2.20)
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Proof. The divergence at a node is the sum of f pointing out from the node (net flow out of

the node). Suppose we sum the divergence of two neighboring nodes i and j. Without loss

of generality assume that fij is positive, and denotes a flow from i to j. Since fij leaves the

first node it is added to the divergence of the first node. Since fij arrives at the second node

it is subtracted from the divergence of the second node. Any flow between two nodes in the

domain is either added to the first and subtracted from the second, or visa versa. Therefore

all edges inside the domain Ω do not contribute to the total divergence. Since all internal

flows cancel, only the flow passing through the boundary of Ω remains. Therefore the net

divergence of a set equals the flux through the boundary of the set.

For planar graphs the discrete curl,C, obeys Stokes’ theorem if the cycle basis is chosen

to match the faces of the graph:

Lemma 7 (Stokes’ Theorem). Suppose the network is planar. Given a set of basis cycles

Ω, define the interior of the set to be all nodes in the set which exclusively neighbor other

nodes in Ω, and the boundary of Ω to be all nodes in Ω but not in its interior. Let C denote

the set of all cycles contained in Ω. Let C be defined using the planar cycle basis (faces

of the planar graph excluding the exterior face), with reference orientations chosen so that

all edges neighboring two cycles are traversed in opposite directions by those cycles. Let

B be the set of edges that connect nodes in the boundary set, and let nk be 1 if the cycle

contained inside Ω neighboring edge k crosses edge k in its forward direction, and −1 if it

crosses edge k in its backwards direction. Then:

∑
Cl∈C

[Cf ]l =
∑
k∈B

fknk. (2.21)

Proof. On a planar graph it is always possible to pick a sign convention such that all
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neighboring cycles traverse their shared boundaries in opposite directions. If the graph is

embedded in the plane then if all cycles are traversed clockwise or all cycles are traversed

counterclockwise, then all edges neighboring two cycles are traversed in opposite directions

by those cycles.

The curl over a cycle is the total work to move around the cycle in a specified direction.

This is computed by summing f around the cycle. Two neighboring cycles are necessarily

separated by some path. We chose the sign convention so that two neighboring cycles will

traverse their shared boundary in opposite directions. It follows that the sum of the curls

of neighboring loops cancels any contribution from their shared boundary. Thus the sum

over a set of neighboring loops leaves only the contribution to the curl from the edges on

the boundary B.

Lemma 8 (Gradient Product Rule). Given two functions on the nodes ψ, φ the gradient of

the product ui = φiψi obeys:

[Gu]k =
φi(k) + φj(k)

2
[Gψ]k +

ψi(k) + ψj(k)

2
[Gφ]k. (2.22)

Proof. The proof is entirely arithmetic. First:

[Gu]k = ψj(k)φj(k) − ψi(k)φi(k).

Then notice that:

ψj(φj − φi) + φi(ψj − ψi) = ψjφj − ψjφi + φiψj − φiψi = ψjφj − ψiφi

ψi(φj − φi) + φj(ψj − ψi) = ψiφj − ψiφi + φjψj − φjψi = ψjφj − ψiφi.
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Combining the last two equations yields:

φi(k) + φj(k)

2
[Gψ]k +

ψi(k) + ψj(k)

2
[Gφ]k = ψjφj − ψiφi = [Gu]k.

Lemma 9 (Adjoint Curl Product Rule). Given a planar network, a curl operator defined

using the planar cycle basis with reference orientations chosen so that any edge shared by

two cycles is crossed in opposite directions, and two functions on the cycles ψ, θ the adjoint

curl of the product vl = ψlθl obeys:

[Cᵀv]k =
θl + θh

2
[Cᵀψ]k +

ψl + ψh
2

[Cᵀφ]k. (2.23)

Where k indexes an edge separating the set of cycles Cl and Ch.

Proof. By construction, the adjoint curl of the function v defined on the cycles takes the

difference of v between neighboring cycles. The dual graph to a planar graph has a node

for every face of the graph, and an edge for every pair of neighboring faces. Then, since we

chose the cycle basis to match the faces of the planar graph, the dual graph includes a node

for every cycle in the cycle basis. Since the adjoint curl evaluates the difference between

functions defined on the cycles of the cycle basis, the adjoint curl is the gradient of the dual

graph. Since the discrete gradient always obeys the product rule, the adjoint curl of a planar

graph must also follow the same product rule on its dual.

Taken together, these results show that the network operators retain many of the impor-

tant algebraic properties of the continuous operators.
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2.3 Solution Methods and Alternative Characterizations

2.3.1 Least Squares and the Discrete Poisson Equations

If the network is finite then the harmonic component h is zero. In that case the range of the

gradient and the range of the adjoint curl span RE , so there exists a unique (up to addition

of a constant) pair of potentials φ and θ such that −Gφ + Cᵀθ = f. The conservative

and rotational components of the flow are uniquely defined and equal the projection of the

original flow onto the range of the gradient, and range of the curl transpose. Since the

range of the gradient and range of the curl transpose are orthogonal this linear system is

equivalent to a linear least squares problem in each potential:

φ = argminu∈RV
{
||f +Gu||2

}
θ = argminv∈RL

{
||f − Cᵀv||2

} (2.24)

This pair of least squares problems are solved by any φ and θ which satisfy the associated

normal equations:

GᵀGφ = −Gᵀf

CCᵀθ = Cf.

(2.25)

The same result could be reached by multiplying −Gφ + Cᵀθ = f on either side by

the divergence, −Gᵀ, or the curl, C. Since the ranges of the two operators are orthogonal

GᵀCᵀθ = 0 and CGφ = 0, leaving GᵀGφ = −Gᵀf and CCᵀθ = Cf . The operator GᵀG

is the node Laplacian. The operator CCᵀ is the face Laplacian. The node Laplacian has a

column and row for each node in the network, and the face Laplacian has a column and row

for each cycle in the chosen cycle basis. Let L2
V = GᵀG and L2

C = CᵀC. In this notation,
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the potentials are solutions to a pair of discrete Poisson equations:

L2
Vφ = Df

L2
Cθ = Cf.

(2.26)

By construction, the Laplacians are square, symmetric, and positive semi-definite. Each

Laplacian has the same nullspace as the operator used to define it. Therefore the the node

Laplacian has a one dimensional nullspace corresponding to vectors with constant entries.

In contrast the face Laplacian is full rank and invertible. To solve for a unique φ, append

an additional condition to the Laplace operator that fixes the potential at one point. Usually

the potential at a chosen node is set to zero. Then the row and column of the node Laplacian

corresponding to the fixed node can be removed from the Poisson equation. Removing a

row and column from the node Laplacian produces an invertible (V − 1)× (V − 1) matrix.

Let L̂2
V denote the truncated node Laplacian. Similarly, let D̂ denote the divergence

with the row corresponding to the fixed node removed, and φ̂ denote the potential with the

entry corresponding to the fixed node removed. Reindex the nodes so that the fixed node is

indexed first. Then φ is uniquely specified by the discrete Poisson equation:

L̂2
V φ̂ = D̂f, φ = [0; φ̂]. (2.27)

Then any constant can be added to the potential φ. For example, if we want φj ≥ 0 we

simply subtract minj{φj} from φ. Alternatively, if we desire
∑

j φj = 0 then we subtract

the average value of the potential from φ.

Equation (2.25) and Equation (2.26) offer two different perspectives on the decom-

position. Framing the HHD as a pair of least squares problems is useful in contexts

where it is expected or desired that the edge flow will be either close to conservative, or
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close to rotational. Then the conservative and cyclic components can be seen as the best

approximation to the original edge flow on each subspace. Here “best” is evaluated in the

l2 sense and without weighting. In the least-squares sense fcon and frot are simultaneously

the best conservative and best cyclic approximations to the original edge flow. This inter-

pretation will be useful when studying the ranking of competitors in a competitive system

in Chapter 4 and Chapter 5.

Framing the HHD with the discrete Poisson equations is useful since the potentials of a

continuous vector field are also solution to Poisson’s equations [8]. Denote the continuous

Laplacian∇2. The continuous potentials for an arbitrary C1 vector field v(x) satisfy:

∇2φ(x) = −∇ · v(x)

∇2A(x) = −∇× v(x).

(2.28)

The continuous Laplacian is the same for both potentials since the divergence of the gra-

dient is, by definition, ∇2, and the curl of the curl of the vector potential A(x) is ∇(∇ ·

A(x)) − ∇2A(x) but A(x) can always be chosen so that it is divergence free.2 In both

cases ∇2 = ∂2
x + ∂2

y + ∂2
z , and when applied to A(x) the Laplacian is applied entrywise.

Equation (2.28) can be reached by evaluating the divergence, or curl, of Equation (2.7).

To clarify the analogy between the discrete Laplacians and∇2 it is useful to consider the

discrete Laplacians more closely. Consider the node Laplacian, L2
V = GᵀG, first. The node

Laplacian is a fundamental operator in graph theory. The spectrum of L2
V is the heart of

spectral graph theory. For example, the pseudo-determinant of L2
V determines the number

of spanning trees of the network, the dimension of the nullspace of L2
V is the number of

2The convention ∇ · A(x) = 0 is the Coulomb gauge in electromagnetism. If A(x) was not divergence
free, then, by the Helmholtz decomposition (Equation (2.6)), it would be possible to write A(x) as the
combination of a conservative vector field and a rotational vector field. But the curl of a conservative vector
field is zero, so by convention we can assume that A(x) does not have a conservative component. In that case
∇ ·A(x) = 0.
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connected components of the graph, and the eigenvectors of L2
V can be used for optimal

embedding [47, 48, 49, 50].

The node Laplacian is defined by the product GᵀG. The gradient maps from functions

on nodes to functions on edges. The divergence maps back from functions on edges to

functions on nodes. Therefore the node Laplacian L2
V maps from functions on nodes to

functions on nodes. Suppose we define a function on the nodes. The gradient evaluates

the difference in the function evaluated at either end of each edge. Now suppose we have

defined a function on the edges. The divergence at a node sums over the function evaluated

at all edges connected to the node. Therefore the divergence of the gradient evaluates

the difference between the function evaluated at a node, and the function evaluated at its

neighbors. Let d be a vector where di is the degree of node i and let A be the adjacency

matrix of G. Then:

L2
V = diag(d)− A (2.29)

and:

[L2
Vφ]i = diφi −

∑
j∈Nj

φj = di
(
φi − φ̄Ni

)
(2.30)

where φ̄Ni is the average value of φ over the neighbors of node i.

Written in this manner the node Laplacian is clearly a second difference operator.

This offers insight into Poisson’s equation. The Laplacian of the potential is simply the

difference between the potential at each node, and the average potential at its neighbors.

If the potential at a node is higher than its neighbors then the Laplacian of the potential

is positive. The negative Laplacian is negative, so the divergence of the associated f is

positive. That is, if the potential at a node is higher then its neighbors, then f diverges away

from that node. On the other hand, if the potential at a node is lower than its neighbors f

converges towards that node.
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Suppose the network is planar. Then leveraging the duality of the curl transpose and

gradient extends the same result directly to the face Laplacian. Working through the

same steps, the adjoint curl evaluates the difference in rotational potential between two

neighboring faces. The curl evaluates the total flow around a loop. Together, the curl of

the adjoint curl, evaluates the difference between the rotational potential on a face, and

the average rotational potential on its neighbors. Again this implicit representation of L2
C

offers insight into Poisson’s equation. If the rotational potential is higher at a loop than

its neighbors, then f will tend to flow along the positive direction of traversal around the

loop. If the rotational potential at a loop is lower then its neighbors then f will tend to flow

against its positive direction of traversal. Note this interpretation only holds if the cycle

basis is set to the faces of the graph, and the reference orientations are chosen consistently.

In both cases the realized flow of f , as measured by the divergence and curl, is propor-

tional to the difference between a potential at a point and its neighbors.

The Laplacian operators can be constructed explicitly from these implicit definitions,

however it is generally more efficient to work with the implicitly defined operators. Since

the Laplacian operators are sparse, symmetric, and semi-positive definite they are well

suited to iterative methods. The node Laplacian of simple networks are often familiar. For

example the node Laplacian of a line of five nodes, and a loop of five nodes are:

L2
V =



1 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 1


, L2

V =



2 −1 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 −1 2


.
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Figure 2.4: The node Laplacians for a rectangular and triangular grid. Both are symmetric,
and inherit the adjacency structure of the associated network. Notice that every row and
column of each Laplacian sums to zero.

Laplacians for a 5 by 4 grid, and a 4 by 4 triangular grid are shown in Figure 2.4.

The continuous Poisson equation is generally solved using Green’s functions. The

corresponding Green’s functions are defined implicitly by ∇2G(x, x′) = δ(x − x′) where

δ(x − x′) is the Dirac delta function. On a discrete domain the Dirac delta is simply a

canonical basis vector ei = [0, 0...0, 1, 0...0]ᵀ. It follows that the ith Green’s “function” is a

vector g(i) which satisfies L2g(i) = ei. Assume that we have adjusted the Laplacian so that

it is invertible. Then: g(i) = (L2)
−1
ei, is the ith column of the inverse Laplacian (L2)

−1.

To recover the potential sum over the right hand side of the discrete Poisson equation. Thus,
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solving for the potentials via Green’s functions is equivalent to solving for the columns of

the inverse Laplacian, then summing over the columns. This is the direct solution to the

normal equations; compute the inverse Laplacian, then multiply by the inverse to recover

the potentials.

In general, forming the normal equations explicitly, and solving the associated linear

system directly is neither the most efficient, nor the most stable method for solving least

squares problems. Multiplying by the adjoint to form the normal equations squares the

conditioning of the problem. For ill conditioned problems this can seriously reduce the

accuracy of the computed solution. Worse, computing the inverse explicitly is generally

very expensive. Each column of the inverse requires solving a linear system. If there are

V nodes in the network then solving for each column (each Green’s function) requires

O (V 3) operations. Since the inverse Laplace operator has V nodes the method requires

O (V 4) operations if run for each column individually. If run for the columns together,

the algorithm requires O (V 3) operations [51]. In special cases the Green’s functions may

be known ahead of time, however for most networks this method is unnecessarily, or even

prohibitively, expensive.

An alternative option is to solve for the conservative and rotational components first,

and then solve for the potentials. The components are orthogonal projections of the original

edge flow, f , onto the appropriate subspaces. The projector onto either subspace can

be formed by decomposing either the gradient or the curl transpose. Since the gradient

(much) is easier to build (see Section 3.5), we focus on the gradient. First, perform a

QR decomposition or a singular-value decomposition of the gradient. Then identify the

columns of Q or U that form a basis for the range of the gradient (columns corresponding

to non-zero singular values). Then the orthogonal projector onto the range of the gradient

is formed by Pcon = Q̂Q̂ᵀ = Û Ûᵀ where Q̂ and Û are the columns of Q and U that span
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the conservative subspace. For an m × n matrix the QR decomposition requires at most

O(2mn2) operations. Since we only need to decompose one of the two operators the cost

for computing Q̂ is O(2EV 2). Using Householder triangularization instead of Graham-

Schmidt reduces the cost to O(V 3) and is more stable [51].

Once Pcon has been computed, the components of the HHD are given by:

fcon = Pconf

frot = f − fcon.

(2.31)

Given the conservative and rotational components, the potentials satisfy −Gφ = fcon

and Cᵀθ = frot. Solving for φ is straightforward, and can be done directly. By definition

fcon is conservative, so the sum of f over any path is path independent and equals the

difference in the potential at the endpoints. Therefore the potential can be recovered by

picking a spanning tree T and initial node. Set the potential at the initial node to zero, and

then set φi to the sum of f over the path in T to node i. This only requires adding each

edge in the tree once, so we only need V − 1 addition operations. The spanning tree can

be built at the same time as the sum is performed by using a breadth first search, where the

potential at each new leaf added to the tree is updated as the search progresses. This method

is much more stable than solving for the potential directly using the normal equations. Path

integration is equivalent to back substitution of a triangular linear system, so is backward

stable [51]. The projectors have conditioning one, so moving from f to fcon preserves the

conditioning of the original problem.

If the network is planar and the planar cycle basis is used then the rotational potential

θ can be computed directly from frot by summing over a spanning tree of the dual graph.

Otherwise the system Cᵀθ = frot needs to be solved. Note that frot is, by definition, in the

range of Cᵀ and Cᵀ has a trivial nullspace, so the linear system Cᵀθ = frot always admits a
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unique solution.

When a fundamental cycle basis is used to define the curl then Cᵀθ = frot can be

solved directly. If a fundamental cycle basis is used then each chord appears in only one

loop. Therefore, if the kth edge of the network is chord h, corresponding to basis cycle h,

then θh = frotk. Thus, when a fundamental cycle basis is used the only expensive part of

performing the HHD via projection is to form the projector onto either the conservative or

rotational subspaces. Note that, if the cycle basis is formed by first finding a fundamental

cycle basis, then performing row operations to find a basis that is easier to interpret, the row

operations can be stored and collated into a cycle basis transform T and Equation (2.19)

can be used to recover the rotational potential on the desired basis from the potential on the

fundamental basis.

Suppose now that the network is very large. Then it may not be possible to solve for

the potentials using Green’s functions or by projecting simply because it is too expensive

to form the necessary operators explicitly.

That said, in most cases both the gradient and the adjoint curl are extremely sparse. The

gradient only has two nonzero entries per row, and hasE rows and V columns. If a network

is planar then each edge connects two nodes, and separates at most two faces. Therefore,

if the network has E undirected edges, the gradient and adjoint curl have O(2E) nonzero

entries, but O(V E) and O(LE) entries in total. Therefore both the curl and the gradient

become sparser the more edges, loops, or vertices in the network. Even if the graph is not

planar then there always exists a cycle basis such that the curl hasO(E log(V )/log(E/V ))

nonzero entries [33], so becomes sparse as V grows.

When the operators are sparse it may be dramatically more efficient to solve for the

potentials using an iterative linear system solver. There are a variety of iterative methods

for solving large, sparse linear least squares problems. These include conjugate gradient
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methods (CG), biorthogonalization methods, and generalized minimum residuals (GM-

RES). Documentation on iterative methods is available from a variety of sources [51].

Generally these methods proceed by searching a sequence of nested subspaces. At

each step they return an approximate solution. The iteration updates by choosing a search

direction, and finding an optimal step along that direction. This update is usually computed

via a multiplication by the linear system, so is efficient if the linear system is sparse. Since

sparse matrices can often be represented implicitly, iterative methods may not require an

explicit linear system, only a rule for how to apply the system. The gradient and adjoint

curl are easy to define implicitly, so are well suited to iterative solvers. The associated node

Laplacian also admits a simple implicit definition (see Equation (2.30)). Thus iterative

methods are well suited to finding the potentials of large networks.

In general we follow [16] and use iterative methods when the network is large. When

the network is small we use projection and back-substitution to solve for fcon, frot and φ. In

many cases θ is not required, however when it is needed we solve Cᵀθ = frot for θ.

2.3.2 Path Integrals

So far, the scalar potential φ has been characterized as the solution to a least squares

problem, and the solution to a discrete Poisson equation. Here we derive an alternative

characterization which will be useful when comparing the potential defined by the HHD to

other potential decompositions.

Suppose we wanted to find the difference in the scalar potential at a and b. If the edge

flow is conservative then solving for φb − φa given f is easy. Pick a path connecting a to

b. Then, define a vector y with E entries, such that yi = 0 if the ith edge is not included in

the path, yi = 1 if the path traverses the ith edge in its positive direction, and yi = −1 if

the path traverses the edge in the negative direction. Then, the path “integral” of f over y is
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simply yᵀf . By analogy with classical mechanics we say that the value of the path integral

is the work to move from a to b over the path y. This analogy will be realized more fully

in Section 6.5 where it is shown that, for appropriate physical systems yTf is the work to

move from a to b over the path y (cf. [4, 5]).

If the edge flow is conservative then path integrals over f are path independent, so:

yᵀf = φb − φa. (2.32)

Now suppose that the edge flow is not conservative. Then the path integral does not

equal φb − φa, since path integrals are no longer path independent. Breaking f into its

conservative and rotational parts we find:

yᵀf = yᵀ(fcon + frot) = (φb − φa) + yᵀfrot. (2.33)

So, if the network does not obey detailed balance we cannot recover φb − φa directly from

a single path integral yᵀf since any path integral may include a path dependent term yᵀfrot

associated with the rotational field.

Now suppose that instead of computing one path integral we compute n path integrals,

each over a different path y(j). Let Y be the n × E matrix whose columns are each a path

from a to b. Then the ensemble of path integrals is given by Y ᵀf :

Y ᵀf = (φb − φa) + Y ᵀfrot.

Pick a weight vector w with n entries, with
∑

iwi 6= 0. Then:

wᵀY ᵀf =
n∑
i=1

wi(φb − φa) + wi[y
(i)ᵀfrot].
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Figure 2.5: A pair of paths on a triangle network whose average path integral (with weights
1/3, 2/3) is independent of the rotational field.

Or:
1∑
iwi

wᵀY ᵀf = (φb − φa) +
1∑
iwi

wᵀY ᵀfrot. (2.34)

Ifwi is chosen so that the second term cancels then the weighted average 1∑
i wi
wᵀY ᵀf =

φb − φa. The rotational flow, frot, is generally not known a priori, so we need to find a

ensemble of paths Y and weights w such that wᵀY ᵀfrot = 0 for any frot.

In some simple cases it is easy to guess an appropriate ensemble of paths Y and weights

w. For example, given a triangle with nodes 1, 2, 3, if we pick the paths 1 → 2 → 3 and

1→ 3 with weights 1/3 and 2/3 respectively then:

wᵀY ᵀfrot =
[

1
3

2
3

] 1 1 0

0 0 −1

 frot =
[

1
3

1
3
−2

3

]
frot.

Since a triangle only has one loop frot = θ[1; 1; 1] for some choice of rotational potential θ.

Therefore:

wᵀY ᵀfrot =
1

3
θ +

1

3
θ − 2

3
θ = 0

for any choice of θ (see Figure 2.5).

For some symmetric networks it is possible to pick Y andw by inspection. For example,

50



Figure 2.6: An ensemble of paths from a to b on a lattice whose average path integral
(with weights all set to one) is independent of the rotational field. The contribution of
the rotational potential on each loop to each path is shown inside of each loop. Note that
summing over all of the paths cancels the contribution from every loop.

given a two dimensional lattice with equal side lengths, and given a at the bottom left corner

and b at the upper right, then we should pick the paths as shown in Figure 2.6 and set all

the weights to one.

The key to both these examples is that for every loop, the ensemble of paths includes

at least one path that move around the loop in the clockwise direction and at least one

path that moves around the loop in the counter-clockwise directions. Then, by picking the

appropriate weights, we ensure that any loop’s contribution to the average path integral is

zero.

To translate from a geometric problem to an algebraic problem, note that any rotational

edge flow can be written as the curl transpose of a rotational potential. Therefore, in order
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for the rotational component of the average path integral to cancel we need:

wᵀY ᵀCᵀθ = 0

for any choice of θ. This requires CY w = 0, or:

Y w ∈ null{C} (2.35)

We can now restate our original problem. Given a and bwe are looking for an ensemble

of paths Y and weights w such that Y w is in the null space of the curl C, and
∑

iwi 6= 0.

If it is possible to find such a Y,w then:

1∑
iwi

wᵀY ᵀf = φb − φa. (2.36)

The key questions are whether or not such Y,w exist, and how to find them.

In order to answer these questions, it is helpful to think a little more abstractly about

the matrix Y . The matrix Y has n columns, each with E entries. That is, Y maps from a

list of n objects to the space of edge flows. Therefore, if each column of Y is independent,

the operation Y w takes a set of weights, and maps them to an n dimensional subspace

of the space of edge flows. Notice that Y has many of the same properties as G and Cᵀ.

Both G and Cᵀ map from a set of objects (scalar and rotational potentials respectively) to

subspaces of the space of edge flows. On the other hand, we originally introduced Y in

order to evaluate path integrals. We wrote path integrals as products with Y ᵀ. That is, each

element of Y ᵀf is a sum of f over a specific subset of edges. Similarly, each element of the

divergence Gᵀf is a sum of f over the subset of edges neighboring a given node, and each

element of the curl Cf is a sum of f over the subset of edges around a given loop. Thus
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Y is similar to the operators G and CT in that its columns map to a space of edge flows,

and inner products with its columns evaluate sums over sets of edges. More pointedly, the

range of Y is a space of edge flows that start at a and arrive at b.

Asking whether w exists such that Y w ∈ null{C} is the same as asking whether or not

the range of Y intersects the nullspace of C. If:

range{Y } ∩ null{C} 6= ∅

then there must exist a nonzero vector w such that wᵀY ᵀfrot = 0. If the range of Y is not

contained in the range of Cᵀ then the range of Y must intersect the null space of C since

RE = range{Cᵀ} ⊕ null{C}. In that case there exists a set of weights such that either

wᵀY ᵀf = φb − φa or
∑

j wj = 0. If the dimension of the range of Y is greater than the

dimension of the range of Cᵀ then there is no way that the range of Y is contained in the

range of Cᵀ. Therefore, if:

dim[range{Y }] > dim[range{Cᵀ}] = L (2.37)

then there exists w such that either wᵀY ᵀf = φb − φa or
∑

j wj = 0.

Recall that when we defined Y the number of paths n was totally arbitrary. As long

as each new path is independent of the previous paths (cannot be constructed by linear

combination of the previous paths) then dim[range{Y }] = n. Thus it remains to show that,

for any a, b there exist a set of n independent paths from a to b such that n > L.

Notice that if we consider two distinct paths from a to b then the set of edges of the

paths that are not shared by the two paths must form a loop. Moreover, if we consider a

set of paths all starting at a and ending at b, then we can extract a set of loops from the

set of paths (see Figure 2.7). As a basic rule we start by defining a base path from a to b.
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Then for each additional path j added to Y we define a loop consisting of all the edges in

y1 not in yj and all the edges in yj not in y1. We will refer to y1 as the inner component of

each loop and yj as the outer component. Linear combinations of these loops have inner

components restricted to the path y1 and outer components restricted to the range of linear

combinations of the paths where they differ from y1. It follows that if each new path is

independent then each new loop is independent of the previous loops. That is, everytime

we introduce a new path the dimension of the subspace of loops spanned by the associated

set of loops increases by one. If we introduce L+1 independent paths, then the set of loops

defined by Y is a loop basis for the L dimensional space of loops.

This tight relationship between an ensemble of L+1 independent paths and a loop basis

provides a straightforward method for constructing an ensemble of L+1 independent paths.

Recall that we defined a loop basis by first defining a spanning tree, then associating

each loop in the loop basis with an edge left out of the spanning tree. The goal is to use the

same scheme to construct a set of L+ 1 independent paths corresponding to the loop basis

given by the spanning tree.

Pick a spanning tree. Then there is a unique path in the spanning tree from a to b. This

is y1 and will act as the inner component of each loop in the loop basis.

Consider paths one at a time that use exactly one chord to get from a to b. For

convenience, order the chords (edges of the original graph left out of the spanning tree)

so that the j − 1st path corresponds to the jth missing edge. If the path crosses an edge

twice in opposite directions, then remove that edge from the path. Flip the direction of

traversal of each edge until the path points monotonically forward from a to b.

After repeating this process for L missing edges, we have an ensemble of L + 1 paths.

These are all independent since all the paths (excluding the first) traverse an edge that none

of the other paths traverses. It follows that there is no linear combination of the outer
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Figure 2.7: Three basis loops (shaded purple) formed from four paths from a to b. The
inner path is shown in dark purple while the outer paths are shown in red.

paths (paths 2 to L + 1) that is retricted to the inner path. Therefore there is no linear

combination of all L + 1 paths that is zero on every edge. It follows that Y has a trivial

nullspace (Y w = 0 if and only if w = 0) and all of its columns are independent.

Then, by construction Y has L+ 1 columns and:

dim[range{Y }] = L+ 1 > L. (2.38)

Therefore there must exist a set of weights w such that either the average path integral

wᵀY ᵀf = φb − φa, or equals zero. In order to solve for w given Y we need only row

reduce the matrix CY , and solve for its nullspace. As long as this nullspace includes a

vector that is not orthogonal to the vector of all ones, 1, then there exists a w such that

wᵀY ᵀf = φa − φb. Note that to interpret this product as a weighted average also requires

that the nullspace of CY includes a vector with all nonnegative entries.

This reasoning suggests that, for any closed graph, the difference in scalar potential

between two nodes is equivalent to the average work it takes to move between those nodes,

albeit, given a set of paths Y with dim[range{Y }] > F and a set of weights nonnegative w

such that CY w = 0.

While Y and w are not unique, the flow Y w is unique if
∑

j wj 6= 0. To see this,
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evaluate the divergence, −GᵀY w. By assumption, every column of Y is a continuous path

from node a to node b. Consider a specific path, say yj . For any node, i, in the interior of

the path, wjyj has no divergence since wjyj introduces one edge with flow wj into i and

one edge with flow wj out of i. It follows that Y w has no divergence at any nodes except a

and b. Every path in Y starts at a so the divergence of Y w at a is
∑

j wj which, if nonzero,

can be set to one by convention. Similarly every path in Y ends at b so the divergence of

Y w at b is −
∑

j wj = −1. Therefore:

[−GᵀY w]i =


1 if i = a

− 1 if i = b

0 else

(2.39)

This shows that the divergence of Y w is uniquely defined when w can be chosen such

that
∑

iwi = 1. If CY w = 0 then Y w is curl free, so Y w is conservative. It follows that

there exists some potential function u such that −Gu = Y w and, u is uniquely defined (up

to the addition of a constant) by the Poisson equation:

−GᵀGu = GᵀY w. (2.40)

Since GᵀY w is unique so is Gu, and, since Y w = −Gu, so is the flow Y w. Therefore,

for any choice of paths Y from a to b and weights w such that
∑

j wj = 1 that satisfy

CY w = 0, the flow Y w is unique.

To recover this particular flow let ej be the jth column of a V ×V identity matrix. Then

we can write GᵀY w = ea − eb. It follows that u is given by a difference of two Green’s
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functions associated with the node Laplacian GᵀG:

u = − [GᵀG]† (ea − eb) (2.41)

and:

Y w = G [GᵀG]† (eb − ea), (2.42)

where † denotes the psuedoinverse associated with setting the average value of u to zero.

To make sense of this result note that, since CY w = 0:

(ea − eb)ᵀφ = (ea − eb)ᵀ [GᵀG]−1Gᵀf =
î
G [GᵀG]−1 (eb − ea)

óᵀ
f = [Y w]ᵀf

where the second equality is given by the discrete Poisson equation for the potentials

(Equation (2.26)). So far we have considered the problem for arbitrarily chosen ensem-

bles of paths. Now we will consider a special ensemble of paths that leads to a simple

interpretation of the potential φ.

A simple, or unweighted, random walk on a network is a Markov process where the

probability of going from node i to a neighboring node j ∈ Ni does not depend on

which neighbor j is chosen. Start the walker at node a. Then, to update the state of the

walker, draw a node uniformly from the neighbors of a. Then repeat this process, drawing

uniformly from the neighbors of the current node, until the walker reaches b and exits the

network.

The simple random walk defines a sampling scheme for drawing random trajectories

from a to b. Given a trajectory y let mj be the number of times the trajectory visits node j.
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Then the probability of y is proportional to:

P (y) ∝
∏
j 6=b

Å
1

|Nj|

ãmj
(2.43)

with a normalizing constant associated with the condition of starting at a and ending at b.

If Y is the ensemble of all such paths, then the expected number of traversals of each

edge in the positive direction is given by:

J =
∑
y∈Y

P (y)y. (2.44)

The average number of traversals, J , is equivalent to the current over each edge if we

assign each edge resistance one, introduce a unit current at node a, and remove a unit

current at node b [28].

By Kirchoff’s laws, if we introduce a unit current at node a and remove a unit current

at node b, then the divergence of J must be 1 at a, −1 at b, and zero everywhere else. That

is:

−GᵀJ = ea − eb. (2.45)

By Ohm’s law, the current across any edge is Jij =
Vi−Vj
Rij

, however we assumed that

Rij = 1 for all connected i, j so J = −GV . Which implies that J is curl free since

CG = 0. These are precisely the conditions that uniquely defined Y w for any ensemble of

paths Y and weights w so that wᵀY ᵀf = φb − φa. That is, J = Y w. It follows that if we

let Y be the set of all possible trajectories from a to b and set w(y ∈ Y) = P (y) then:

φb − φa =
∑
y∈Y

P (y)yᵀf. (2.46)
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Figure 2.8: Ten sample trajectories are shown in magenta from (0, 0) to (3, 2), each sampled
according to an unweighted random walk. The numbers next to each edge correspond to
the number of positive traversals. The larger panel on the right shows the mean flux J over
each edge given 106 sample trajectories. Note that, up to rounding error, the divergence of
J shown in the right hand panel is zero at all nodes except the bottom left hand corner (a)
and the upper right hand corner (b). Also note that, up to rounding error, the curl on each
loop is zero.

Theorem 10 (Path Integral Interpretation). The difference in the scalar potential φb − φa

between any pair of nodes a, b is the expected value of the work it takes to move against

the edge flow f over randomly drawn trajectories from a to b, where the trajectories are

realizations of simple random walks on the graph G that start at a and end at b.

Theorem 10 leads immediately to a Monte-Carlo method for computing the potential

φ. First draw an ensemble of simple random walks starting at node a. Then evaluate

the path integral over each random walk, and average the results. By the law of large

numbers, the average value of the path integral will converge to its expected value, which,

by Theorem 10, is exactly the value of its scalar potential. An example is illustrated in

Figure 2.8, and convergence of the sampled flux J(n) to the flux J is shown in Figure 2.9.

Since the potentials are a linear function of the edge flows f , Theorem 10 generalizes

naturally to sets of nodes. Let A and B be sets of nodes. Let φ̄(A) and φ̄(B) be the average
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potential on each set. Then φ̄(B)− φ̄(A) is exactly the expected work to move from a node

a drawn randomly from A to a node b drawn randomly from B over a randomly drawn

path. If we assign a probability of drawing a from A that is not uniform and a probability

of drawing b from B that is not uniform then the expected value of the work is equal to the

difference in weighted average of the potentials between the two sets.

Let πa be the probability of drawing a and πb be the probability of drawing b. By

assumption
∑

a∈A πa = 1 and
∑

b∈B πa = 1. If a and b are drawn independently then the

joint probability of drawing any pair a, b is just πaπb. Then the expected value of the work

W to move from A to B where a, b are drawn randomly is:

E[W ] =
∑

a∈A,b∈B

πaπb(φb − φa) =
∑
b∈B

πbφb
∑
a∈A

πa −
∑
a∈A

πaφa
∑
b∈B

πb = E[φb]− E[φa].

It follows immediately that the difference in weighted average between the potentials in

any two sets of nodes (with positive weights) is the expected value of the work it takes to

move between the two sets over randomly drawn trajectories that connect the two sets.

Corollary 10.1. SupposeA andB are both sets of nodes, πa is the probability of drawing a

node a from set A, and πb is the probability of drawing a node b from the set B. Define the

expected potentials φ̄(A) = E[φa], φ̄(B) = E[φb] where a and b are drawn randomly from

A and B. Then the expected work to move from A to B, with randomly drawn endpoints

a, b, and trajectories drawn from a simple random walk, is the difference in the expected

potentials.

These results generalize naturally to the rotational potential θ if the network G is planar,

using the usual duality argument.

Theorem 10 provides an alternative way to think about the scalar potential associated
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Figure 2.9: Convergence of the Monte Carlo approximation, J(n), to the flux J whose curl
is zero for the example shown in Figure 2.8. Blue lines represent the curl on each basis
loop. The thick black line represents the average of the blue lines. The red dotted line
represents the best fit line to the average curl. The slope of the red line is −0.53, which
matches the expected convergence rate O(n−1/2). As the curl on each loop vanishes the
contribution of the rotational potential on each loop to the average path integral vanishes.

with the HHD. In Section 7.3.1 and Section 7.3.2 we will show that the HHD is the

appropriate potential framework for studying Markov process that are diffusion dominated

since in a purely diffusive limit the Markov process converges to a weighted random walk.

In Section 2.4.2 we generalize Theorem 10 to weighted random walks.
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2.4 Generalization

2.4.1 Extended Cycle Bases

In some cases the requirement that the set of cycles used to define the curl is a cycle basis

is too restrictive. For example, on a complete network the set of all triangles is a natural

collection of cycles, but is not a cycle basis since it includes too many cycles. There are V

choose 3 distinct triangles in a complete graph, but only (V −2)(V −1)/2 loops in its cycle

basis. This can be seen by noting that a complete graph has V choose 2 distinct edges, so

L = E − (V − 1) = V (V − 1)/2− (V − 1) = (V − 1)(V − 2)/2. In contrast V choose 3

equals V (V − 1)(V − 2)/6 which is V/3 times larger than L.

A cycle basis for a complete graph can be formed by picking an initial node, then

considering all triangles involving that node. This equals the fundamental cycle basis if

the spanning tree is chosen to be a star centered at the initial node. Clearly this choice of

basis is arbitrary since there are V possible initial nodes. While the choice of cycle basis

does not change the component flows, or the scalar potential, it does change the rotational

potential θ since θ is defined on the chosen cycle basis. Instead of representing rotation on

all triangles involving a particular node of the graph we may prefer to represent rotation on

a different set of triangles.

A similar problem arises in non-planar square lattices. The set of all squares is a natural

set of cycles, but includes too many cycles to be a cycle basis [32]. An extended discussion

of cycle bases on lattices is presented in Section 3.3, and the complexity of constructing a

cycle basis on lattices is a good motivation for considering extended sets of cycles.

Suppose that C is extended to include all cycles of a certain kind, such that a subset

of the cycles form a cycle basis. As noted before, this does not change the rotational

component since the range of the Cᵀ is unchanged by adding additional cycles to a cycle
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basis. However, after adding extra cycles, Cᵀ no longer has a trivial nullspace. It follows

that Cᵀθ = frot will not have a unique solution.

The rotational potential on a set of cycles that includes a cycle basis can be defined

uniquely by introducing an additional requirement on θ. This requirement should be chosen

to promote a desired feature in the decomposition. A natural requirement is to minimize

||θ||0 or ||θ||1 over all θ such that Cᵀθ = frot. Then θ is defined by:

θ = argminv∈R|C|{||v||p|Cᵀv = frot}. (2.47)

where p = 0 or 1. Lim and Jiang advocate for p = 1 [16], since setting p = 1 ensures

that θ is the most parsimonious representation of rotation on the chosen set of cycles, and

under regularity conditions on C may also be the sparsest solution on the expanded cycle

basis even when f is perturbed by noise [52, 53]. The p = 1 problem can be solved

efficiently since it can be framed as a linear programming problem. The requirementCᵀθ =

frot fixes f to the rotational subspace. Then define the vector v̂ with 2|C| entries. Let

v̂h = vh if vh > 0 and 0 if vh < 0, and let v̂2h = −vh if vh < 0 and 0 if vh > 0.

Then solving for θ with p = 1 is the same as minimizing
∑2C

h=1 v̂h with the constraint

v̂h ≥ 0. This is a minimization problem over a convex polytope defined by the intersection

of the rotational subspace [Cᵀ;−Cᵀ]v̂ = frot with the nonnegativity constraint with a linear

objective function. It follows that, if the problem has a unique solution, then the solution

is a vertex of the polytope defined by the intersection of the subspace Cᵀθ = frot with the

nonnegativity constraint. If the solution is not unique then it can be expressed as a convex

combination of the vertices. Each vertex has at most L nonzero entries.

When solving for θ on complete graphs we adopt this approach. In general we find that

the solution has, as expected, exactly L nonzero entries, so the l1 optimization problem
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chooses a set of L triangles forming a cycle basis from the set of all possible triangles. This

is an example of cycle basis pursuit, in which the cycles in the cycle basis are ultimately

chosen from a larger set of cycles in order to give the most parsimonious representation of

the rotational flow possible. It is important to note that the l1 solution may not be stable

under perturbations of the edge flow. In those situations alternative sparse solvers can be

used. If the edge flow is perturbed by noise, or can only be estimated from data then there

is a posterior distribution of possible edge flows and a Bayesian approach could be used

(cf. [54, 55])

2.4.2 Weights

The HHD can also be generalized by introducing a set of weights W to the familiar HHD

equation −Gφ + Cᵀθ = f [16]. Throughout this section W will denote a diagonal matrix

with positive diagonal entries.

In principle there are five different places we could introduce weights: before G, before

φ, before Cᵀ, before θ, or before f . However, most of these choices only lead to trivial

modifications of our existing theory. For example, suppose we introduced weights W1,W2

and W3 so that:

−GW1φ+ CᵀW2θ = W3f.

Then, if we define φ̃ = W1φ, θ̃ = W2θ, and f̃ = W3f then −Gφ̃ + Cᵀθ̃ = f̃ which is

the standard HHD equation for scaled potentials φ̃ and θ̃ given the scaled edge flows f̃ .

Therefore there is no need to treat these weightings as a fundamental generalization of our

existing theory.
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This leaves the weighting:

−W1Gφ+W2C
ᵀθ = f. (2.48)

Notice that if W1 = W2 = W , and W is invertible, then we could multiply across by

W−1 and would be back in the previous case with f̃ = W−1f . Therefore the only case

with invertible weights that modifies our existing theory is the case W1 6= W2.

This begs the question, given invertible W1 6= W2 do the potentials φ, θ exist for any f ,

and if the network is closed, are they unique?

Theorem 11 (The Weighted HHD). For any finite network with closed boundaries, and any

invertible edge weights W1,W2, there exist a unique pair of potentials (up to the addition

of a constant) satisfying:

−W1G
ᵀφ+W2C

ᵀθ = f

where φ, θ are the least squares solutions to the weighted Poisson equations:

GW1W
−1
2 Gφ = −GᵀW−1

2 f

CW−1
1 W2C

ᵀθ = CW−1
1 f.

(2.49)

Proof. To prove Theorem 11 we start by introducing a special case. Suppose W1 = W−1
2 .

Then define the weighted operators G̃ = W1G and C̃ᵀ = W2C
ᵀ. It is trivial to see that the

weighted operators are still orthogonal since:

C̃G̃ = CW ᵀ
2W1G = CW−1

1 W1G = CG = 0.

Therefore the Fundamental Theorem of Linear Algebra guarantees the existence of φ
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and θ. To ensure uniqueness we need the joint nullspace of the weighted divergence and

weighted curl to be empty. Equivalently, we need to show that the range of the weighted

gradient is equivalent to the nullspace of the weighted curl. Suppose z is in the nullspace

of C. Then W1z is in the nullspace of C̃. Therefore null{C̃} = W1null{C}. In a finite

network null{C} = range{G}. By definition G̃ = W1G so range{G̃} = W1range{G}.

Therefore:

null{C̃} = W1null{C} = W1range{G} = range{G̃}.

This proves existence and uniqueness in the special case W2 = W−1
1 . To solve for

the potentials we solve the least squared equations associated with the weighted operators.

That is, we multiply the HHD equation by G̃ᵀ and C̃ to get:

GᵀW 2
1Gφ = −GᵀW1f

CW−2
1 Cᵀθ = CW−1

1 f.

(2.50)

Now supposeW2 6= W−1
1 . Then we can generalize from the special case by symmetriz-

ing the problem. Given:

−W1Gφ+W2C
ᵀθ = f

multiply both sides by W
− 1

2
1 W

− 1
2

2 . Since the weights are diagonal they commute, therefore

this product can be written:

−W
1
2

1 W
− 1

2
2 Gφ+W

− 1
2

1 W
1
2

2 C
ᵀθ = W

− 1
2

1 W
− 1

2
2 f.

Now the weight in front of the gradient is the inverse of the weight in front of the adjoint

curl. That is, by symmetrizing the problem we arrive in the special case where the two

weights are each other’s inverse. It follows that if the weights are invertible the potentials
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exist and are unique. Moreover, by substituting into Equation (2.50) the potentials satisfy

the corresponding Poisson equations:

GᵀW1W
−1
2 Gφ = −GᵀW−1

2 f

CW−1
1 W2C

ᵀθ = CW−1
1 f.

(2.51)

Theorem 11 plays the same role in our generalized theory as Theorem 5 played in

defining the thermodynamic potentials φ, θ. Theorem 11 guarantees that the weighted HHD

is well defined for all invertible weights.

Corollary 11.1. Given the weighted HHD:

−Gφ̃+W−1Cᵀθ̃ = f = −Gφ+ Cᵀθ

the generalized rotational potentials are related to the unweighted rotational potential by

the change of weights formula:

CW−1Cᵀθ̃ = CCᵀθ. (2.52)

Alternatively given the weighted HHD:

−WGφ̃+ Cᵀθ̃ = f = −Gφ+ Cᵀθ

the generalized scalar potential is related to the unweighted scalar potential by the change

of weights formula:

GᵀWGφ̃ = GGᵀφ. (2.53)
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Proof. The proof is trivial. Multiply either equation by C or Gᵀ in order to find the relation

between the generalized potential and unweighted potential.

If we pick a convention for the constant associated with the scalar potential then both

Laplacians are invertible. Either of the change of weights formulas can then be used to

derive the weighted potentials from the unweighted potentials. The change of weights

equation will appear again when we study the weak rotation limit of Markov processes on

networks in Section 7.3.2.

The introduction of weights also leads to a more flexible characterization of the poten-

tials using energy norms. In general, if a matrix A is positive definite, then the associated

energy norm is ||v||2A= vᵀAv. When the HHD is unweighted, the potentials minimize an

l2 norm of the error left over when approximating the flow using the potentials. When

weighted, the generalized potentials minimize the energy norm of the error.

Corollary 11.2. Given a weighted HHD equation:

−Gφ+W−1Cᵀθ = f (2.54)

the scalar potential φ is the unique minimizer:

φ = argminu{||Gu+ f ||W} (2.55)

and the rotational potential θ is the unique minimizer:

θ = argminv{||Cᵀv +Wf ||W−1}. (2.56)

Proof. If φ minimizes ||Gu+ f ||W then it minimizes ||Gu+ f ||2W . By definition:
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||Gu+ f ||2W= (Gu+ f)ᵀW (Gu+ f) = uᵀGᵀWGu+ 2fᵀWGu+ fᵀWf.

Therefore:

∂u||Gu+ f ||2W= 2GᵀWGu+ 2fᵀWG.

Setting the derivative to zero recovers the weighted Poisson equation:

GᵀWGu = −GᵀWf.

But, from Theorem 11, φ is the unique solution to the weighted Poisson equation so

u = φ. This must be the global minimum since ||Gu + f ||2W is a convex function. The

proof of the second relation involving θ follows analogously.

Corollary 11.2 provides an alternative interpretation of the generalized potentials. Each

potential is defined by minimizing the energy norm of the error in approximating f with

−Gφ or W−1Cᵀθ. Notice that the scalar potential is biased to give an accurate approxima-

tion of f on edges where the weights are large, and the curl on edges where the weights are

small.

Combined Theorem 11, Corollary 11.1, and Corollary 11.2 complete the basic algebraic

description of the generalized potentials. Our next goal is to show that the path integral

interpretation (Theorem 10) can be generalized to account for weights. The generalization

depends on using a continuous time Markov chain to sample trajectories. See [56] or

Chapter 6 for a definition of continuous time Markov chains.
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Theorem 12 (Path Integral Interpretation for the Weighted HHD). Given a finite network

with closed boundaries, and an invertible pair of weights W1,W2 with corresponding

weighted HHD:

−W1Gφ+W2C
ᵀθ = f

the difference in scalar potential φa−φb is equal to the expected value of the work evaluated

against f̃ = W−1
1 f to move from a to b on paths y drawn from a continuous-time Markov

process with instantaneous transition rates W = W−1
2 W1 from i(k) to j(k) and j(k) to

i(k).

Proof. First, multiply the weighted HHD on the left by W−1
2 . Then:

−W−1
2 W1Gφ+ Cᵀθ = W−1

2 f.

Let f̃ = W−1
1 f and W = W−1

2 W1. Then:

−WGφ+ Cᵀθ = W−1
2 f = W−1

2 W1f̃ = Wf̃. (2.57)

By Theorem 11, the scalar potential, φ, is the unique solution to the weighted Poisson

equation:

GᵀWGφ = −GᵀW−1
2 f = −GᵀWf̃. (2.58)

Next consider a continuous time Markov process with transition matrix GᵀWG. This

is a symmetric transition matrix, with instantaneous transition rates from i(k) to j(k) and

j(k) to i(k) equal to wk. Continuous time Markov processes will be discussed in more

detail in Section 6.2.

Then the paths y are sampled from the corresponding skeleton process, which records
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only the sequence of states visited along a sample trajectory, not the transition times. The

skeleton process is a discrete-time Markov process where the probability of moving to node

j from node i is equal to wij/(
∑

l∈Ni wil).

LetY be the ensemble of all possible paths from a to b, and let y be a vector representing

the number of positive traversals of each edge on a path from a to b. Sample y from Y using

the weighted random walk. Then, the expected number of positive traversals of each edge

is equal to the steady state current between nodes a and b in an electrical network with

conductances set to wij [28]. Denote this current J = E[y].

The steady state current must obey both of Kirchoff’s laws. Therefore the divergence of

J must satisfy GᵀJ = ea− eb where ej is the jth column of an identity matrix, and the curl

of J must be zero, CJ = 0. It follows that J is equal to a weighted gradient of a voltage u

of each node. From Ohm’s law Jij = wij[uj − ui] so:

J = −WGu. (2.59)

Therefore:

−GᵀWGu = GᵀJ = ea − eb. (2.60)

Multiplying across by the pseudo-inverse of the weighted Laplacian recovers u (up to a

constant). Then, evaluating the gradient gives:

J = −WGu = −WG[GᵀWG]−1(ea − eb). (2.61)

Therefore the expected work to move from a to b against f̃ is:

E[yᵀf̃ ] = Jᵀf = −(ea − eb)[GᵀWG]−1GᵀWf̃. (2.62)
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Define a new function on the nodes û such that ûa − ûb = E[yᵀf̃ ]. Then:

û = −[GᵀWG]−1GᵀWf̃

or:

[GᵀWG]û = −GᵀWf̃. (2.63)

But this equation is exactly the same as the weighted Poisson equation that defined φ

so φ = û, or:

φa − φb = E[yᵀf̃ ] (2.64)

where f̃ = W−1
1 f and the paths y are sampled from Y according to the weighted

random walk with weights W = W1W
−1
2 .

Theorem 12 provides a clear connection between the choice of weights in the HHD and

the choice of paths along which we evaluate work between points. The difference in choice

of weights between the gradient and the curl maps to weighting the random walk between

nodes used to evaluate the potential.

Weighting allows us to treat the topology of the network in a more flexible way. When

the HHD is unweighted, the operators G and C are defined by assuming all the edges

are equivalent. Then J is a natural edge importance measure for passage from a to b in an

unweighted graph. If we introduceW1 6= W2 then J is still an edge importance measure for

passage from a to b, but now in the context of a weighted graph with weightsW = W1W
−1
2 .

For example, suppose we want to measure work with respect to f , but over paths drawn

from a simple random walk weighted by some W . Then simply set W1 to the identity and

W2 = W−1. Then the solution to either −Gφ + W−1Cᵀθ = f or −WGφ + Cᵀθ = Wf
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Figure 2.10: Ten sample trajectories are shown in magenta from (0, 0) to (3, 2) sampled
according to a weighted random walk. The numbers next to each edge correspond to the
number of positive traversals. The larger panel on the right shows the mean over 1000
sample trajectories. The weights were all set to either 1 or 20. The edges with weight 20
are the edges that appear with a large expected flux J . Compare this to Figure 2.8. Note
that the divergence of the current J is zero (up to rounding errors) at all nodes in the graph
except the bottom left and top right. Also notice that the current is clearly concentrated
about a particular path.

satisfies φa − φb = E[yᵀf ] with y sampled from a random walk weighted by W .

It immediately follows that every generalized potential is equivalent if the flow on the

right hand side is conservative. If the flow is conservative then the work over a path is

independent of the path taken, so the distribution of paths has no influence on the average

work over the ensemble.

Corollary 12.1. The generalized scalar potential φ defined by−W1Gφ+W2C
ᵀθ = f does

not depend on W2 if W−1
1 f is curl free.

In conclusion, by introducing weights to the HHD we define a family of generalized

potentials. Provided the weights are invertible, the potentials exist, are unique (up to the

addition of a constant), and satisfy weighted Poisson equations. Moreover, the correspond-

ing scalar potentials are the best approximations to the edge flow f in the energy norm
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associated with the weights, and the difference in scalar potential between points is given

by the expected work to traverse between these points on a path drawn from a random walk

with the symmetric transition matrix GᵀWG.

2.4.3 Networks with Open Boundaries

Thus far the harmonic component has only played a passing role in our theory. On a finite

network, with an appropriately chosen curl, the harmonic component is always zero, so

could be safely ignored. This is not true if the network has open boundaries. A network

has an open boundary if there are edges that leave the network. Then the edge flow may

flow in and out of the network through the boundary.

Open networks occur in a variety of systems for a variety of reasons. The domain may

only be partially observable, or the topology may only be known on a subset of the full

domain. Edge rates may only be knowable on a subset of the domain. More generally,

the system may only be governed by a random walk process on a portion of the domain,

or the random walker may be allowed to leave the domain. Even if the global network is

available, global potentials may not be computable, or may not be of interest. Alternatively

if the network is very large, or infinite, it may be necessary to study only a subset of the

network.

This section will focus on the following open boundary problem: suppose the network

of interest is a subset of a larger finite network with closed boundaries satisfying all the

assumptions introduced in Section 2.2. Then there is no harmonic component on the full

network and the potentials are uniquely defined. The goal is to solve for potentials on the

subset. The subset is the domain of interest, the complement of the subset is the reservoir.

Edges passing from the domain of interest to the reservoir are the boundary. A network is

open if the domain of interest is connected to the reservoir.
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The open boundary problem is more complicated than the closed boundary problem

because the harmonic component on a finite network with open boundaries may be nonzero,

even if there is no harmonic component on the full network. If it were possible to separate

the edge flow into a unique conservative and rotational component then, restrictingG to act

only on nodes and edges in the domain of interest, and C to only act on loops in the domain

of interest, the scalar potential and rotational potentials would be uniquely defined (up to

a constant) by −Gφ = frot and Cᵀθ = fcon. Unfortunately, a conservative or rotational

flow on the full network passing through the subset may be harmonic on the subset (no

divergence at any node in the subset or curl on any loop in the subset). Thus it is impossible

to tell whether and what parts of a harmonic flow observed on the subset are conservative or

rotational on the full network. As a result the potentials, which were uniquely defined for

finite closed networks, are not uniquely defined for closed networks with open boundaries.

For example, suppose the larger network is a loop of nodes, and the domain of interest

is some connected subset of nodes on that loop leaving at least two nodes in reservoir.

Now imagine that f is a nonzero constant on the domain of interest and the edges passing

into and out of the domain, and points in the same direction on every edge. Then the

divergence of f is zero at every node in the domain since the flux into and out of every

node is identically zero. The curl must also be zero since there are no loops in the domain

of interest. Since f is both divergence and curl free it is harmonic. Examples of harmonic

edge flows are shown in Figure 2.11 and Figure 2.12.

Whenever we focus on a subset of a larger network, we exclude information about f on

the reservoir. The previous example could be generated by a scalar potential that decreases

by a fixed amount on the sequence of nodes running from one side of the domain to the

other, including the two nodes in the reservoir at either end. It is also possible that a fixed

rotational potential on the loop drives the circulation. Without f on the full domain, it is
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G G

frot  =  0 fcon  =  0

Figure 2.11: Two possible interpretations of the flow through an open network. The green
shaded region is the domain of interest. The flow through the domain is both divergence
and curl free so is harmonic on the domain of interest. The flow on the left is conservative
on the full network, and the flow on the right is rotational, but both are identical on the
domain of interest.

impossible to distinguish whether or not f on the domain is flowing from a node in the

reservoir to another node in the reservoir, or flowing in a circuit. Therefore it is impossible

to distinguish between rotational and conservative fields without f on the full network. As

a result, it is impossible to decompose f into φ and θ uniquely given only the flow on the

subset.

When a network has open boundaries, the HHD may include a nonzero harmonic

component, as described in Theorem 3. The same problem arises in the continuum when

there may be a flow through the boundary of the domain [8, 30]. In some cases it is

sufficient to solve for a conservative, rotational, and harmonic component (cf. [16]), while

in others we may desire a unique decomposition into only a conservative and rotational

component. The latter is only possible if we either are given boundary conditions, are

willing to make assumptions about the harmonic component, or define a convention for
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handling the harmonic component. Any two decompositions of this kind differ only in how

h is represented [30].

Dirichlet boundary conditions can be introduced if the network topology is known

outside of the domain of interest. Then if the scalar potential is fixed at each node outside

the domain but neighboring a vertex in the domain, and the rotational potential is fixed

on each loop including some nodes inside, and some nodes outside the domain of interest.

Neumann boundary conditions are often more natural, and assume that a certain component

of the flow on boundary edges is conservative and the rest is rotational [8]. Common

Neumann boundary assumptions include the assumption that all flow leaving the network

is conservative, or the assumption that all flow along edges running between nodes on

the boundary is rotational [30]. Under either condition the decomposition is still unique

[31, 57]. Boundary constraints are the most widely used method for solving Poisson’s

equation in the continuum [8].

Unfortunately, not all problems lead unambiguously to natural assumptions about po-

tentials or fields at the boundary. In that case, fixing boundary conditions may not give

the best results, and in some cases may lead to serious boundary artifacts. Inappropriate

boundary conditions can “create strong coupling between the component flows” fcon, frot

and the “shape and orientation of the boundary” [30]. This is generally undesirable. If

the domain of interest is a subset of a larger network then the potentials should, ideally,

not change if a node is added or removed from the boundary of the domain. That is, the

computed potentials should be boundary independent, or at least close to boundary inde-

pendent. If the computed potentials are not boundary independent then the decomposition

may be called into question all-together.

One solution is to associate any harmonic component of f with potentials located at

points in the reservoir (outside the domain of interest). In this context h is “external”, and
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is not included in either the conservative or rotational edge flow. These flows are considered

“internal” since they are driven by potentials inside the domain of interest. The associated

decomposition solves for φ and θ independent of h. This approach is the “natural HHD”

proposed by Bhathia et al in [30].

The natural HHD is attractive for a number of reasons. First, it requires no a priori

information about the potentials in the reservoir, or the flow on the boundary, since it

is based on a convention regarding h rather than an assumption about the potentials. It

also does not require boundary assumptions that guess potentials in the reservoir. In some

cases the natural HHD has been shown to approximate fields computed on the full domain

more accurately, and to introduce fewer boundary artifacts [30]. This is true when the

Green’s functions are sharply peaked, have bounded maxima, and the field f has little to

no divergence or curl at the boundary.

To perform the natural HHD, compute the Green’s functions for the full network, or

a much larger subset of the network. Then compute the potentials within the domain of

interest by summing the Green’s functions for the larger network over the divergence/curl

of f on only the nodes/loops inside the domain of interest [30]. This amounts to applying

the inverse (or pseudoinverse) of the Laplacians to the divergence and curl of the flow on

only the domain of interest. While conceptually straightforward, this may be inefficient

numerically since it requires forming the inverse or psuedoinverse of the Laplacians on a

larger network than the domain of interest.

It is generally advisable to decompose the network using a variety of reasonable con-

straints. It is also generally good practice to vary the boundary itself when considering a

subset of a larger network. Variations in the computed potentials help determine how much

the solutions depend on the chosen constraints and boundary. When it is not possible to

vary the boundary then it may not be easy to determine how much of the computed solution
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Figure 2.12: Two possible interpretations of the flow through an open network with
specified edge flow. The green shaded region is the domain of interest. Black numbers
denote the edge flow relative to the directions indicated by the arrows in both figures. The
flow through the domain is both divergence and curl free, so is harmonic on the domain of
interest. The flow on the left is conservative on the full network, and the flow on the right is
rotational, but both are identical on the domain of interest. Left: Blue numerals indicate the
scalar potential φ at the corresponding nodes (blue shaded circles). The rotational potential
is zero. Right: Blue numerals indicate the rotational potential around the two loops in the
network. The scalar potential is zero.

is “true” and how much is “artifact”. Admittedly what is considered artifact is interpretive,

and depends on the problem.

Regardless, it is essential to be aware of the assumptions introduced by the chosen

constraint or boundary. If these assumptions are well motivated by the problem, then the

computed potentials may be well justified, even if boundary dependent. If the assumptions

introduced are not well motivated, then the computed potentials should be taken at face-

value if and only if they are largely boundary independent. We advocate for first computing

the harmonic component and the potentials under the assumption that the harmonic com-

ponent is entirely external, and thus is a separate component of the flow not generated

by either potential. Then boundary conditions can be introduced to assign the harmonic
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component to either the rotational or conservative flows.

2.5 Summary

In this chapter we introduced the combinatorial Helmholtz-Hodge Decomposition. The

decomposition separates an edge flow on a graph into two components. The first component

is conservative and is the gradient of a scalar potential. The second is rotational, and is

associated with the curl transpose of a rotational potential analogous to the vector potential

used to describe magnetic fields. If the network is closed then the harmonic component is

necessarily zero. If the network is open then there may be a harmonic flow entering and

leaving the network through the boundary. Depending on chosen constraints this flow may

be interpreted as separate from the rotational and conservative flows, or be decomposed

itself into an assumed rotational and conservative component.

The HHD can be posed in a variety of ways. First, as projection onto a pair of or-

thogonal subspaces, second, as a pair of discrete Poisson equations, and third, as a pair of

least-squares problems. Each of these characterizations is useful, as they lead to different

solution methods and allow for alternative derivations of the HHD (see Chapter 4). We also

showed that differences in the scalar potential at distinct vertices associated with the HHD

can be interpreted as the average work over an ensemble of randomly drawn paths between

those vertices. This path integral formulation provides an alternative perspective on the

scalar potential that is useful for comparison to other potentials , and will help explain the

utility of the HHD for analyzing the dynamics of Markov processes that are dominated by

diffusion instead of drift.

The HHD can be generalized in two crucial ways. First, the choice of cycles used to

define the curl is flexible, and it is possible to work with large cycle sets that contain cycle

bases. Second, weights can be introduced to the HHD that give priority to the conservative
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or rotational components on particular edges. We showed that, provided the weights are

nonzero, then the potentials are still uniquely defined, satisfy weighted Poisson equations,

are solutions to weighted least squares equations, and the difference in the scalar potential

at distinct vertices is still the average work over randomly drawn paths. The weighted

HHD is the essential tool for studying the limiting behavior of Markov processes that are

diffusion dominated (see Section 7.3.1 and Section 7.3.2).
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Chapter 3

Examples and Methods

3.1 Preface

This chapter presents a sequence of example networks, and develops techniques for ap-

plying the HHD both to the examples and to generic networks. First, a series of simple

examples are presented (see Section 3.2). These examples are chosen either for their

importance, or to illustrate the mechanics of the decomposition. Next, in Section 3.3,

we develop methods for applying the HHD to the Cartesian products of graphs. Graphs

that arise from Cartesian products are important in modeling applications, and by studying

Cartesian products we develop a better understanding of lattices. Lattices are an important

special case, which are addressed in Section 3.4. The chapter concludes by presenting

general methods for applying the HHD to arbitrary networks (see Section 3.5).
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3.2 Special Cases

In this section we consider a sequence of important special cases that are simple enough to

solve explicitly. The cases are chosen to demonstrate the basics of the decomposition, and

for their conceptual value.

3.2.1 Trees and Loops

A tree is a network with no closed loops. Trees are the simplest networks to analyze with

potentials. Trees are automatically conservative since they contain no loops. Therefore

f = fcon. An example tree is shown in Figure 3.1.

Since any edge flow on a tree is conservative the scalar potential φ can be recovered

by setting the potential to zero at an arbitrary node, then summing f over the path from

the initial node to every other node. If φ1 = 0 then φj is given by the work to move from

node 1 to node j over the path from node 1 to node j in the tree. For example, the value of

the potential at node 8 in Figure 3.1 equals f12 + f25 + f58. Suppose we assign the edges

reference orientations that point from lower indexed nodes to higher indexed nodes. Then

φ8 = fA + fD + fG. If the reference orientation on an edge is reversed, then the sign of f

in the sum may have to be reversed. For example, if the convention on edge D is reversed

so that it points from node 5 to 2, then φ8 = fA − fD + fG.

Once the scalar potential has been found, we can always add a constant to φ. If, for

example, we desire
∑

j φj = 0 then should subtract the average value of the potential,

1
V

∑
j φj , from the potential.

The next simplest case to consider is a loop or cycle. The triangle is the simplest

network which may have a nonzero scalar and vector potential, and is the smallest loop

possible.
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Figure 3.1: An example tree, with undirected edges.

Start by indexing the nodes from 1 to 3. Order and orient the edges 1 to 2, 2 to 3, 3

to 1. Index the faces of the network. In this case there are two, the inside of the triangle

and the outside of the triangle. To ensure uniqueness we will assume the vector potential

outside the triangle is zero, so will only consider the vector potential on the inner face.

Choose positive rotation to correspond to the direction of the edges (1 to 2 to 3) as shown

in Figure 3.2.

The corresponding Gradient is:

G =


−1 1 ·

· −1 1

1 · −1

 .
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Figure 3.2: A triangle network. Arrows indicate the sign convention on each edge.

More generally, the gradient for a loop of V nodes is:

G =


−1 1 · ·

· −1 1 ·

· · . . . . . .

1 · · −1


V×V

.

The curl is trivial since there is only one cycle, and it crosses all edges in their positive

direction:

C = [1, 1, . . . , 1]

It follows that the curl transpose is 1, the vector of all ones. The curl transpose induces

a simple mapping from θ to frot: frot = θ on every edge.

The corresponding node Laplacian (for a V state loop) is the standard second difference
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operator for a line with periodic boundaries; the face Laplacian is a scalar:

L2
V =


2 −1 · −1

−1 2 −1 ·

· . . . . . . . . .

−1 · −1 2


V×V

, L2
C = CCᵀ = V.

The fact that the face Laplacian is a scalar makes the decomposition trivial. From the

discrete Poisson equations L2
Cθ = Cf so:

θ =
Cf

V
.

Therefore, to compute the vector potential, compute the curl of f (sum f around the loop),

then divide by the number of states. This may be thought of as an average of the total

observed circulation. Then, by definition:

frot = Cᵀθ =
CᵀCf

V
.

Note that CᵀC is not the face Laplacian, CCᵀ = V . Instead CᵀC is an V × V matrix

of all ones:

CᵀC = 11ᵀ =


1 1 . . . 1

1 1 . . . 1

...
... . . . ...

1 1 . . . 1


V×V

.
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By definition fcon = f − frot so:

fcon =

Å
I − 1

V
11ᵀ
ã
f.

That is, the conservative flow at edge k is fk minus the average value of the edge flow

over all V edges in the loop. This result provides a simple projection rule for finding the

conservative field.

Given fcon, the scalar potential can be found trivially by solving:

−Gφ = fcon.

As usual, fix the potential at a node so that the corresponding linear system is triangular,

and can be solved by back-substitution. This is equivalent to summing outward from an

initial point on the loop.

Notice that this procedure is equivalent to the projection-integration method described

in Section 2.3. First we take advantage of the simplicity of the rotational structure to

compute θ, next we remove the rotational component, and compute the scalar potential by

summing out from an initial node.

3.2.2 Singly Connected Components

A network has singly connected components if it is possible to break the network into

separate components by removing an edge or a single node. A cut edge, or bridge, is an

edge which, if removed, leaves two components separated. A cut node, articulation point,

or separation point, is a node which, if removed1, leaves two separate components [32, 33].

1along with all neighboring edges
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A cut node can be transformed into a cut edge by removing it from the graph, then adding

a copy of it to each connected component and adding an edge between the copies. A singly

connected graph can be broken into biconnected components by removing all cut edges, or

splitting all cut nodes. Here we assume that all cut nodes have been turned into cut edges,

and the flow on any edge between copies of a cut node is set to zero.

Consider the set of cut edges. None of these edges are included in any basis cycle.

If an edge is the only bridge between two components it is impossible to move from one

component to the other and back without using that edge twice. It follows that frot is zero

on all edges separating singly connected components.

Suppose edge k is a cut edge. Then, since frot is zero on all edges separating bicon-

nected components, fconk = fk so φj(k) − φi(k) = fk. Now remove edge k from the

graph, and apply the HHD to each of the separate components. The scalar potential on

each component is only determined up to a constant, so we can always add a constant to

the scalar potential on one of the components such that φj(k) − φi(k) = fk.

It follows that, if a graph is singly connected, then it can be broken into its bicon-

nected components, and the HHD can be applied to each component separately. Then

the difference in potential across each edge separating biconnected components equals

the flow over those edges, and the scalar potential for the full network can be recovered

by adding a different constant to the scalar potential for each component chosen so that

φj(k)− φi(k) = fk on edges k that are cut edges. Breaking a singly connected graph into its

biconnected components can be done efficiently (O(V + E) time) [58, 59].

Thus, if all the loops in a network are edge disjoint (do not share any edges) then we

can recover θ on each loop by applying the technique developed in the previous section

for single loops. Evaluate the curl on the loop before dividing the curl by the perimeter

of the loop (number of nodes in the loop). Then the rotational flow can be computed and
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subtracted from the full edge flow to recover the conservative component, and the scalar

potential can be computed by summing f out from an initial node over an arbitrarily chosen

spanning tree.

If cut edges were formed by splitting cut nodes then, since there is no rotational flow

over the cut edges, and the flow over the added cut edges is zero, the potential at a pair of

nodes formed by splitting a cut node is equal. Thus the HHD on the original graph can

be recovered by contracting the added edge, and setting the potential at the cut node to the

potential at either side of the contracted edge.

3.2.3 Linked Loops: A Worked Example

So far we have only explicitly considered networks with single loops, or disjoint loops. In

these cases it is trivial to compute the rotational potential and component, since θ is the

curl on each loop divided by its perimeter. When the network includes multiple interacting

loops the decomposition is more involved. The simplest example is a pair of triangles that

share one edge. We consider this example in some detail to provide explicit examples of

the operators, Laplacians, and projectors.

The node, edge, and face indexing is shown in Figure 3.3. The sign convention for each

edge and cycle is shown by the direction of the arrows. The edge is indexing is chosen

explicitly so that the outer loop is indexed consecutively.
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Figure 3.3: A pair of triangles sharing an edge. Arrows indicate the sign convention on
each edge.

The corresponding gradient and node Laplacian are:

G =



−1 1 · ·

· −1 1 ·

· · −1 1

1 · · −1

· −1 · 1


, L2

V =


2 −1 · −1

−1 3 −1 −1

· −1 2 −1

−1 −1 −1 3

 .

Note that the node Laplacian is equal to diagonal degree matrix minus the adjacency matrix.

If we set the potential at the first node to zero the reduced node Laplacian is:

L̂2
V =


3 −1 −1

−1 2 −1

−1 −1 3

 .

When constructing the adjoint curl we have the option of three possible cycle bases.

We will use the cycle basis indicated in Figure 3.3. Then:
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Cᵀ =



1 ·

· 1

· 1

1 −1

1 ·


.

The face Laplacian can be computed by taking CCᵀ, or since the network is planar, by

evaluating the node Laplacian for the dual graph. The node Laplacain for the dual graph

is given by computing the perimeter of each loop, and the shared perimeter between pairs

of loops. Then the face Laplacian has negative off-diagonal entries equal to the shared

perimeter of pairs of distinct loops, and positive diagonal entries equal to the perimeter of

each basis loop:

L2
C =

 3 −1

−1 3

 .
Now suppose we are given an edge flow f . Since the system is small and meant as an

example we might as well solve directly using the discrete Poisson equations:

φ = −[L2
V ]†Gᵀf

θ = [L2
C]
−1Cf.

The inverse of the reduced node Laplacian and face Laplacian are:

[L̂2
V ]−1 =

1

8


5 4 3

4 8 4

3 4 5

 , [L2
M]−1 =

1

8

 3 1

1 3

 .
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The columns of these matrices are analogous to Green’s functions in the continuum.

Given G and C we can also compute the projectors onto frot and fcon. The projector

onto the rotational space is:

Prot =
1

8



3 3 1 1 2

3 3 1 1 −2

1 1 3 3 −2

1 1 3 3 2

2 −2 −2 2 4


.

This projector nicely reflects the structure of the network. The first pair of edges only

neighbor loop I, and the second pair of edges only neighbor loop II, so frot must be constant

on edges A and B, and edges C and D. It follows that the first two rows of the projector are

identical, and the second two rows are identical. Only the last row is different since only

the last row borders both loops.

The projector onto the space of conservative f can be computed from the first three

columns of the QR factorization of G:

Pcon =
1

8



5 −1 −1 −3 −2

−1 5 −3 −1 2

−1 −3 5 −1 2

−3 −1 −1 5 −2

−2 2 2 −2 4


.

As before, the fifth row and fifth column are distinct from the rest of the projector, since

they correspond to the fifth (shared) edge which is distinct from the other four edges.
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Figure 3.4: K8, the complete graph on 8 vertices.

3.2.4 Complete Graphs

Consider a complete graph on V vertices. An example on 8 nodes is shown in Figure 3.4.

The corresponding node Laplacian has the simple form:

GᵀG = V I − 11ᵀ

where 1 is the vector of all ones.

This matrix has a very simple spectrum because adding xI to any matrix simply shifts

its spectrum by x. The spectrum of −11ᵀ consists of one eigenvalue equal to −V corre-

sponding to 1, and V −1 eigenvectors equal to zero. The last V −1 eigenvalues are all zero

since−11ᵀ is a rank one matrix. Any choice of V −1 orthogonal vectors that span the space

perpendicular to 1 serve as eigenvectors. Denote this basis Q. Then [1, Q]−1 = [1, Q]ᵀ.

Adding V to the spectrum means that the first eigenvalue is zero, and the rest are all equal

to V . This means:
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GᵀG = V QQᵀ.

Note that QQᵀ is the orthogonal projector onto the space orthogonal to 1. By default

Gᵀf has no projection onto 1 since 1ᵀGᵀf = fᵀG1 and G1 = 0. Therefore the discrete

Poisson equation −GᵀGφ = Gᵀf is solved by:

φ =
−1

V
Gᵀf =

1

V
Df. (3.1)

Therefore the scalar potential at node i equals the average of f over all edges leaving

node i:

φi =

∑
i 6=j fij

V
. (3.2)

This conclusion will play an essential role in the study of competitive tournaments in

Chapter 4 and Chapter 5.

It follows that the conservative flow equals − 1
V
GGᵀf and the rotational flow equals

f − fcon = (I + 1
V
GGᵀ)f .

To solve for θ we need to pick a cycle basis. For a complete graph it is natural to

start with the spanning tree associated with a single node (node 1). Then the set of all

edges leaving node 1 form the tree, and the list of edges between i, j 6= 1 form the chords.

There are exactly (V − 1)(V − 2)/2 of these chords. Let θij denote the vector potential

on the associated loops. This is a natural choice of basis since all the loops are triangles,

and each chord is only included in one loop. It follows that θh equals frotk on the edge

k corresponding to chord h. Alternatively we could extend the cycle basis to include all

triangles in the complete graph and solve the associated l1 minimization problem for the

sparsest representation on a triangle basis.
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Therefore, for any complete graph the decomposition is remarkably simple. Rescale the

divergence of f by 1/V to recover the scalar potential, then either s the rotational potential

equal to the rotational flow on the chords left over after removing the conservative flow

specified by the scalar potential, or use a linear programming solver to find the set of

triangles which represents the rotating flow most concisely.

3.3 Graph Products

An important class of graphs in applications are graphs that are constructed from the

products of multiple smaller graphs (cf. [60, 61, 62]). Graph products are a versatile set

of binary operations on graphs [63]. Graph products arise naturally when studying graphs

with repeated, or regular, structures [61]. There are three natural graph products which are

widely used, the Cartesian product, the tensor product, and the strong product [64, 65].

This chapter focuses on Cartesian products. Here we analyze how the spaces and operators

involved in the HHD of a product graph depend on the factor graphs, and introduce a

spectral method for performing the HHD of a product graph based on the spectrum of

the Laplacian on the factor graphs. This technique is especially useful for performing the

decomposition on lattices, hypercubes, and products involving complete graphs.

3.3.1 Cartesian Products: Topology

This section introduces a systematic method for understanding the cycle space of the

Cartesian products of graphs based on the cycle and edge spaces of the smaller graphs

used in the product.

Consider the Cartesian product of two graphs, G1 and G2. Let V1 be the set of vertices

of the first graph, E1 be its edges, and C1 be a cycle basis. Then let V1,E1, and L1 be the
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number of nodes, edges, and loops in the cycle basis of the first graph. In the same way, let

V2 be the set of vertices of the second graph, E2 be its edges, C2 be its cycle basis, and let

V2, E2, and L2 be the number of nodes, edges, and loops in the cycle basis of the second

graph.

The Cartesian product of two graphs is an extension of the notion of the Cartesian

product of two sets originally introduced by Sabidussi [66]. Given sets A and B the

Cartesian product of A and B, denoted A×B, is the set of all possible pairs of elements of

A and elements of B. That is, if a ∈ A and b ∈ B then A× B is the set of all pairs of the

form a, b. To motivate the use of “Cartesian" notice that, if the set A is all real numbers,

and the set B is also all real numbers, then the Cartesian product of A and B is the set of

all Cartesian coordinates of points in R2.

The Cartesian product of two graphs, G1 and G2, is denoted:

G = G1� G2. (3.3)

Note that the Cartesian product is denoted with a square rather than with ×, which denotes

the Cartesian product for sets. This is to reserve the use of × for the tensor product [64].

The product graph G has one vertex for each pair of vertices from the factor graphs:

V = V1 × V2 = {all pairs (v, w) : v ∈ V1, w ∈ V2} (3.4)

and edges between states {vi, wk} and {vj, wh} if there is an edge in E1 between vi and vj

and h = k, or i = j and there is an edge in E2 between wk and wh. That is, the Cartesian

product of two graphs has state space equal to the Cartesian product of the state spaces of

the two graphs, and edges between pairs of states that differ in only one of the two states in

each pair, and the states that differ are connected by an edge in their corresponding graph
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Figure 3.5: The Cartesian product of two lines produces a grid. The first line has 5 states
and the second has 3 so the grid is 5 by 3. Notice that the edges in the product only change
one coordinate at a time.

[61, 64].

This definition can be motivated by the following simple example. Consider a pair of

interacting populations. Each population can take on a number of states, i.e. the number

of individuals in the population. Then each of the two populations can take on states in Z,

and the full state space is Z2 = Z�Z. Suppose that, in addition, we only allow for edges

corresponding to single birth and death events. This requires that only one population can

change states at a time. This is not a restrictive requirement since, in continuous time, the

probability any two birth or death events occur simultaneously is zero. Then, the set of

edges of the full graph are edges corresponding to a birth in the first population with the

second population fixed, a death in the first population with the second population fixed,

a birth in the second population with the first population fixed, or a death in the second

population with the first population fixed. This is exactly the set of edges given by the

Cartesian product. Note that this does not require that the process on each population

is independent of the others since the rates of birth and death in a given population may

depend on the number of individuals in the other population, as when two populations

compete for the same resources, or one population consumes the other. Graphically this
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maps Z�Z onto the lattice Z2 with strictly horizontal and vertical edges, each of length 1,

as shown in Figure 3.5.

The Cartesian product is both commutative, and associative [66]:

G1�G2 = G2�G1

G1�G2�G3 = (G1�G2)�G3 = G1� (G2�G3)

(3.5)

so there is no ambiguity in taking the Cartesian product of more than two graphs. The

product of more than two graphs can be broken into a sequence of pairs of products, and

the result does not depend on the order of that sequence. For example, taking the Cartesian

product of Z2 with Z would produce Z3, which is also the Cartesian product of Z with itself

three times. In this way all d dimensional lattices can be viewed as the Cartesian product

of Z with itself d times.

The Cartesian product is analogous to multiplication because it is equivalent to starting

with G1, then, replacing every state in G1 with a distinct copy of G2. For example, the

Cartesian product of a triangle with a triangle can be constructed by starting with a triangle,

then introducing a triangle for every node in the previous triangle. A familiar example is

the construction of a hypercube from the Cartesian product of a cube with a line. These

two examples are illustrated in Figure 3.6.

Like multiplication on the integers there are also graphs corresponding to one and zero,

the graph with one node and the graph with no nodes, and a limited notion of divisibility.

If G = G1�G2 then G divided by G1 is G2. Like the integers there are prime graphs that

cannot be expressed as the Cartesian products of any two graphs [66]. More strongly, any

connected graph that is a Cartesian product of graphs can be uniquely factorized into prime

graphs [64, 66]. A method for factoring product graphs is presented in [67].

The goal of this section is to present a method for constructing the cycle space of a

98



=

=

Figure 3.6: The Cartesian product of two triangles, and the Cartesian product of a cube
with a line. In both cases the Cartesian product is constructed by replacing each node in
the orange graph with the purple graph.

Cartesian product of graphs based only on the cycle spaces of the factor graphs, and pairs

of edges drawn from pairs of factor graphs. In Section 3.3.2 we present an algorithm

for constructing the gradient, node Laplacian, curl, and face Laplacian for the Cartesian

product of graphs. This will be an essential tool for studying large graphs that can be

expressed as products of small factor graphs. Then the operators for the large graph can

be constructed automatically from the operators for the smaller graph. It will also present

a more ordered understanding of how the operators for lattices, and will enable an elegant

spectral approach to the decomposition (see Section 3.3.3).

To start, consider the dimension of the node, edge, and loop spaces of the product

graph G = G1�G2. After the product there are exactly V = V1V2 states in the graph G.

This follows immediately from the definition of the Cartesian product on sets.

To find the number of edges note that every edge in E1 can be uniquely identified by its

endpoints v1, v2. Then, after the Cartesian product this particular edge is copied V2 times

for each possible set of pair (v1, w), (v2, w) where w ∈ V2. The same argument extends

to all edge in E2, only each is copied V1 times. Therefore the total number of edges in the
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product is:

E = E1V2 + E2V1. (3.6)

Given the number of edges and nodes in the product we can immediately compute the

dimension of the cycle space using the standard formula for the cyclomatic number:

L = E − V + 1 = E1V2 + E2V1 − V1V2 + 1. (3.7)

The cyclomatic number can be written more suggestively by replacing E1 and E2 with

L1 + V1 − 1 and L2 + V2 − 1. Then:

L = (L1 + V1 − 1)V2 + (L2 + V2 − 1)V1 − V1V2 + 1

= [L1V2 + L2V1] + [(V1 − 1)(V2 − 1)] .

(3.8)

Written in this form the cycle space dimension, L, suggests a decomposition into two

classes of loops. The first are formed by the sets circuits in the product graph formed by

holding one component fixed, and moving about a loop in the cycle basis for the other

component. For example, if the loop 1 → 2 → 3 → 1 is a loop in G1 then there are

V2 corresponding loops in G corresponding to loops of the form (1, w) → (2, w) →

(3, w) → (1, w) where w ∈ V2. There are exactly L1V2 loops of this kind. They are

clearly independent of each other since the set of all loops in this set with the second

component fixed is the set of basis loops of G1, and the V2 copies of these sets are all

disjoint. These sets are disjoint since they only use edges that change the first component,

so cannot connect any states who differ in their second component. As an example of a

set of loops of this type look at the three purple loops that appear in the Cartesian product
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of an orange and purple triangle shown in Figure 3.6. By the same logic we can produce

a set of F2V1 linearly independent loops by copying the cycle basis of G2 V1 times. These

two sets of loops are also disjoint since the first only uses edges between states that differ

in their first component, and the second only uses edges between states that differ in their

second component.

Therefore, the set of loops that are given by fixing one component, and then carrying

the other around a basis loops in C1 or C2 is a set of L1V2 +L2V1 linearly independent loops.

Denote this set Cfactor since it is the direct extension of the cycle basis of each factor graph.

Formally:

Cfactor = (C1 × V2) ∪ (V1 × C2) (3.9)

where × denotes the standard Cartesian products of sets.

The set Cfactor accounts for the first L1V2 +L2V1 loops in C, but does not account for the

remaining (V1−1)(V2−1) loops. To see why there are more loops in C than are spanned by

combinations of the circuits in Cfactor, glance back at the Cartesian product of a line segment

with another line segment shown in Figure 3.5. Both factor graphs have no loops, yet the

Cartesian product of the two graphs is full of cycles. These cycles are formed by picking

on edge from G1 and another from G2. In general the cycles that are formed in this way

take a characteristic form: a square. This is the motivation for the use of the square as the

symbol for the operator: the Cartesian product of two edges is a square. The space of loops

spanned by the Cartesian product of pairs of edges is the square space of the graph [64].

Loops of this kind are always formed by picking one edge from E1 and one edge

from E2. Denote the endpoints of the first edge v1, v2 and the second w1, w2. Then the

corresponding loop is constructed by walking across the first edge, across the second edge,

backwards across the first, then backwards across the second. This moves from (v1, w1) to
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(v2, w1) to (v2, w2) to (v1, w2) and finally back to (v1, w1).

Clearly there are E1E2 squares in the square space, however we are only looking for

(V1 − 1)(V2 − 1) loops to complete the cycle basis. Since, in general E1 ≥ V1 − 1 and

E2 ≥ V2 − 1 the set of all loops formed by the Cartesian product of two edges is, usually

too large. In fact, unless both factor graphs are trees this set is too large. The special case

when both factor graphs are trees offers inspiration for a method for finding a cycle basis

for the square space.

It is always possible to construct a cycle basis of a graph by first picking a spanning

tree for the graph, and then associating each cycle with a particular chord. Assume that C1

and C2 are fundamental cycle bases associated with spanning trees T1 and T2. The spanning

trees have V1 − 1 and V2 − 1 edges respectively. Therefore, if we prune G1 and G2 down

to a pair of spanning trees T1, T2 associated with their loop bases then we have identified

two sets of edges of size V1 − 1 and V2 − 1. Therefore the Cartesian product of these two

trees will have a loop space with dimension (V1−1)(V2−1), which is exactly the right size

to complement the loop space formed by the independent loop spaces of the factor graphs.

Denote the loops space of the Cartesian product of these two trees Ctree.

It remains to show that the cycle space of the Cartesian product can be decomposed

into a subspace of circuits spanned by circuits from Cfactor, and circuits from Ctree. That is,

to show that:

C = Cfactor ∪ Ctree (3.10)

is a cycle basis.

By construction Ctree consists of (V1 − 1)(V2 − 1) loops. This set is independent from

the set of loops Cfactor since all the loops in Cfactor must include a chord of either G1 or G2,

and none of the loops in Ctree include a chord since the chords were pruned to produce the
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trees. This implies that every loop in Cfactor includes at least one edge that is not included

in any loop in Ctree. Therefore there is no way to add the loops in Ctree together to produce

a loop in Cfactor. Alternatively, every linear combination of loops in Cfactor must include a

chord, so cannot produce any loop in Ctree.

All that remains to show is that Ctree is a linearly independent set of cycles. This

independence can be shown as follows. First, index all the nodes in both trees, moving

outward from some root. Next index all the edges in each tree in lexicographical order of

their endpoints. Then list all the pairs of edges that form the loops in Ctree in lexicographical

order of the indexes corresponding to the two edges that define each loop. This defines an

ordering of all the loops in Ctree such that the h + 1st loop in the set must always contain a

node (v, w) ∈ V that was not contained in any of the previous loops. Since all loops must

have an edge into, and out of every node they pass through, this implies that the h + 1st

loop contains a pair of edges that is not contained in any of the previous loops. Therefore

the h + 1st loop is independent of all the previous loops. In turn this implies that Ctree is a

linearly independent set of loops, so has dimension (V1 − 1)(V2 − 1), and the loop space C

can be decomposed into the basis formed by the loops in Cfactor and Ctree.

Note that the cycle bases on the components need not be a fundamental cycle bases

since any cycle basis can be reached by a linear combination of cycles in the fundamental

cycle bases associated with the trees used to build Ctree without changing the range of the

cycles in Cfactor

This provides a general construction rule for building the cycle space of Cartesian

products of two graphs. First, construct a spanning tree for both networks, and a cycle

basis for both networks. Then consider all loops that are formed by Cartesian products of

an edge in the first tree and an edge in the second. Next consider all loops that are given

by fixing a component, and picking a loop from the cycle space of the remaining factor
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Figure 3.7: The cycle basis for the Cartesian product of two triangles. The chords that are
pruned to produce the spanning trees are shown with dashed lines.

graph. This particular basis is the Hammack basis [44, 64] of a product graph. It should be

noted that the Hammack basis usually isn’t the smallest cycle basis in the sense that there

are usually other bases with a smaller total perimeter [44]. However, for our purposes this

construction is preferred because it introduces a natural partition of the loop space into two

sets, and leads to an easy construction rule for the curl and face Laplacian.

For example, consider the cycle space associated with the Cartesian product of two

loops. The resulting graph is a square lattice on a torus. Then the set of loops in Cfactor are

the sets of circles that wrap around the torus. A grid on a torus can always be represented

as a grid with periodic boundary conditions. The spanning trees for both loops are lines, so

the Cartesian product of the two spanning trees is always a grid. The chord to be removed

can be chosen to be the edge that passes around the periodic boundary of the grid when the

torus is represented as a grid with periodic boundaries. Then Ctree is just the set of faces of

the grid when the edges crossing the periodic boundary are removed. This division of the
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Figure 3.8: The Cartesian product of two loops is a grid on a torus. The component loops
correspond to the loops that circumnavigate the torus (shown in green and orange on the
torus), and the loops formed by the Cartesian product of the two spanning trees are the
faces of the grid that is formed when the torus is cut and laid flat as a grid. The chords of
the spanning tree correspond to the edges that are cut.

loops on a torus is shown in Figure 3.8.

The Hammack basis can be used to build a basis for the cycle space of the Cartesian

products of more than two graphs by breaking the product into a sequence of sequential

products. For example, given G = A�B�C we could construct C by first constructing a

basis for A�B, then applying the method again to find a basis for (A�B)�C. That is, first

find a basis for the cycle space of A and B, then construct the set of loops Cfactor(A�B)

formed by picking a basis loop from CA or CB, and a state from VB or VA respectively. Then

pick a spanning tree for A and B, and construct the set of all loops formed by taking the

Cartesian product of an edge drawn from the spanning tree on A and the spanning tree on

B. This forms a basis for the cycle space of the Cartesian product ofA and B. To construct

the full basis we use this Hammack basis as the cycle basis for A�B that is required to

build Cfactor((A�B)�C). To complete the Hammack basis ofA�B�C we need a spanning
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Figure 3.9: The spanning trees for two examples of Cartesian graph products. Edges not in
the trees are shown in grey. The special fixed node in B is denoted b∗, and the corresponding
nodes are shaded in.

tree for A�B.

This tree can be constructed directly from the spanning trees for A and B. First, fix the

second component of the pair of states (a, b) at a particular node b∗ in B. Then we can span

all different states of the form (a, b∗) with the spanning tree for A. This allows us to move

from any state (a1, b∗) to (a2, b∗). What remains is a tree that connects any other point in

the product space. Suppose we want to move from (a1, b1) to (a2, b2). Then hold a1 fixed,

and walk along the spanning tree of B to get to (a1, b∗). Then hold b∗ fixed and walk along

the spanning tree of A to get to (a2, b∗). Then, holding a2 fixed, walk along the spanning

tree of B to get to (a2, b2). An example is shown in Figure Figure 3.9 for the Cartesian

product of two line segments, and the Cartesian product of two triangles. Notice that this

construction is not commutative, and requires the choice of some special node in B.

Given a spanning tree for the Cartesian product of A and B we can build Ctree for

(A�B)�C, and a Hammack basis for G. Notice that this construction depends on the order

in which the products are applied.
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Repeated Products and Lattices

The technique developed for constructing Hammack bases of product graphs is especially

useful when considering the repeated Cartesian product of a graph with itself. Consider the

product:

G = Gn0 = Gn−1
0 �G0 = G0�G0...�G0 (3.11)

A product of this kind is the generalized hypercube of G0 [64]. If G0 then the graph is a

Hamming graph [68]. The lattice Zn is the generalized hypercube of the line.

Before specifying the construction of the cycle space it is important to consider the

asymptotics of the dimension of each space. Let V0, E0, F0 denote the dimensions of the

node, edge, and loop space in the original graph. Then, after n products with itself:

V = V n
0

E = nE0V
n−1

0 .

(3.12)

The number of edges can be computed by noting that any edge in the product can be

specified by first picking which copy of G0 it is drawn from (n choices), then picking an

edge from G0 (E0 options), then specifying the state of the remaining n− 1 compartments

(V n−1
0 options). It follows that the loop space has dimension:

L = (nE0 − V0)V n−1
0 + 1 = nL0V

n−1
0 + (n− 1)V n

0 − nV n−1
0 + 1. (3.13)

The range of gradient spans (V − 1)/E percent of the space of edges, so, as n becomes

large the percent of the edge space spanned by the gradient vanishes O(1/n):

V

E
=

V n
0 − 1

nE0V
n−1

0

→ V0

nE0

→ 0. (3.14)
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Consequently, as n becomes large the loop space grows much faster than the node space.

The range of adjoint curl spans L/E percent of the space of edges. Since L = E−(V −1),

F
E

converges to 1 − V0
nE0

for large n. Therefore, when n is large the loop space makes up

all but O(1/n) percent of the edge space. Therefore, even if the dimension of the initial

cycle space is small, the dimension of the cycle space grows faster than the dimension of

the state space in n, and for n > V0
E0

the dimension of the cycle space will be larger than the

number of vertices in the network.

It is also interesting to consider the proportion of the loop space associated with Cfactor

and with Ctree. When n is large:

|Cfactor|
L

=
nL0V

n−1
0

(nE0 − V0)V n−1
0 + 1

→ L0

E0

+O(1/n). (3.15)

Therefore, as n becomes large, the fraction of loops in the cycle basis that are copies of

loops in the original graph approaches F0/E0 from above. Therefore, if E0 is much larger

than V0 (the initial graph is dense) then most of the loops in the Hammack basis of G will

be loops from the factor graphs, and if E0 ≈ V0 then most of the loops will be squares in

the square space of the product graph.

For concreteness we will now consider an important example: the Cartesian product

of a line segment with itself. The example will help show how the construction developed

at the start of this chapter is an essential tool for understanding the cycle basis of high

dimensional lattices.

Set G0 to a line segment with V0 = m nodes. Then E0 = m − 1 and F0 = 0. The first

product G2
0 is simply the m by m grid. Suppose m = 3. Then G2

0 has 9 nodes, 12 edges,

and 4 basis loops (see Figure 3.10). Notice that in this simple example the number of basis

loops is exactly equal to the number of faces in the graph, which is exactly the number of
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Figure 3.10: The Cartesian product of a line segment with itself producing a 2D and 3D
lattice.

pairs of edges that can be chosen from G0. This is because G0 has no loops, so the spanning

tree for G0 is G0. From this example one might conjecture that the number of basis loops

in a lattice is equal to the number of squares in the lattice, and the basis can be constructed

directly from these squares. This is true for the 2D lattice, but is not true for the 3D lattice,

or any higher dimensional lattice. For example, the three dimensional lattice, G3
0 , has 27

nodes, and 54 edges, leaving 28 basis loops. The lattice has 36 squares, not 28, so the set

squares is too large to be a cycle basis.

The fact that the space of basis loops does not include all squares follows from the fact

that the cycle basis of a product graph does not include all loops formed by pairs of edges

in the factor graphs. The 3D lattice can be written G2
0�G0 and G2

0 has a nonempty loop

space. Therefore a spanning tree of G2
0 does not include all of its edges, so the space of

basis loops of G3
0 does not include all loops that can be formed by pairs of edges.

A simpler example is the cube formed by taking the Cartesian product of an edge with

itself three times. The cube has six faces, but only five independent loops. Any face of
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Figure 3.11: The Cartesian product of an edge with itself three times produces a cube.
There are 6 faces of the cube, but the dimension of the loop space is five. Any face of the
cube can be produced by adding together the remaining five faces.

the cube can be constructed by combining the other five faces of the cube, as illustrated

in Figure 3.11. A cycle basis for the cube can be constructed by omitting one face from

the set of faces. For example, pick all the vertically oriented faces (up and down), all

the azimuthally oriented faces (front and back), and one horizontally oriented face (either

left or right). This construction is a Hammack basis. The cube, G3
0 , is the product of G2

0

and G. Orient G2
0 so that it corresponds to either the top or bottom face, and G0 so that it

corresponds to a vertical edge. Then Cfactor are the top and bottom faces, and Ctree correspond

to three of the four remaining faces. Which face is left out corresponds to which edge is

left out of the spanning tree of G2
0 . If the rightmost edge is left out then the set of basis

loops is all the faces except the right face of the cube. The same type of construction works

for the three by three by three lattice presented before (see Figure 3.12).

In effect, this construction partitions the squares in the lattice according to the orienta-

tion of the edges on the perimeter of the loop. Any edge only changes one coordinate at a
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Figure 3.12: The cycle basis of a three by three by three lattice. The three by three lattice is
shown in the upper right, with the edges left out of the spanning tree marked with dashes.
The three by three by three lattice is formed by taking a product of the three by three lattice
with a three node line segment. This lattice is shown in the upper right, with internal edges
and nodes greyed out for ease of viewing. The bottom shows the cycle space, which can
be broken into three sets of cross-sections. The first two include all azimuthal, and all
vertical faces. The final is a sole cross-section given by fixing the azimuthal coordinate.
The missing cross-sections correspond to the edges left out of the three by three lattice in
its spanning tree.

time, so for an n dimensional lattice each possible face orientation is specified by a choice

of a pair of coordinates. Let the (i, j, s) cross-section (or page) be the set of all loops

given by picking a pair of edges, one which changes coordinate i and one which changes

coordinate j, and then fixing the remaining coordinates to be equal s1, s2, ...sn−2. Let the

(i, j) book be the set of all cross-sections (pages) oriented in (i, j). Denote the (i, j) book

Ci,j and the (i, j, s) cross section Ci,j(s). Then Ci,j = ∪s∈Vn−2
0
Ci,j(s). In this notation the

cycle basis of the three by three by three lattice is {C1,2, C1,3, C2,3(1)}.

This cycle basis construction extends naturally to higher dimensional lattices. Suppose

the lattice is n-dimensional. Then consider all loops contained in the library C1,2, C1,3,

C1,4, ... C1,n. Each book in the library contains E2
0V

n−2
0 loops. There are n− 1 books in the
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library, so the library contains (n−1)E2
0V

n−2
0 loops. The full lattice had (nE0−V0)V n−1

0 +1

loops, however, since G0 is a tree, E0 = V0−1 so the full lattice has (n(V0−1)−V0)V n−1
0 +

1 = (n− 1)V n
0 −nV n−1

0 + 1 loops. Subtracting the (n− 1)(V0− 1)2V n−2
0 loops contained

in the first library leaves (n − 2)V n−1
0 − (n − 1)V n−2

0 + 1 loops unaccounted for. This is

precisely the number of basis loops in Gn−1
0 . There are V0 copies of Gn−1

0 in Gn0 , one for

each possible value of the first coordinate. So, to specify the remaining loops, fix the first

coordinate to a specific value (usually to 1). The choice of the fixed value corresponds to the

choice of fixed value used in the construction of spanning trees of Cartesian products. Then

the remaining graph is Gn−1
0 . This process can be repeated recursively until the remaining

lattice is a one-dimensional line segment, which contains no loops.

Therefore the loop space of an n-dimensional square lattice can be partitioned into a

sequence of libraries of the form:

C =



C1,2, C1,3, C1,4...C1,n

C2,3(s1), C2,4(s1), ...C2,n(s1)

C3,4(s1, s2), ...C3,n(s1, s2)

...

Cn−1,n(s1, s2, ...sn−2)


. (3.16)

It remains to check that this set contains the right number of loops. Summing over each
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library:

n−1∑
j=1

(n− j)(V0 − 1)2V n−1−j
0 =

(V0 − 1)2

V0

n−1∑
j=1

(n− j)V n−j
0

=
(V0 − 1)2

V0

(n− 1)V n+1
0 − nV n

0 + V0

(V0 − 1)2

= (n− 1)V n
0 − nV n−1

0 + 1

which is precisely the dimension of the cycle space of the lattice.

Thus the Hammack cycle basis for pairwise products can be extended to provide an

elegant decomposition of the loop space of high dimensional lattices. This decomposition

proceeds recursively, first considering all loops that change the first coordinate, then fixing

the first coordinate to a particular value and considering all loops that change the second

coordinate with the first coordinate fixed. Proceed one coordinate at a time, with all

previous coordinates fixed, and including all loops that vary the coordinate of interest.

Once all loops varying that coordinate have been counted fix it to a set value. Continue

until a set of basis loops has been specified.

3.3.2 Cartesian Products: Operators

In order to apply the HHD to a Cartesian product of two graphs we need a method for

constructing the gradient, node Laplacian, curl, and face Laplacian of the product graph.

The basic tool for the construction of the operators is the Kronecker product.
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Kronecker Products and Sums: a Review

The Kronecker product of the matrices A ∈ Rn1,m1 and B ∈ Rn2,m2 is the block matrix

[61, 69]:

A⊗B =


a11B a12B ... a1m1B

a21B a22B ... a2m2B

...
... . . . ...

an1,1B an1,2B ... an1,m1B

 . (3.17)

The Kronecker product is associative and bilinear, but is not commutative. In general

A ⊗ B = Sᵀn1,n2
(B ⊗ A)Sm1,m2 where Sn1,n2 and Sm1,m2 are perfect shuffle matrices. A

perfect shuffle matrix Sn,m is the permutation matrix which exchanges the ordering:

(1, 1), (1, 2), ...(1, n), (2, 1), (2, 2), ...(2, n), ..., (m, 1), (m, 2), ...(m,n)

with the ordering:

(1, 1), (2, 1), ...(m, 1), (1, 2), (2, 2), ...(m, 2), ..., (1, n), (2, n), ...(m,n).

That is, Sn,m is the permutation that would exchange a column-wise vectorization of a

matrix with a row-wise vectorization of the matrix [69].

The Kronecker product also obeys the mixed product rule, which states that ifA,B,C,D

are all matrices, with dimensions such that AC and BD can be formed then [61]:

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (3.18)

A number of other properties of the Kronecker product will be useful here. In particular,

the spectrum is the product of the spectra (counted with multiplicity), and the singular
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values are the products of the singular values. As a consequence the inverse and psuedo-

inverse of the product is the product of the inverses and psuedo-inverses, the trace of the

product is the product of the traces, and the determinant of the product of A ∈ Rn×n, and

B ∈ Rm×m is det (A)m det (B)m [69]. Similarly, transpose of a Kronecker product is the

product of the transposes.

The Kronecker sum is defined:

A⊕B = A× Im + In ×B (3.19)

where Im and In are m×m and n× n identity matrices and A is n× n and B is m×m.

The Kronecker sum has the convenient property that:

exp (A⊕B) = exp (A)⊗ exp (B). (3.20)

We will show that the gradient, node Laplacain, and parts of the curl and face Laplacian

associated with Cfactor can all be formed by Kronecker products and Kronecker sums.

The Gradient and Node Laplacian

Consider the gradient first. The gradient maps from nodes to edges, so to specify the

gradient we need to first specify an ordering for the nodes and for the edges. List the nodes

lexicographically. This orders the nodes of the product:

(1, 1), (1, 2), ..., (1, V2), (2, 1), (2, 2), ...(2, V2), ...(V1, 1), (V1, 2), ...(V1, V2).

Notice that in this ordering all the edges from G2 exclusively connect nodes of the product

graph, G, whose indices are the same modulo V2, and no edge from G1 connects nodes of
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the product graph seperated by more than V2.

Next, split the edges into two blocks. Let the first block correspond to edges that

change the second coordinate, and the second block correspond to edges that change the

first coordinate. Within the first block, order the edges according to their order in G2 and

according to the order of the nodes in the first coordinate. That is, list the edges:

(v1, e1), ...(v1, eE2), (v2, e1), ..., (v2, eE2), ..., (vV1 , e1), ..., (vV1 , eE2).

Then the gradient operator can be written as a block matrix:

G =

 A

B

 . (3.21)

where the first block is:

A =


G2 0 ... 0

0 G2 ... 0

...
... . . . ...

0 0 ... G2

 = IV1 ⊗G2. (3.22)

The second block would take the same form had we ordered the nodes:

(1, 1), (2, 1), ..., (V1, 1), (1, 2), (2, 2), ...(V1, 2), ...(1, V2), (2, V2), ...(V1, V2).

This is precisely the permutation accomplished by the shuffle matrix Sv1,v2 , so:

B = (IV2 ⊗G1)Sv1,v2 . (3.23)
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Note that the shuffle is applied on the left since rearranging the node indexing changes the

columns of the gradient, not the rows.

Therefore the gradient operator is:

G =

 IV1 ⊗G2

(IV2 ⊗G1)Sv1,v2

 . (3.24)

The node Laplacian follows by evaluating the product GᵀG (intermediate steps depend on

Equation (3.18))::

GᵀG = (IV1 ⊗G2)ᵀ(IV1 ⊗G2) + SᵀV1,V2(IV2 ⊗G1)ᵀ(IV2 ⊗G1)SV1,V2

= (IᵀV1 ⊗G
ᵀ
2)(IV1 ⊗G2) + SᵀV1,V2(I

ᵀ
V2
⊗Gᵀ1)(IV2 ⊗G1)SV1,V2

= (IᵀV1IV1)⊗ (Gᵀ2G2) + SᵀV1,V2(I
ᵀ
V2
IV2)⊗ (Gᵀ1G1)SV1,V2

= IV1 ⊗ (Gᵀ2G2) + (Gᵀ1G1)⊗ IV2

.

Denote the node Laplacians of the two factor graphs L2
V1

and L2
V2

. Then the node Laplacian

for the full graph is the Kronecker sum of the node Laplacian on each product graph [40]:

L2
V = L2

V1
⊕ L2

V2
= L2

V1
⊗ IV2 + IV1 ⊗ L2

V2
(3.25)

This relation allows the node Laplacian for the full graph to be constructed directly from the

node Laplacian of the factor graphs. These formulas also generalize easily for the Cartesian

products of multiple graphs.2

Suppose:

G = �nj=1Gj. (3.28)

2The gradient of a repeated product can also be computed explicity without iterating Equation (3.24).
Reorder the nodes of the product graph so that we count over the first coordinate first, then the second, then
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Then the node Laplacian is given by:

L2
V =

n∑
j=1

(⊗j−1
h=1IVh)⊗ L2

Vj
⊗ (⊗nh=j+1IVh). (3.29)

For example, for the product of three graphs:

L2
V = L2

V1
⊗ IV2 ⊗ IV3 + IV1 ⊗ L2

V2
⊗ IV3 + IV1 ⊗ IV2 ⊗ L2

V3
.

The Curl and Face Laplacian

The curl is decidedly trickier to construct because the set of loops in Ctree are not formed

from copies of loops that existed in either of the factor graphs. Even so, the structure of the

Hammack basis allows the curl to be constructed in blocks using Kronecker products.

As usual, partition the edges according to their factor graphs. Then the curl can be

written as the block matrix:

C =


A1 0

0 A2

B

 . (3.30)

the third, and so on. Then the gradient can be written:

G =



(⊗n
j=2IVj

)⊗G1

...
(⊗n

h=j+1IVh
)⊗
Ä
(⊗j−1

h+1IVh
⊗Gj)S∏j−1

h=1 Vh,Vj

ä
...(

(⊗n−1
h=1IVh

)⊗Gn

)
S∏n−1

h=1 Vh,Vn

 . (3.26)

For example, for a product of four graphs:

G =


IV4
⊗ IV3

⊗ IV2
⊗G1

IV4 ⊗ IV3 ⊗ (IV1 ⊗G2)SV1,V2

IV4 ⊗ (IV1 ⊗ IV2 ⊗G3)SV1V2,V3

(IV1
⊗ IV2

⊗ IV3
⊗G4)SV1V2V3,V4

 . (3.27)
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The upper block is divided into two diagonal blocks corresponding to the loops in Cfactor

that exclusively use edges from G1, and that exclusively use edges from G2.

If the edges are ordered lexicographically then:

A1 = IV1 ⊗ C2, A2 = IV2 ⊗ C1. (3.31)

No shuffle matrix is needed since the columns of the curl correspond to the edges, and each

block of edges can be ordered according to the scheme introduced for the first block of

edges when constructing the gradient.

All that is left is to build B. The matrix B is the curl associated with the Cartesian

product of T1 with T2 where T1 and T2 are spanning trees of the factor graphs. To start we

need to introduce an ordering for the loops in this product. Recall that all the loops in the

square space are specified by a pair of edges, one from each spanning tree. Thus the loops

in the cycle basis for the square space can be indexed by indexing the edges in the spanning

trees.

Order the edges in both trees. Then list the pairs of edges:

(1, 1), (1, 2), ...(1, V2 − 1), (2, 1), (2, 2), ..., (2, V2 − 1), ..., (V1, 1), (V1, 2), ...(V1, V2 − 1).

This establishes a definite order for the list of loops in Ctree. To retain consistency with the

gradient keep the same ordering of the edges.

Each row ofB contains four nonzero elements, two of which correspond to edges in the

first factor graph, and two of which correspond to edges in the second factor graph. One

approach for constructing B is to build an algorithm which produces the indices of these

edges automatically.

To specify the curl we must be able to identify the edge indices of the square in the
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product graph corresponding to each pair of edges drawn from the factor graphs. To make

sure the algorithm is fast we take advantage of the ordering of the edges to establish a

mapping from the value of the fixed coordinate, and the edge in the changing coordinate,

to the edge index in G. This first requires a mapping from edges to endpoints.

Denote the two endpoint maps M1 and M2. Let M1(k) = (i(k), j(k)) where i, j are the

endpoints of edge k in G1. Define M2 similarly.

Then, given a loop index in the square space find the corresponding edge pair k, h.

From this pair compute the four endpoints M1(k),M2(h) = (i1, j1), (i2, j2). This maps to

four edges in G, namely the edges connecting (i1, i2) → (j1, i2) → (j1, j2) → (i1, j2) →

(i1, i2). The corresponding edge indices, e1,2,3,4, in the product graph are:

(e1, e2, e3, e4) = ((i1−1)E2+h, (j1−1)E2+h,E2V1+(i2−1)E1+k,E2V1+(j2−1)E1+k.)

Since each edge in the factor graphs must be traversed both forward and backward

to traverse a square in the product, the edges can be oriented in T1 and T2 so that the

corresponding row in B has nonzero elements 1,−1, 1,−1. This grants a method for

building B one row at a time. In psuedocode:

Algorithm for Construction of C (Ctree):

1. pick a spanning tree for each factor graph, T1, T2, and order all edges in factor graphs

so that the chords are listed last.

2. Form all pairs (k, h), k ≤ V1 − 1, h ≤ V2 − 1 in lexicographic order.

3. Loop over the pairs, and compute endpoints (i1, j1) = M1(k), (i2, j2) = M2(h).

4. Compute edge indices: (e1, e2, e3, e4) = ((i1 − 1)E2 + h, (j1 − 1)E2 + h,E2V1 +
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(i2 − 1)E1 + k,E2V1 + (j2 − 1)E1 + k)

5. Set the corresponding row in B to sparse((e1, e2, e3, e4), (1,−1, 1,−1)).

Once B is constructed the curl is complete. The face Laplacian can then be computed

by taking CCᵀ. The Laplacian can also be written in a block form, and some of the blocks

are given by simple Kronecker products. These are the blocks corresponding to the product

of A1 and A2 with themselves, and take the form IV1 ⊗ L2
C2 and IV2 ⊗ L2

C1 . The rest of the

blocks consist of the product of B with Bᵀ, and the cross terms between A1, A2 and B.

This method can be applied to the gradient and curl of any pair of factor graphs to

product the gradient, curl, node Laplacian, and face Laplacian of their Cartesian product.

It requires the gradient and curl of the original factor graphs, as well as the edge to end-

point mapping, and a specific choice of spanning trees. The endpoint mapping is usually

available directly from the adjacency matrix, which will usually be constructed explicitly

in order to build a sparse representation of the gradient. The spanning trees can be built

using search procedures, or, if the factor graphs are small, by hand.

An alternative approach is to further subdivide the matrix B into two blocks:

B = [ B1 B2 ] (3.32)

and express each block as a Kronecker product.

The key idea here is to pay attention to the ordering of the edges and the ordering of

the loops. First, the edges are ordered in two blocks: all the edges from the second factor

graph, then all edges from the first factor graph. There are V1E2 edges in the first set amd

V2E1 in the second. This division corresponds to the blocking of B. Focus on the first

block. Within this block there are V1 sets of edges with E2 entries, each corresponding to

121



the list of all edges in G2 while the state from G1 is held fixed. Therefore the columns of B1

can be can further subdivided into V1 sets of E2 columns. Each of these blocks corresponds

to a particular node in G1.

Now consider the ordering of the loops in Ctree. The list of loops is ordered by the

lexicographic list of all pairs of edges drawn from the two spanning trees. Therefore the

list of loops in Ctree can be broken into V1− 1 blocks, each consisting of V2− 1 rows. Each

block corresponds to a particular edge from the first spanning tree, and each row within

each block corresponds to a particular edge from the second spanning tree. Either assume

that the edges in G1 and G2 have been ordered so that the spanning trees correspond to the

first V1−1 and V2−1 entries of each, or let P (T1) and P (T2) denote permutation matrices,

where P (Tj) reorders the edges of Gj so that the edges in the tree Tj are listed first.

Focus on the first V2 − 1 rows of B1. These correspond to all the edge pairs from

T1 and T2 where the edge from G1 is set to the first edge in T1. The endpoints of this

edge in G1 are given by the nonzero entries of the corresponding row in the gradient, G1.

These endpoints are the two different values of the first component that appear in the loop.

Therefore these endpoints map to blocks in the columns of B1. These column blocks

correspond to the set of all edges from G2 with the state in G1 fixed. Since the loops in Ctree

are listed lexicographically in terms of pairs of edges all the first V2 − 1 edges share these

two endpoints. Therefore the first V2 − 1 rows of B1 are zero except in the two blocks of

columns corresponding to the endpoints of the first edge in T1. Moreover, all of the edges in

the first column block are crossed in the forward direction, while all of the second column

block are crossed in the backwards direction. Therefore the first row block of B1 is the

Kronecker product of the first row of G1 with some V2 − 1 × E2 matrix. Since this logic

applies to all the row blocks of B1 we can infer that B1 is given by the Kronecker product

of the first V1 − 1 rows of G1 with some V2 − 1 × E2 matrix. The first V1 − 1 rows of
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Figure 3.13: Block construction of the component of the curl associated with the square
space via a Kronecker product. The large rectangle represents the bottom block of the curl
associated with the cycle basis of the square space. It has a row for every pair of edges, one
from the spanning tree of each graph. It has a column for every edge in the product graph.
The edges in the product graph are broken into two blocks. The first block corresponds to
all combinations of a fixed vertex from the first factor graph, and an edge from the second
factor graph. These are ordered so that each block of edges corresponds to a particular
vertex from the original graph. Therefore, for every edge from the first factor graph there
is a block of rows, and two blocks of columns corresponding to the two endpoints of that
edge. These blocks are shown in purple, blue, and orange respectively.

G1 are the restriction of G1 to the spanning tree T1. This restriction is accomplished by

IV1−1,E1P (T1)G1 where IV1−1,E1 is the matrix corresponding to the first V1 − 1 entries of

the E1 by E1 identity.

Now consider the intersection of the first nonzero row and column block of B1. The

rows corresponds to all loops formed by fixing the edge in T1 and any edge from T2, and are

listed in order of the edges in T2. The columns correspond to all edges in G corresponding

to setting the first component to the first endpoint of the edge in T1 and listing all the edges

in G2. Therefore the k, l entry in this block corresponds to an edge in a loop in the square

space of G formed by the chosen edge in T1 and the kth edge in T2. The corresponding
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edge in G is given by setting the first component to the first endpoint of the chosen edge

in T1 and crossing the lth edge in G2. The loop only includes the edge if the lth edge in

G2 corresponds to the kth edge in T2. If the edges are listed so that all the edges in the

tree appear first this means that this entry is nonzero if and only if k = l. Therefore, the

first nonzero block of B1 is IV2−1,E2 if the edges are listed so that the all edges in the tree

appear first. Otherwise we need to permute the edge ordering, so the first nonzero block is

I(V2 − 1, E2)P (T2)ᵀ. This same logic applies to all the nonzero blocks of B1 so:

B1 = (IV1−1,E1P (T1)G1)⊗ (I(V2 − 1, E2)P (T2)ᵀ). (3.33)

The block structure of B1 is illustrated in Figure 3.13.

The same construction would apply to B2 if the loops were listed by walking through

the edges in T1 before the edges in T2. Therefore the second block is given by the same

construction as the first block, only with the rows shuffled to match the alternate ordering

of the loops:

B2 = SV1−1,V2−1 [(IV2−2,E1P (T2)G2)⊗ (I(V1 − 1, E1)P (T1)ᵀ)] . (3.34)

Let G1(T1) = IV1−1,E1P (T1)G1 and G2(T2) = IV2−2,E1P (T2)G2 denote the gradients

of each spanning tree. Similarly let I(T1) = I(V1 − 1, E1)P (T1)ᵀ and I(T2) = I(V2 −

1, E2)P (T2)ᵀ. Then the curl of Ctree is:

C =


IV1 ⊗ C2 0

0 IV2 ⊗ C1

G1(T1)⊗ I(T2) SV1−1,V2−1 [G2(T2)⊗ I(T1)]

 . (3.35)
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Equation (3.35) gives a more direct method for computing the curl than the algorithmic

method introduced before.

To find the face Laplacian take the product of the curl with the adjoint curl. This is:

L2
C =


IV1 ⊗ L2

C2 0 (G1(T1)⊗ C(T2)ᵀ)ᵀ

0 IV2 ⊗ L2
C1 (G2(T2)⊗ C1(T1))ᵀSᵀV1−1,V2−1

G1(T1)⊗ C(T2)ᵀ SV1−1,V2−1(G2(T2)⊗ C1(T1)) G1(T1)Gᵀ1(T1)⊕G2(T2)Gᵀ2(T∈)


(3.36)

where (Tj) denotes the restriction of the operator to the edges in Tj . For the node Laplacians

this means the node Laplacian of the spanning trees. Notice that the first two diagonal

blocks are built from the face Laplacians of the factor graphs, while the remaining blocks

are products of the restricted gradient and curl. Also notice that the bottom block has the

same form as the node Laplacian for the Cartesian product of the spanning trees, except that

it is the Kronecker of the gradient of the divegrence, not of the divergence of the gradient.

The divergence of the gradient is the node Laplacian. The gradient of the divergence is

related to the graph Helmholtzian [15, 16], and is closely related to the signed adjacency

matrix of the edge/line graph (see Section 4.6). This result generalizes the observation that

∇×∇ = ∇(∇·)−∇ · ∇ in R3 to the Cartesian product of trees.

The next section will take advantage of the structure of the operators to introduce intu-

itive spectral methods for solving the discrete Poisson equation. This analysis will include

an explicit construction of the eigenvalues and eigenvectors in terms of the eigenvalues

and eigenvectors of the component Laplacians. Expressing the spectrum of the product

Laplacain in terms of the spectrum of the product Laplacians will lead to a solution method

analogous to separation of variables, and will enable an explicit algorithm for solving the

discrete Poisson equation on lattices that uses the Fast Fourier Transform (FFT) [70] to

transform into and out of the eigenbasis of the node Laplacian efficiently.
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3.3.3 Cartesian Products: Laplacian and Spectral Methods

In the previous section we introduced methods for building the operators associated with

the HHD of the Cartesian product of two graphs. This section will focus on an analytical

method for solving the discrete Poisson equation associated with scalar potential. Once the

scalar potential is found the conservative flow can be recovered from the gradient of the

scalar potential and the rotational flow can be recovered by subtracting the conservative

flow from the full edge flow. If a fundamental cycle basis is used on each factor graph then

the Hammack basis is a fundamental cycle basis for the product graph, so the rotational

potential can be recovered directly from the rotational flow without any need to solve a

linear system.

The tool introduced here for solving the discrete Poisson equation is a separation of

variables approach inspired by the spectral solution to the Lyapunov equation (see [71]).

The eigenvalues and eigenvectors of the node Laplacain L can be built explicitly from the

eigenvalue decomposition of the factor graphs [61]. This provides an intuitive spectral

method for solving the Poisson equation.

Consider the discrete Poisson equation associated with the product of two graphs:

L2
Vφ = −Gᵀf, L2

V = (Gᵀ1G1)⊕ (Gᵀ2G2). (3.37)

The potential φ is defined on all V1V2 nodes in the product. Define the matrix Φ whose

i, j entry is φi,j where (i, j) indexes a pair of nodes from G1 and G2. Then φ = vec(Φ). The

discrete Poisson equation can then be recast as a matrix equation using the identity [69]:

(A⊗B)vec(M) = vec(AMB). (3.38)
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Then:

GᵀGφ = [(Gᵀ1G1)⊗ IV2 ]φ+ [IV1 ⊗ (Gᵀ2G2)]φ = vec (Gᵀ1G1ΦIV2 + IV1ΦG
ᵀ
2G2) .

Multiplication by the identities does not change Φ, so, if mat() denotes the inverse

operation to vec(), then the discrete Poisson equation can be written as the matrix equation:

Gᵀ1G1Φ + ΦGᵀ2G2 = −mat(Gᵀf). (3.39)

Let Df = −mat(Gᵀf) be the matrix equal to the divergence of the edge flow. Then the

matrix Poisson equation reduces to:

L2
V1Φ + ΦL2

V2
ᵀ

= Df . (3.40)

The transpose on the second Laplacian is introduced for convenience. Since both

Laplacians are symmetric it makes no difference whether they are transposed. In this form

the matrix Poisson equation is an example of the Sylvester equation [69, 72]:

AX +XBᵀ = C (3.41)

and is similar in form to the Lyapunov equation:

AX +XAᵀ = BBᵀ. (3.42)

The Sylvester equation is important in control theory [69], and is used to approximate the

solution to the Poisson equation on rectangular domains using finite differences [73]. The

Lyapunov equation is a special case of the Sylvester equation, and plays a central role the
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analysis of stochastic processes.

The Sylvester equation admits an elegant solution analogous to separation of variables.

It can be solved efficiently by a Schur factorization [74], or by spectral methods. Efficient

solution methods are addressed at length in [72]. Our solution leverages the relation be-

tween the spectrum of the two component Laplacians and the Laplacian of their Kronecker

sum. Spectral properties of Kronecker products and sums are used widely in modal analysis

of stiffness matrices, and other matrices related to regular graph structures [61].

Expand both component Laplacians. Since both are real symmetric both are unitarily

diagonalizable:

L2
V1 = UΛUᵀ

L2
V2 = WΣW ᵀ

(3.43)

where U and W are orthonormal matrices.

Then the solution can be expressed in three steps:

D̂f = Uᵀmat(Gᵀf)W ᵀ → φ̂ij = − d̂ij
λi + σj

, φ̂11 = 0 → Φ = UΦ̂W. (3.44)

Notice the similarity to the spectral solution to a system of linear equations. The

first step amounts to transforming the right hand side into the eigenbasis. The second

step amounts to dividing by the nonzero eigenvalues. And the third step amounts to

transforming back onto the original basis.3

3The solution to the Sylvester equation given in Equation (3.44) can be guessed using an ansatz inspired by
the solution of the Lyapunov equation. The Lyapunov equation is the steady state equation for the covariance
of stochastic processes with linear rates. It is solved [71, 75] by:

X =

∫ ∞
0

exp (As)BBᵀ exp (Aᵀs)ds (3.45)

where the integral over s comes from the long time limit of a process whose dynamics are driven by the
matrix A and perturbed by a noise source characterized by B.

Therefore we take the following integral as an ansatz (where the negatives are introduced by multiplying
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In fact, Equation (3.44) is the spectral solution to the discrete Poisson equation in terms

of the spectrum of the node Laplacian of the product graphs. To show that the proposed

solution is the spectral solution we find the eigen-decomposition of L2
V in terms of the

eigenvalues and eigenvectors of the factor graphs, then solve the discrete Poisson equation

using the spectral method.

The key first step is analogous to separation of variables in the continuum.

the discrete Poisson equation by −1 on both sides and ensure that the integrals converge):

Φ = −
∫ ∞

0

exp (−L2
V1s)Df exp (−L2

V2
ᵀ
s)ds. (3.46)

We can use the eigenvalue decompositions of the node Laplacians to check that Φ satisfies the matrix
Poisson equation. First, expand both Laplacians in the integral. Then the integral is:

−
∫ ∞

0

exp (−L2
V1s)Df exp (−L2

V2
ᵀ
s)ds = U

∫ ∞
0

exp (−Λs)UᵀDfW
ᵀ exp (−Σs)dsW.

Let D̂f = UᵀDfW
ᵀ. Then, since Λ and Σ are diagonal, the i, j entry of the integral is:

−
∫ ∞

0

d̂ij exp (−(λi + σj)s)ds.

All of the eigenvalues of L2
V1 and L2

V2 are positive and real except for the first eigenvalue of each, which
is zero. The zero eigenvalues correspond to eigenvectors with constant entries (proportional to 1). So, if Φ
is chosen so that the mean value of φ is zero, then the any projection onto 1 is zero by convention. Then the
remaining integrals all converge to:

−
∫ ∞

0

d̂ij exp (−(λi + σj)s)ds =
d̂ij

λi + σj
i 6= 1 or j 6= 1.

So:

Φ̂ij =

{
0 if i = 1 and j = 1

d̂ij/(λi + σj) else

}
,Φ = U Φ̂W.

Substituting into the discrete Poisson equation:

L2
V1Φ + ΦL2

V2
ᵀ

= UΛUᵀU Φ̂W + U Φ̂WW ᵀΣW = −U
î
ΛΦ̂ + Φ̂Σ

ó
W

But: î
ΛΦ̂ + Φ̂Σ

ó
ij

= λi
d̂ij

λi + σj
+ σj

d̂ij
λi + σj

= d̂ij

so:
L2
V1Φ + ΦL2

V2
ᵀ

= UD̂fW = Df = −mat(Gᵀf).

Therefore the integral solution to the Lyapunov equation also provides an explicit solution to the discrete
Poisson equation in terms of the eigenvalue decomposition of the component Laplacians.
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Let U be the eigenvectors of L2
V1 and W be the eigenvectors of L2

V2 with eigenvalues

Λ and Σ respectively. Then consider the matrix V h,k defined by the outer product uhw
ᵀ
k.

This outer product is analogous to separation of variables since the i, j entry of the matrix

vj,ki,j = uihwjk. Then the product:

L2
Vvec(uhw

ᵀ
k) = vec(L2

V1uhw
ᵀ
k + uhw

ᵀ
kL

2
V2
ᵀ
) = vec(λhuhw

ᵀ
k + uhw

ᵀ
kσk)

= (λh + σk)vec(uhw
ᵀ
k).

(3.47)

Therefore the outer product of any two eigenvectors of L2
V1 and L2

V2 corresponds to an

eigenvector of L2
V with eigenvalue given by the sum of the eigenvalues of the two eigen-

vectors of the component Laplacians. Since both component Laplacians are real symmetric

they are unitarily diagonalizable, so each have a set of V1, or V2, distinct eigenvectors.

Then there are V1V2 distinct matrices which can be formed by outer-products of the sets

of eigenvectors. These outer products form an orthonormal basis for the space of V1V2

by V1V2 matrices, since the matrix inner product 〈uhwᵀk, ulwᵀn〉 =
∑

i,j uihwkjuilwnl =

(uᵀhul)(w
ᵀ
kwn) = δhlδkn. The Laplacian, L2

V is square with dimension V1V2. Therefore all

eigenvectors of L2
V correspond to outer-products of eigenvectors of the factor graphs. It

follows that the entire spectrum of L2
V can be built directly from the spectra of the factor

graphs. Since L2
V is itself real symmetric this eigenbasis is orthonormal.

Let vh,k = vec(uhw
ᵀ
k) denote the h, k eigenvector of L2

V , with corresponding eigenvalue

µh,k = λh + σk. The eigenvectors can be stored in a matrix by evaluating the Kronecker

product of the matrices of eigenvectors of the component Laplacians, W ⊗U . The discrete

Poisson equation can then be solved by expanding the right hand side in the eigenbasis

formed by outer products of the eigenvectors of the components, rescaling by the eigenval-

ues, then transforming back to the original basis. Since the eigenbasis is orthonormal the
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expansion of Df = −mat(Gᵀf) onto the eigenbasis only requires the inner product:

d̂h,k =

V1∑
i=1

V2∑
j=1

uihwjkmat(−Gᵀf)i,j = −uᵀhmat(Gᵀf)wk. (3.48)

Notice that, since u1 ∝ 1 and v1 ∝ 1, and 1ᵀGᵀ = (G1)ᵀ = 0ᵀ, the one-one entry d̂1,1 = 0.

The corresponding potential is recovered by scaling the coefficients in the expansion by

the sums of the eigenvalues, and mapping out of the eigenbasis:

Φ =

V1∑
h=1

V2∑
k=1

d̂h,k

λh + σk
uhw

ᵀ
k. (3.49)

The structure of the spectrum of the product Laplacian makes it possible to perform

the decomposition onto the eigenvectors one factor graph at a time. In general, the coef-

ficients of the decomposition are a double sum over the indexes i, j (see Equation (3.48)).

Therefore, if we define the coefficients b̂h,j and ĉi,k:

b̂h,j =

V1∑
i=1

uh(i)[G
ᵀf ]i,j

ĉi,k =

V2∑
j=1

wk(j)[G
ᵀf ]i,j.

Then, by rearranging the order of the sum:

d̂h,k =

V1∑
j=1

wk(j)b̂
h,j =

V2∑
i=1

uh(i)ĉ
i,k. (3.50)

The first approach considers each column of mat(Gᵀf) independently, finds the coef-

ficients of the eigenvector expansion of each column using the eigenvalues of L2
V1 , then

expands each row of coefficients b̂h,j into the eigenvector basis of L2
V2 . The second ap-
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proach is the same, but with the expansion performed on the rows before the columns.

Separating the operations one component at a time is attractive since in some important

cases the expansion onto the eigenbasis associated with each product graph may be done

efficiently. In particular, when the factor graphs are rings or lines then the decomposition

step can be performed using FFT. In those cases the spectral approach is equivalent to

performing a sequence of FFT’s [72].

Now suppose that G = �dj=1Gj . Then the product Laplacian, L2
V has

∏d
j=1 Vj eigenvec-

tors of the form:

v(x) =
d∏
j=1

uj(xj) (3.51)

where x is an index vector, xj ∈ [1, 2, ..., Vj] where Vj is the number of vertices in Gj , and

uj is the jth eigenvector of L2
Vj . The corresponding eigenvalues are:

µ(x) =
d∑
j=1

λj(xj) (3.52)

where λj are the eigenvalues of LV,j . This expansion can be checked by iteratively applying

the expansion for the product of pairs of graphs.

This eigenvalue expansion is a powerful tool for understanding the spectrum of Ham-

ming graphs, generalized hypercubes, and other large Cartesian products. If the factor

graphs are small, or familiar, then the spectrum of the product Laplacian is easily un-

derstood as products of the eigenvectors of the component Laplacians, with eigenvalues

equal to the sums of the eigenvalues of the components. For the two most important factor

graphs, rings and paths, the eigenvectors are trigonometric functions, so the corresponding

expansion can be accomplished via an Fast Fourier Transform (FFT). The solution via the

FFT mimics the separation of variables solution to the Poisson equation in the continuum
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Figure 3.14: The first 16 eigenmodes of a 30 by 60 lattice. Notice that the eigenmodes are
all products of the lower eigenmodes along the top row, and first column.

which relies on the Fourier transform. The first 16 eigenmodes of a 30 by 60 grid are shown

in Figure 3.14 as an example. Notice that all the eigenmodes i, j are the product of the i, 1

and 1, j eigenmodes, since each eigenmode is an outer product of the eigenvectors of each

Laplacian.

In Section 3.4 this spectral approach is applied to derive FFT based methods for solving

the discrete Poisson equation on Cartesian products of rings and lines. These include a

variety of important special cases including grids and lattices with or without periodic

boundaries, and hypercubes.

3.4 Grids, Lattices, and Hypercubes

In Section 3.3 we showed that, if the graph of interest can be expressed as the Cartesian

product of a set of factor graphs, then the discrete Poisson equation defining the scalar

potential can be solved using the eigenvectors and eigenvalues of the node Laplacians of
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the factor graphs. It follows that solutions to the discrete Poisson equation for a variety of

product graphs can be understood directly from the spectra of their factor graphs. In Sec-

tion 3.4.1 we present the spectrum of three important factor graphs: complete graphs, lines,

and cycles. Building from these factor graphs, we consider hypercubes and lattices (with

and without periodic boundaries) since, in these cases, the expansion into the eigenbasis

can be performed efficiently with either a fast Hadamard transform or an FFT.

3.4.1 Spectra of Important Factor Graphs

Complete Graphs

The node Laplacian for a complete graph with V nodes equals V I − 11ᵀ where 1 is the

vector of all ones (see Section 3.2.4). Therefore the first eigenvector of L2
V is 1 with

eigenvalue 0. Any vector orthogonal to 1 is also an eigenvector of L2
V with eigenvalue equal

to the number of vertices in the graph, V . Let Q ∈ RV×V−1 be a matrix with orthonormal

columns, all orthogonal to 1. Then the unitary matrix
î»

1
V

1|Q
ó

diagonalizes L2
V , and the

corresponding eigenvalues are [0, V, V, ...V ].

Lines

Consider a graph consisting of V nodes connected in a line. If V = 2 then the graph is

complete, so has eigenvalues 0 and V = 2 corresponding to eigenvectors 1√
2
1 = 1√

2
[1; 1]

and 1√
2
[1;−1].
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If V > 2 then L2
V equals:

L2
V =



1 −1

−1 2 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 1


V×V

Note that this matrix is the same as the standard second-order central difference operator

with Neumann boundary conditions and discretization length equal to one, all multiplied by

−1 [76]. The spectrum of this matrix is well known. As in the continuum, the eigenvectors

are trigonometric functions. The eigenvectors and eigenvalues of the node Laplacian are:

λj = 4 sin2

Å
π(j − 1)

2V

ã
vij =


V −1/2 if j = 1…

2

V
cos

Å
π(j − 1)

V

Å
i− 1

2

ãã
else

 .

(3.53)
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Cycles

Consider a graph consisting of V nodes forming a cycle. Then L2
V equals:

L2
V =



2 −1 −1

−1 2 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 −1 2


V×V

Note that this matrix is the same as the standard second-order central difference operator

with periodic boundary conditions and discretization length equal to one, all multiplied

by −1 [76]. The spectrum of this matrix is well known. As before, the eigenvectors are

trigonometric functions. The eigenvectors and eigenvalues of the node Laplacian are:

λj =


4 sin2

Å
π(j − 1)

2V

ã
if j odd

4 sin2

Å
πj

2V

ã
if j even



vij =



V −1/2 if j = 1…
2

V
sin

Å
πj

V

Å
i− 1

2

ãã
if j ∈ [2, V − 1] and is even…

2

V
cos

Å
π(j − 1)

V

Å
i− 1

2

ãã
if j ∈ [2, V ] and is odd

V −1/2(−1)i if j = V and V is even


.

(3.54)
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3.4.2 Hypercubes

The simplest set of Cartesian product graphs to consider are hypercubes. In this section

we apply the spectral method developed in Section 3.3.3 to the special case of hypercubes.

The spectral method can be performed in V log(V ) operations on a hypercube using the

fast Walsh-Hadamard transform. The Hadamard transform is well studied, particularly in

image processing, and is equivalent to the 2 × 2 × ...2 FFT [77, 78, 79]. This efficient

implementation makes the HHD fast for high-dimensional hypercubes when a direct im-

plementation of the spectral method would be too slow.

A d dimensional hypercube is the iterated Cartesian product of the line graph with two

nodes. It has 2d vertices, and its nodes can be represented as d bit strings. Since hypercubes

can be formed by repeated Cartesian products, the spectrum of the node Laplacian for any

hypercube can be constructed from the spectrum of the node Laplacian for a line graph

with two vertices. A line graph with two vertices is complete, so has eigenvalues 0 and 2.

The null-vector is parallel to [1, 1], so the remaining eigenvector must be parallel to [1,−1]

since eigenvectors of symmetric matrices are orthogonal. Define the symmetric matrix:

H1 =

 1 1

1 −1

 . (3.55)

The matrix H1 is a matrix of unnormalized eigenvectors for the node Laplacian of each

factor graph. Then, the unnormalized eigenvectors for the 2 dimensional hypercube are the

columns of the matrixH2 = H1⊗H1. The unnormalized eigenvectors of the d dimensional

hypercube are given by the recursion (see Section 3.3.3):

Hd = H1 ⊗Hd−1, H1 =

 1 1

1 −1

 . (3.56)
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Figure 3.15: Hadamard matrix H4 for a 4 dimensional hypercube. White entries equal one
and black entries equal negative one.

The matrix Hd is the dth Hadamard matrix as originally introduced by Sylvester [77,

78]. Hadamard matrices are all symmetric. 4 The Hadamard matrices are also orthogonal

[77] since the columns of Hd are eigenvectors corresponding to the node Laplacian, which

is symmetric. Therefore, 1
2d/2

Hd =
(

1
2d/2

Hd

)−1. To recover the normalized eigenvectors

simply divide by 2d/2:

L2
V = 2−dHdΛHd. (3.57)

An 4 dimensional example is shown in Figure 3.15. Notice that the rows form square

wave patterns. Since Hd is orthogonal, multiplication by Hd is equivalent to expansion on

a square wave basis. Expansion onto this basis is a Walsh transform [80].

For low dimensional hypercubes the Hadamard matrices can be visualized as shown in

Figure 3.16. Each cube represents a row of the matrix, where white nodes represent entries

with value 1, and red nodes represent entries with value −1.

4The symmetry of Hadamard matrices can be shown by induction. The first Hadamard matrix, H1, is
symmetric. To extend to arbitrary d use the induction hypothesisHᵀ

d−1 = Hd−1 thenHᵀ
d = (H1⊗Hd−1)ᵀ =

Hᵀ
1 ⊗H

ᵀ
d−1 = H1 ⊗Hd−1 = Hd. proving that Hd is symmetric for any d.
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Figure 3.16: The Hadamard matrix for a cube represented by 8 copies of the cube, each
corresponding to a row in H3. The white node represent entries with +1 and the red nodes
represent entries with −1.

The rows of the Hadamard matrixHd can be uniquely associated with a d bit string. The

strings are ordered lexicographically so that 000...00 is followed by 000...01 then 000...10,

then 000...11 and so on. Therefore the jth row maps to the d bit string representing j − 1

base 2. The corresponding eigenvalues are given by the number of nonzero entries in the

base two representation of j−1. Let base2(j−1, d) be the base two representation of j−1

using d bit strings. Then the corresponding eigenvalue is:

λj = 2|base2(j − 1, d)| (3.58)

where |base2(j − 1, d)| is the number of nonzero entries in the d bit string.

Then, to implement the spectral method directly:

1. Compute Gᵀf

2. Compute 2−d/2Hd(G
ᵀf)

3. Compute Λ†(2−d/2HdG
ᵀf)
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4. Compute 2−dHd(Λ
†HdG

ᵀf).

If applied directly the products with Hd require (2d)2 operations each, and the rescaling

by the eigenvalues requires 2d operations. Therefore direct application of the spectral

method would require O(V 2) = O(22d) operations. This can be dramatically improved

by taking advantage of the recursive structure of the Hadamard matrices.

Consider H2, the Hadamard matrix for a square:


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 .

Multiplication of an arbitrary vector v by H2 requires computing:

v00 + v01 + v10 + v11

v00 − v01 + v10 − v11

v00 + v01 − v10 − v11

v00 − v01 − v10 + v11.

Performed directly this requires 12 = V (V − 1) additions.

Instead, compute w0+ = v00 + v01, w0− = v0 − v01, w1+ = v10 + v11, w1− = v10 − v11.
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This requires 4 additions. Then, to compute H2v we only need to perform:

w0+ + w1+

w0− + w1−

w0+ − w1+

w0− − w1−

which also only requires 4 operations. Computing w first reduces the total cost to 8 =

V log2(V ) operations instead of 12. The same approach can be easily scaled up to a cube.

Multiplication by H3 requires:

v000 + v001 + v010 + v011 + v100 + v101 + v110 + v111

v000 − v001 + v010 − v011 + v100 − v101 + v110 − v111

v000 + v001 − v010 − v011 + v100 + v101 − v110 − v111

v000 − v001 − v010 + v011 − v100 − v101 + v110 − v111

v000 + v001 + v010 + v011 − v100 − v101 − v110 − v111

v000 − v001 + v010 − v011 − v100 + v101 − v110 + v111

v000 + v001 − v010 − v011 − v100 − v101 + v110 + v111

v000 − v001 − v010 + v011 − v100 + v101 + v110 − v111.

If done directly this sum requires 8 × 7 = V (V − 1) = 56 operations. To streamline
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the product compute:

w00+ = v000 + v001, w00− = v000 − v001

w01+ = v010 + v011, w01− = v010 − v011

w10+ = v100 + v101, w10− = v100 − v101

w11+ = v110 + v111, w11− = v110 − v111

Computing w requires 8 = V computations. Now the original sum has the form:

w00+ + w01+ + w10+ + w11+

w00− + w01− + w10− + w11−

w00+ − w01+ + w10+ − w11+

w00− − w01− + w10− − w1−

w00+ + w01+ − w10+ − w11+

w00− + w01− − w10− − w11−

w00+ − w01+ − w10+ + w11+

w00− − w01− − w10− + w11−.

Applied directly this requires 24 computations, however this is just H2 applied to w+ and

w−. As shown before, H2 can be applied with only 8 computations, so, using the effi-

cient implementation of H2, computing H2w+ and H2w− only requires 16 computations.

Therefore the total cost of applying H3 is only 24 = (23)3 = V log2 (V ) computations, not

V (V − 1) = 56.

This technique can be applied recursively to perform the product with any Hadamard

matrix Hd. The recursive algorithm is the fast Walsh-Hadamard Transform [79].The trans-
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form only requires V log2(V ) = d2d computations since there are d iterations, and each

requires 2d computations. The transform is implemented in Matlab by the fwht command.

Thus, by using the fast Walsh-Hadamard transform (fWHt) to map into and out of the

eigenbasis of the Laplacian, the spectral method for solving the discrete Poisson equation

can be performed efficiently. Using the fWHt to perform products with Hadamard matrices

reduces the computation cost to order d2d instead of 22d or, worse, 23d computations (for

direct inversion of the Laplacian).

3.4.3 Lattices

Let G = �dj=1Gj be the product graph formed by the repeated Cartesian product of a

sequence of factor graphs, Gj , which are all either lines or cycles. Then G is a d-dimensional

lattice, with periodic boundaries in the dimension corresponding to factor graphs that are

cycles. The node Laplacian of the product graph is L2
V = ⊕dj=1L

2
Vj so the spectrum of

the node Laplacian can be constructed from the spectrum of the Laplacian on each factor

graph. Since all of the factors are either lines or loops the eigenvectors of the factor graphs

are all trigonometric functions (see Section 3.4.1).

Since the spectrum of the node Laplacian is necessarily orthonormal, moving into the

eigenbasis of the node Laplacian requires taking an inner product with each eigenvector.

Since the eigenvectors of each factor graph are trigonometric functions the inner products

can be evaluated using a Discrete Fourier Transform (DFT) [70]. The DFT of a signal

x = [x1, x2, ...xn] is defined:

x̂k =
V∑
j=1

exp

Å
−i2π

n
(k − 1)(j − 1)

ã
xj. (3.59)

Let F denote the DFT so x̂ = F(x). Note that the DFT is not equivalent to the inner
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product with the eigenvectors of a line or cycle (see Equation (3.53) and Equation (3.54)).

In order to use the DFT to move into the eigenbasis we need to work out a scaling of the

DFT that will produce the desired coefficients.

First consider a factor graph that is a line of V nodes. Then, to transform a vector

y = [y1, ...yV ] ∈ RV into the eigenbasis of the node Laplacian we need to evaluate the

inner products:

ŷ1 = V −1/2

V∑
j=1

yj = 2−1/2

V∑
j=1

Å
V

2

ã−1/2

cos

Å
π(1− 1)

V
(j − 0.5)

ã
yj

ŷk =
V∑
j=1

Å
V

2

ã−1/2

cos

Å
π(k − 1)

V
(j − 0.5)

ã
yj.

Therefore we need to be able to evaluate inner products with the vectors whose entries

are specified by the trigonometric function cos
(
π
V

(k − 1)(j − 0.5)
)
. These inner products

can be evaluated by scaling the DFT of a modified version of the signal y. Let x = [y; 0]

where 0 is the V × 1 vector of all zeros. Then:

x̂k =
2V∑
j=1

exp

Å
−i 2π

2V
(k − 1)(j − 1)

ã
xj

=
V∑
j=1

exp

Å
−iπ(k − 1)

V
(j − 1)

ã
yj

= exp
(
i
π

2V
(k − 1)

) V∑
j=1

exp

Å
−iπ(k − 1)

V
(j − 0.5)

ã
yj.
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Therefore:

exp

Å
−iπ(k − 1)

2V

ã
x̂k =

V∑
j=1

exp

Å
−iπ(k − 1)

V
(j − 0.5)

ã
yj

=
V∑
j=1

cos

Å
π(k − 1)

V
(j − 0.5)

ã
yj

− i
V∑
j=1

sin

Å
π(k − 1)

V
(j − 0.5)

ã
yj.

Since all the entries of y are real:

V∑
j=1

cos

Å
π(k − 1)

V
(j − 0.5)

ã
yj = Real

Å
exp

Å
−iπ(k − 1)

2V

ã
x̂k

ã
.

The inner product on the left hand side is proportional to the inner product of y with the

kth eigenvector. Therefore, if Gj is a line with Vj nodes the expansion of y ∈ RVj onto the

eigenbasis is given by:

x̂ = F([y; 0])

ŷk =


V
−1/2
j Real (x̂1) if k = 1Å
Vj
2

ã−1/2

Real
(
e−i

π(k−1)
2V x̂k

)
if k > 1

 .
(3.60)

The DFT can be performed efficiently using the fast Fourier transform (FFT). The cost

of the FFT is order n log(n) where n is the length of the sequence transformed [70]. There-

fore the computation cost of Equation (3.60) is order 2V log(V ), while the computation

cost of performing each inner product directly is order V 2.

Essentially the same method can be used if the factor graph is a cycle instead of a line.

To expand into the eigenbasis associated with a cycle of length V we need inner products
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with cos(π(k− 1)/V (j− 0.5)) and sin(πk/V (j− 0.5)). The former inner products can be

computed in the same fashion as on the line. To compute the inner products with sin take

the imaginary part of the shifted DFT instead of the real part:

V∑
j=1

sin

Å
π(k − 1)

V
(j − 0.5)

ã
yj = −Im

Å
exp

Å
−iπ(k − 1)

2V

ã
x̂k

ã
.

Then:
V∑
j=1

sin

Å
πk

V
(j − 0.5)

ã
yj = −Im

Å
exp

Å
−i πk

2V

ã
x̂k+1

ã
.

Therefore, if Gj is a cycle with Vj nodes, then the expansion of y ∈ RVj onto the

eigenbasis is given by:

x̂ = F([y; 0])

ŷk =



V
−1/2
j Real (x̂1) if k = 1

−
Å
Vj
2

ã−1/2

Im
Ä
e−i

πk
2V x̂k+1

ä
if k ∈ [2, V − 1] and evenÅ

Vj
2

ã−1/2

Real
(
e−i

π(k−1)
2V x̂k

)
if k ∈ [2, V ] and odd

− V −1/2
j Im

Ä
e−i

πk
2V x̂k+1

ä
if k = V and V is even


.

(3.61)

As when Gj is a line, this method runs in order Vj log(Vj) rather than order V 2
j if the DFT

is implemented with an FFT.

Therefore, if G is the product of a sequence of line graphs and loops then solution to

the discrete Poisson equation L2
V on the eigenbasis, φ̂ can be solved as follows:

DFT Algorithm for Solving the Discrete Poisson Equation in the Eigenbasis of a

Lattice:
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1. Compute the divergence of the edge flow at every node in the product graph. Use

the multi-index j = (j1, j2, ...jd) to represent the nodes of the product graph. Let dj

equal to divergence at node j.

2. Set d̂j = dj for all j.

3. Loop over the factor graphs Gn from n = 1 to d

(a) Form a vector y(h) for each possible state of the product of the remaining

factor graphs h = (j1, j2, ...jn−1, jn+1, ..., d) where y(h)l is d̂j at state j =

(j1, ...jn−1, l, jn+1, ..., d) in the full product.

(b) Let x(h) = [y(h); 0] and use an FFT to compute x̂(h) = F(x(h)).

(c) If Gj is a line use Equation (3.60) to recover ŷ(h). If Gj is a cycle use Equa-

tion (3.61) to recover ŷ(h).

(d) Set d̂j equal to ŷj for all j = (j1, j2, ...jn−1, l, jn+1, ..., d)

4. For each d̂j compute the eigenvalues λj1 , λj2 , ..., λjd where λjn is defined by either

Equation (3.53) or Equation (3.54) if the nth factor graph is a lien or a cycle (respec-

tively).

5. Then compute φ̂j = d̂j
∑d

n=1 λjn .

Then, to recover the solution we repeat step 3., only replacing the divergence with φ̂ and

scaling an iFFT instead of an FFT to recover the product with the matrix of eigenvectors

instead of the matrix of eigenvectors transpose. The necessary scaling can be calculated in

the same way we derived Equation (3.60) and Equation (3.61).

The method outlined above is essentially a multi-dimensional FFT. The FFT is per-
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formed one factor graph at a time to transform the divergence of f into the eigenbasis of the

node Laplacian. Then the transformed divergence is scaled by the eigenvalues of the node

Laplacian (sums of eigenvalues of the factor graph), and a multidimensional iFFT is used to

recover the solution. While more involved than applying the matrix of eigenvectors directly

(which can be formed by the repeated Kronecker product of the matrix of eigenvectors of

each product graph), this method is much more efficient and conceptually consistent with

the solution to the Poisson equation in the continuum, and to its discrete approximation (cf.

[73]).

The cost of each of the d FFT and iFFT steps is Vj log(Vj) [70], and for each dimension

d we perform
∏

n 6=j Vn = V/Vj transforms. Thus the cost for each dimension/factor graph

is (V/Vj)Vj log(Vj) = V log(Vj). Then, summing over the d dimensions, the total cost

is
∑

j V log(Vj) = V log(
∏

j Vj) = V log(V ), which matches the standard runtime of a

multidimensional FFT [70]. Therefore the overall computational cost of the FFT based

approach to solving the discrete Poisson equation is V log(V ) = (
∏d

j=1 Vj)
∑d

j=1 log(Vj).

In contrast, the computational cost for solving the discrete Poisson equation by performing

the transform into and out of the eigenbasis directly (with a matrix product) would be

V 2 = (
∏d

j=1 Vj)
2. Consequently, if any of the product graphs are large, or d is large,

then the FFT based method is much more efficient than direct application of the matrix of

eigenvectors.

3.5 Numerical Methods for General Networks

This section introduces generic methods for constructing the operators and performing the

HHD on an arbitrary network.

Let G be a finite connected network with V vertices and E edges. Networks are stored
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efficiently via an adjacency structure [32]. An adjacency structure is a set of lists, one

for each node in the network. The list corresponding to node j is the set of all nodes

who are connected to j by an edge. That is, the adjacency list associated with node j

is the set of neighbors of j. An adjacency structure can be computed from an adjacency

matrix by finding all the nonzero entries in the row of an adjacency matrix, and is a sparse

representation of the adjacency matrix of a graph [32].

Assume that the graph is stored in an adjacency structure, but no more information on

the topology is provided. How can the operators be constructed using only the adjacency

structure?

In order to construct the operators we need an ordering on the vertices, an ordering on

the edges and reference orientation for each edge, and an oriented cycle basis. Usually the

vertices in the adjacency structure are referenced by an index, so it is reasonable to assume

that the vertices are ordered a priori. Therefore our first task is to introduce an ordering on

the edges.

By convention let each edge point from a lower indexed node to a higher indexed node.

Then for edge k the i(k) < j(k). Then it is natural to order the edges in lexicographic order.

This can be accomplished as follows. Start with the adjacency list for the first vertex. Order

the neighbors of first vertex in increasing order. Then, for each neighbor of the first vertex

introduce an edge, and number the edges according to which neighbor of the first vertex

they point to. For example, if node 1 neighbors nodes 3, 5, and 11 then edges 1, 2, and 3,

are the edges from 1 to 3, 1 to 5, and 1 to 11.

To store the endpoints of each edge introduce an edge to endpoint mapping M ∈ ZE,2,

where M(k, 1) = i(k) is the start of edge k and M(k, 2) = j(k) is the end of edge k. Each

time we add an edge fill in the corresponding row of the edge to endpoint mapping. So, in

the example, the first three rows of M are [1, 3], [1, 5], [1, 11]. After all of the edges leaving
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the first node have been indexed and added to M move on to the second node. Order the

neighbors of the second node in increasing order. Then add an edge for each neighbor of

the second node that is not the first node. Add the matching rows to to M and repeat the

process for the third node. For each node we add an edge for every neighbor who has a

higher index than the node considered. This is equivalent to working across the rows of the

adjacency matrix and storing a new edge for each nonzero entry above the diagonal.

Once the process is complete the edges will be ordered lexicographically by their

endpoints, and the matrix M will store the endpoints of every edge. Given M , a sparse

representation of the gradient can be easily constructed. Starting with the first column of

M , add a negative one to each row of the gradient in entry k, i(k) = k,M(k, 1). Then

add a one to each row of the gradient in entry k, j(k) = k,M(k, 2). This can be easily

implemented using a sparse matrix command. For example, in Matlab, the command: G =

sparse((1:E),M(:,2),1,E,V) - sparse((1:E),M(:,1),1,E,V) will construct the gradient directly

from the edge to endpoint mapping.

The node Laplacian can then be computed either by computing GᵀG, or by computing

the degree of each node, and subtracting the adjacency matrix from the degree matrix.

Once the gradient and Laplacian are computed it is easy to compute the scalar potential,

conservative, and rotational edge flows. If the network is small then the discrete Poisson

equation L2
Vφ = −Gᵀf could be solved directly, or the projector onto the conservative

subspace could be found via a QR decomposition of the gradient (see Section 2.3). Al-

ternatively, the least squares problem argminu∈RV {||Gu + f ||} could be solved with an

iterative least squares solver. Since iterative solvers only require the forward application of

the gradient all that it required for the iterative solvers is an implicit representation of the

gradient and divergence. These are easily implemented from the edge to endpoint mapping.

Loop over each edge k, find the endpoints from M(k, :), and compute uj(k) − ui(k). To
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implement the divergence implicitly loop over each edge k, find the endpoints of the edge

from M(k, :), and add fk to the divergence of i(k) and subtract it from the divergence of

j(k).

Once φ is found, the conservative field is easily computed using fcon = −Gφ. The

rotational field follows immediately, frot = f − fcon. Therefore the scalar potential, conser-

vative, and rotational fields can all be easily found provided only the information contained

in an adjacency structure.

Note that, the flow f may be provided in an antisymmetric matrix with i, j entries fi,j ,

in which case the vector f ∈ RE corresponding to the edge ordering should be constructed

one entry at a time as the edges are indexed. If f is provided as a vector to start then the

edges must be indexed and oriented a priori so no work is needed to construct the edge

ordering and orientation. Alternatively the edge flow f may be a function of the endpoints,

so that given i(k), j(k) the flow fk can be computed. This would be the case if the endpoints

represent states of a system, and the edge flow represents transition rates between states that

depend on the states at either end of each edge (see Chapter 6).

All that remains is to construct the curl and recover the rotational potential. This is not

as easy since the curl requires a cycle basis, and it requires work to construct a cycle basis.

Moreover, since cycle bases are rarely unique, but often differ in quality, we will have to

tailor our method of cycle basis construction to arrive at a desired cycle basis. The rest

of this section is devoted to the problem of finding a desired cycle basis, and efficiently

constructing the associated curl.

3.5.1 Desired Properties of Cycle Basis

What do we want from a cycle basis? The answer depends in part on interpretation and in

part on numerics.
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If the only goal were to recover θ then the best cycle basis to choose would be a

fundamental cycle basis. The cycles in a fundamental cycle basis each correspond to a

chord, and no two cycles ever cross the same chord. As an immediate consequence, the

rotational flow across a chord is the value of the rotational potential θ on that chord, so

once the rotational flow is separated from the total flow recovering the rotational potential

is trivial. The principal downside to this approach is that it tells us nothing new. The

rotational potential is the same as the rotational flow on the chords, so provides no new

insight into the circulation of the edge flow.

The other principal downside to working with fundamental cycle bases is that they

typically consist of large sequences of nested loops (see Figure 3.17). This nesting occurs

because the only way to complete any loop is to trace back to a point where the tree

branches. Thus two loops sharing the same branches tend to nest inside of each other.

As a result, whole sequences of loops are larger than necessary, and overlap. The resulting

cycle basis is unbalanced, with edges in the tree appearing in many loops, while chords

only appear in one loop. If the tree is generated using a search procedure that radiates out

from a central node then the cycles in the fundamental cycle basis will also vary in size,

with chords far removed from the central node forming large loops, while chords close to

the central node form small loops. Worse, the pairs of large nested loops often only differ

by a few edges, so much of the loop representation is redundant.

If the graph is planar then the obvious objective is to recover a planar cycle basis. A

planar cycle basis contains all but one of the faces of the planar graph [45]. The cycles in

a planar cycle basis should be oriented so that any pair of cycles that share an edge cross

it in opposite directions. If a planar cycle basis is used then no edge is included in more

than two basis cycles, and if it is possible to find a cycle basis with this property then the

graph is necessarily planar [35]]. A fundamental cycle basis usually won’t match the faces
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Figure 3.17: A fundamental cycle basis and a planar cycle basis generated by the chords
connecting two branches of a spanning tree. Note that the fundamental basis contains a
sequence of large nested loops instead of a tiling of small loops. Notice that all four loops
in the fundamental basis share the same two edges at the branching point, whereas in the
planar basis no edge borders more than two loops.

a planar graph, so will not usually recover a planar basis.

One way to optimize of a cycle basis is to reduce the number of times each edge appears

in the basis. Reducing the number of occurrences of each edge reduces redundancy in the

cycles, so ought to lead to a better conditioned face Laplacian. Moreover, if the graph is

planar then minimizing the max over all edges of the number of times an edge appears in

the cycle basis guarantees that the cycle basis is planar.

An obvious alternative is to attempt to find a cycle basis with small cycles. The

smaller the cycles the more localized the effects of the rotational potential on a given loop.

Minimizing the size of the cycles also reduces the number of times cycles overlap since

the total number of nonzero entries in the curl is minimized. Thus minimizing cycle length

promotes independent cycles and avoids intertwined cycles. Cycle bases that are sparse in

this sense are widely preferred in applications [33].

The length of a cycle basis |C| is the sum of the length of each cycle in the basis,∑
j|Cj|. A minimal cycle basis is a cycle basis that minimizes |C| [33]. Minimal cycle
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bases (MCB) are widely sought in applications (cf. [65]), and there exist a number of

algorithms for finding an MCB, or approximation to an MCB, both in generic graphs and

for special classes of graphs [42, 81, 82].

Note that |C| is the sum over the rows, of the number of nonzero entries in each row.

This equals the sum over the columns of the number of nonzero entries in each column,

therefore the average cycle length |C|/E equals the average number of of times any edge

appears in the basis. Since the number of edges E is fixed, a minimal cycle basis also

minimizes the reuse of edges.

Minimal cycle bases are an example of optimal cycle bases. An optimal cycle basis

is a basis that optimizes some criteria, for example, the number of reoccurences of an

edge, or the total length of all cycles in the basis. Considerable effort has been devoted

to developing algorithms for optimizing cycle bases. Finding an optimal cycle basis can

be a difficult combinatorial problem, especially for large graphs, and while some efficient

algorithms exist it is often expensive to find an optimal cycle basis if the graph is large.

A useful review of algorithms for finding minimal cycle bases is available in [33]. For

some classes of cycle basis it is possible to find a minimal cycle basis in polynomial time,

while for others it is APX hard. However, even when it is possible to find polynomial time

algorithms they are often expensive [33, 42].

Kavitha presents a deterministic polynomial time algorithm that runs in O(E2 V
log(V )

+

EV 2) and notes that most minimal cycle bases algorithms have space costs O(E2) so are

not applicable to large graphs [33]. Horton provided a greedy polynomial time algorithm

that works by first forming a set ofO(EV ) circuits, adding cycles to a list of possible basis

cycles in order from shortest to longest, and reducing the set via Gaussian elimination

modulo 2 to check independence at each step. While straightforward, this algorithm runs

in O(E3V ) time [42]. The expense of MCB algorithms motivates approximate MCB
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algorithms. For example, Horton presents a modified version of his algorithm which runs

in O(EV 2) time [42].

Alternatively, we may desire a cycle basis in which the cycles are as independent as

possible. That is, a cycle basis with as little redundancy in the basis cycles as possible. This

requires that there is no rotational potential v ∈ RL such that ||v||2 is large, but ||Cᵀv||2

is small. The ratio of the norm of the flow to the norm of the potential is the square root

of the Rayleigh quotient of Cᵀ and v [51]. The square root is monotonically increasing,

so minimizing the Rayleigh quotient is the same as minimizing the root of the Rayleigh

quotient. Thus, a natural measure of the redundancy of the cycle basis with respect to a

potential v is:

R(CCᵀ, v) =
||Cᵀv||22
||v||22

=
vᵀCCᵀv

vᵀv
=
vᵀL2

Cv

vᵀv
. (3.62)

Then the associated measure of redundancy in the basis is minv∈RL{R(CCᵀ, v)}. The

numerical range of CCᵀ is the range of possible values of the Rayleigh quotient. Since

CCᵀ is a real symmetric graph it is unitarily diagonalizable, so the numerical range is the

convex hull of the eigenvalues ofCCᵀ [51], which equal its singular values since the matrix

is real symmetric and positive semi-definite. Therefore the minimum value of the Rayleigh

quotient is the smallest singular value of the face Laplacian:

min
v∈RL
{R(CCᵀ, v)} = σL(CCᵀ) = min{σ(L2

C)}. (3.63)

An optimal cycle basis with respect to Equation (3.63) solves the max-min problem:

max
C∈B
{min{σ(L2

C)}}

where B is the set of all cycle bases of the graph G. A partial ordering of the set of cycle
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bases can be introduced setting C > Ĉ if the smallest singular value of L2
C is greater than

the smallest singular value of L2
Ĉ , and with equality if the two singular values are equal.

Alternatively, if the two smallest singular values are different, then compare the second

smallest singular values of the face Laplacians. Continuing in this manner C > Ĉ if the last

singular value of L2
C that is different from the corresponding singular value of L2

Ĉ is larger

than the corresponding singular value of L2
Ĉ .

We may also want to optimize the cycle basis to promote stability in the inverse problem

CCᵀθ = Cf . Then a natural objective function is the condition number κ of the face

Laplacian L2
C (ratio of largest and smallest singular values). Since the smallest value of

the Rayleigh quotient is the smallest singular value of the Laplacian, and the largest value

of the Rayleigh quotient is the largest singular value [51], the condition number of the

face Laplacian can be bounded using the Rayleigh quotient. We can bound the condition

number of the Laplacian from below by finding a v such that ||C
ᵀv||2
||v||2 is large, which gives

a lower bound on the largest eigenvalue, and a v such that ||C
ᵀv||2
||v||2 is small, which gives an

upper bound on the smallest eigenvalue.

Consider a cycle basis C with corresponding curl C. Each loop in the cycle basis

corresponds to a row in C. Denote the length of the jth basis loop |Cj|. Let v = ej where ej

is the jth column of the identity. ThenCᵀej is equivalent to the jth row of the curl. This row

has precisely |Cj| nonzero entries all equal to one or negative one, so ||eᵀjCᵀCej||= |Cj|.

It follows that the largest eigenvalue of the face Laplacian must be greater or equal to the

length of the largest loop in the basis:

σ1(C) = max{σ(L2
C)} ≥ max

C∈C
{|C|}. (3.64)
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By the same logic:

σF (C) = min{σ(L2
C)} ≤ min

C∈C
{|C|}. (3.65)

This means that the condition number of C is bounded from below by the ratio of the

perimeter of the largest loop in the basis to the perimeter of the smallest loop in the basis:

κ(C) ≥ maxC∈C{|C|}
minC∈C{|C|}

. (3.66)

This means that cycle bases with loops of wildly different sizes will tend to be ill-

conditioned, so, when possible, it is good to look for a basis with relatively uniformly sized

loops. Notice that if the loops are generated by a breadth first search then the maximum

perimeter loop will usually scale in log (V ), so using a breadth first search will ensure that,

even for large networks, the ratio of the longest loop to the shortest loop is not overly large.

This bound was derived by only considering w of the form ej . The problem with

nested loops is not that one is much larger than the other, it is that both are large, but their

combination is small. This means that their corresponding rows in the curl are identical in

most of their entries, and only different in a small subset of their nonzero entries. In that

case their difference is much smaller than their magnitudes, so they are close to linearly

dependent.

Consider all pairs of adjacent basis loops j, k. Then for each pair pick w = ej ± ek

where plus is used if the loops run in opposite directions on their shared path, and minus is

used if they run in the same direction. Then ||Cᵀw||= |Cj 4 Ck| where |Cj 4 Ck| denotes

the perimeter of the symmetric difference of the two loops (their linear combination). Then:

σF (C) = min{σ(L2
C)} ≤

1

2
min

Cj ,Ck∈C
{|Cj 4 Ck|} . (3.67)
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where the factor of 2 in the denominator comes from the norm of the vector v = ej ± ek.

Therefore the condition number of the face Laplacian is bound from below by:

κ(C) ≥
maxCj∈C{|Cj|}

min{minCj∈C{|Cj|},minCj ,Ck∈C

{
|Cj4Ck|

2
}
} . (3.68)

Thus the condition number is not only greater than the ratio of the largest loop to the

smallest loop, but is also greater than the ratio of the largest loop to the smallest possible

loop formed by combinations of pairs of loops, all multiplied by 2. This result reveals the

problem with large nested loops. Large loops ensure that the numerator is large, while the

small difference between the loops ensures the denominator is small. It follows that we

will generally want a cycle basis with loops of approximately uniform size, and that are as

close to pairwise independent as possible.

The fact that fundamental cycle bases reuse the edges in the spanning tree many times

and contain nested loops that are close to redundant suggests that the linear system used to

recover θ should be unstable for large graphs. The linear system is not unstable because, as

noted before, the structure of fundamental cycle bases makes recovering θ from f easy once

frot is known. The rotational field can be recovered directly from the residual, Gφ+f when

solving for φ, thus we can find frot using operators that are entirely cycle basis independent.

Recovering θ from frot is easy on a fundamental cycle basis since each loop in the basis

crosses an edge that is not a part of any other loop. In fact, if C is an arbitrary cycle

basis, and Cj includes an edge, k, which is not included in any other loop in the basis

then θj = ±frotk. This observation is useful since it points towards a broader class of cycle

bases which are more general than fundamental cycle bases, but also allow for nearly trivial

calculation of θ from frot.

We say that a collection of cycles C has a boundary if there is a cycle in C that includes
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an edge that is not included in any other cycle. We say that a cycle Cj is in the boundary

of the collection of cycles if it crosses an edge not crossed by any other cycle in the set.

Consider a set of cycles such that (i) removing any boundary cycle from the set produces a

new set of cycles with a boundary, and (ii) if cycles on the boundary are removed iteratively,

then the remaining cycle set always has a boundary. Then this set of cycles is a set that still

has a boundary after a sequence of boundary cycles are removed. Moreover, there must

exist a permutation σ such that:

Cσ(i) \ (∪i−1
j=1Cσ(j)) 6= ∅.

That is, there is an ordering of the cycles so that, cycle i includes at least one edge not

included in any earlier cycle. A set of L cycles with this property is a weakly fundamental

cycle basis [33].

Lemma 13 (Weakly Fundamental Cycle Basis). A set of L cycles is a cycle basis if there

exists a ordering of the cycles σ such that:

Cσ(i) \ (∪i−1
j=1Cσ(j)) 6= ∅. (3.69)

Then the linear system Cᵀθ = frot can be solved by the following iteration:

1. Initialize: j = 0, f̂(j) = frot, Ĉ(j) = C

2. Iterate from j = 0 to j = L− 1:

(a) Find a cycle, Ch, in the boundary of Ĉ(j). Let k denote the edge in the boundary

cycle crossed by no other cycle in Ĉ(j). Set θ(h) = f̂(j)k if cycle Ch crosses

edge k in its forward direction, and set θ(h) = −f̂(j)k if cycle Ch crosses edge
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k in its backward direction.

(b) Remove the boundary cycle: f̂(j+1) = f̂(j)−Cᵀ(Ch)θh, Ĉ(j+1) = Ĉ(j)\Ch.

Proof. Let C be a set of L cycles that satisfies Equation (3.69). Since the set contains L

cycles it is a basis if the cycles are linearly independent. Since the set of cycles satisfies

Equation (3.69) it is possible to order the cycles of C so that C1 is a boundary cycle, and

once C1 through Cj are removed Cj+1 is a boundary cycle. It is clear that C1 is independent

of {C2, ..., CL} since it includes an edge that none of the other cycles include. Thus there is

no way to combine the cycles in {C2, ..., CL} to produce C1, so the only way that C could be

linearly dependent is if the set {C2, ..., CL} are linearly dependent. But the set {C2, ..., CL}

also has a boundary C2 is a boundary cycle for the reduced set. Therefore C2 is necessarily

independent of {C3, ..., CL} since it includes an edge not included by any other cycles in

the reduced set. Repeating this argument inductively shows that any simple set of cycles is

a set of independent cycles, so if C is a simple set of L cycles it must be a cycle basis.

To prove that θ satisfying Cᵀθ = frot is recovered by the iterative procedure note that,

since Ch is a boundary cycle of C, then it includes an edge, k, not included in any other

cycle. Therefore θh = ±frotk where the sign depends on which direction the cycle crosses

the edge. Thus one entry of θ can be recovered directly. Since the systems of equations

Cᵀθ = frot is linear we can subtract Cᵀ(θheh) from both sides and then remove the column

corresponding to cycle h from the systems. Then we are left with Cᵀ(C \ Ch) on the left

hand side and frot − Cᵀ(Ch)θh on the right hand side. Now the systems of equations has

one fewer column, and one fewer unknown, but is of the same form as before since C \ Ch

still satisfies satisfies Equation (3.69). Thus the process can be repeated iteratively, solving

for θ on a boundary cycle, subtracting the corresponding cyclic flow from the right hand

side, and removing the boundary cycle from the set. Since there are finitely many cycles in
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the set this process ends after L steps, thereby recovering θ.

Note that, if the loops are ordered so that Cj is a boundary loop for {Cj+1, ..., CL} and

the edges are ordered so that fj is an edge in Cj crossed by no other cycle in {Cj+1, ..., CL},

then Cᵀ is lower triangular with diagonal entries equal to ±1, and the iterative method

proposed is the same as back-substitution. It follows that this method is backwards stable

[51].

Weakly fundamental cycle bases are more general than fundamental cycle bases since

all fundamental cycle bases satisfy Equation (3.69), but not all weakly fundamental cycle

bases are fundamental. Weakly fundamental cycle bases include much more intuitive cycle

bases than the class of fundamental cycle bases. For example:

Lemma 14 (Planar Bases are Weakly Fundamental). If G is a finite connected planar graph

then any planar cycle basis of G is a weakly fundamental cycle basis.

Proof. If G is a finite connected planar graph then any set of L faces of the graph is a

planar cycle basis. The graph includes a total of L + 1 faces, L on the interior and one

external face. Embed the graph so that the face excluded from the basis is the external

face. Then all of the edges bordering the external face are on the boundary of the graph

and neighbor at most one face from the interior (no edge in a planar graph borders more

than two faces). Since the interior faces are cycles in the cycle basis there are cycles in the

cycle basis that border edges included in no other cycle from the cycle basis. These are

the cycles that border the boundary of the embedded graph, hence the choice to call these

cycles boundary cycles. Consider the subgraph of G with only the nodes and edges that

appear in the set of cycle basis. If a boundary cycle is removed then all nodes and edges

that are included in that boundary cycle and no other are pruned from the subgraph. The
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pruned subgraph is still planar, so it still includes boundary cycles. Thus the set of cycles

left over after removing a sequence of boundary cycles still has a simple boundary since

the corresponding subgraph is still planar. Since the graph is finite the number of cycles in

the cycle basis is finite, so after L boundary cycles are removed no cycles are left, thus the

set of L cycles was a weakly fundamental cycle basis.

In contrast, if G is a planar graph with some faces that do not border the boundary,

then no matter which face is chosen as the exterior face, no planar basis of G is ever a

fundamental cycle basis since all of the edges of the interior faces that do not border the

boundary border one other cycle in the cycle basis, and in a fundamental basis all cycles

include an edge not included in any other basis cycle.

These considerations set the stage for the rest of the chapter. In Section 3.5.2 we intro-

duce a simple search procedure for constructing a fundamental cycle basis. In Section 3.5.3

we introduce a greedy search procedure that produces a weakly fundamental cycle basis,

and that can be designed to promote small cycles and to reduce the number of repeated edge

crossings. This search procedure is shown to be efficient, and is tested on random graphs

with up to a million vertices. To conclude we discuss an alternative search procedure for

planar graphs Section 3.5.4. The search procedure is designed to recover a planar basis,

and is based on iteratively partitioning the planar graph into smaller graphs.

3.5.2 Constructing a Fundamental Cycle Basis

A fundamental cycle basis is defined by a spanning tree T . The first task when constructing

a fundamental cycle basis is to construct the tree T . A spanning tree can be constructed

with a search procedure. Both depth first search and breadth first search procedures can be

used to build spanning trees out from a central node. Our procedure is based on breadth
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first search since it produces bushier trees, and as a result, shorter cycles. Some authors use

depth first searches instead (cf. [42]). We use a breadth first search so that, by the “small

world effect" [83], the loops in our fundamental cycle basis are not excessively large.

Start by computing the degree of each node. Reorder the nodes in decreasing order of

degree. Then initialize a breadth first search from the node with maximal degree. As the

search progresses we store: the edges in the tree, the chords, the parent edge of each node,

and, depending on the implementation, the ancestral edges each node. The parent edge of

a node in the tree is the edge leaving that node on the path back to the root of the tree (node

used to initialize the search). The list of ancestral edges is the collection of all edges in

the path from a node back to the root. The cost of storing the ancestral edges depends on

the lengths of these paths. By using a breadth first search instead of a depth first search

we guarantee that no list of ancestral edges includes more edges than the diameter of the

graph, and no list of ancestral edges is longer than the longest distance from any node to

the root of the tree. For random graphs the diameter is almost always logarithmic in the

number of nodes with base equal to the average degree if the graph is sparse [84], and

average distance between randomly chosen nodes scales in the log base d of the number of

vertices where d is the average degree5 of the nodes in the network [85], so the storage cost

of storing the ancestral edges for each node in the tree is expected to scale with V logd(V ).

The more positively skewed the degree distribution the larger the base of the logarithm,

thus the smaller the average distance between nodes, and the more clustered the graph the

larger the average distance between randomly chosen nodes. The advantage of storing the

ancestral edges is that it streamlines construction of the basis loops. If only the parent edges

are stored then we need to search backwards from the endpoints of each chord to find each

basis loop.

5To be precise, d should be a weighted sum of squares of the expected degrees.
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At each stage of the search we have a partial tree. At stage n the leaves of the tree are

all nodes a distance n from the initial node, where distance the distance between two nodes

is the length of the shortest path between them. Loop in order from the leaf with largest

degree to the leaf with smallest degree. For each leaf find all the neighbors of that leaf that

have not yet been added to the tree. Add these neighbors to the tree and add the edges from

the leaf to the list of edges in the tree. Set the parent edge of each new neighbor to the edge

used to find it from the leaf. Set the ancestral edges for any new neighbor to the ancestral

edges of the leaf plus the parent edge of the new neighbor. If a neighbor is found that has

already been added to the tree then the corresponding edge is a chord. Add the chord to

the list of chords if it has not been found before. This can be done automatically without

searching the list of chords by only adding a chord if the neighbor at then end of the chord

has not yet been searched from. Repeat this process for all the nodes a distance n from the

initial node, then iterate until all nodes and edges have been found.

Once the search is complete we have a spanning tree T and a list of the chords left out

of the tree. The corresponding fundamental cycle basis has a cycle for each chord. Orient

the cycles in the same direction as their chords, so that the cycle crosses the chord in its

forward direction (from the low indexed endpoint to the high indexed endpoint). Then,

to construct the curl we need to be able to list the edges from the spanning tree used to

complete the cycle associated with each chord. This is the motivation for storing the parent

edges, and depending on the chosen implementation, the ancestral edges.

Suppose that we do not store the ancestral edges. Then to find the cycle associated

with a particular chord start two searches. The first is initiated at the initial node in the

chord, the second is initiated at the final node in chord. Then, using the list of parent

edges and trace backwards towards the root of the tree from each node. It is easy to move

backwards in the tree given the edge to endpoint mapping M and list of parent edges. For
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Figure 3.18: Search procedure for finding the loop associated with a chord. The two search
paths are shown in black. The intersection and tail are shown in red. The final loop is
shown in blue.

node j find the parent edge of node j, k(j), then the parent node is whichever entry of

M(k(j), :) doesn’t equal j. Since there is only one parent edge for each node in the tree

the two searches are each a path. Eventually the two searches must intersect. When they

intersect remove any portion of the two searches that overlaps. This produces the cycle

associated with the chord as illustrated in Figure 3.18. It is clear that the length of paths

in the tree will determine the time it takes to construct the curl. If the tree is tall then the

loops are long since the loops only terminate at points where the tree splits. If the loops

are long then each search takes longer. If the network is sparse then the number of edges

scales in the number of nodes, so the number of loops L = E − V + 1 ≈ (d − 1)V also

scales in the number of edges. As a result, if the average loop has perimeter P then the

cost of constructing each loop is O(PV ). If we use a depth first search then P ≈ V so

the runtime is O(V 2). Alternatively, if we use a breadth first search P ≈ O(logd(V )) for
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Figure 3.19: The procedure for generating loops by subtracting the list of ancestral edges
from the end of the chord from the list of ancestral edges from the beginning of the chord.

sparse random graphs [84] so the runtime is O(V logd(V )). The expected maximum loop

perimeter depends on the expected distance between randomly chosen nodes, and can be

bound above by the expected diameter of the graph. The distribution of graph diameters and

the expected distance between randomly chosen nodes are studied for a variety of random

graphs in [84, 85, 86, 87, 88]. In particular, if the expected number of degree diverges to

infinity slower than log(V ) as V →∞ then the diameter converges in probability to a finite

constant times log(V ) with base equal to the expected degree, and the expected degree is

converges to a constant that is strictly greater than 1 then the diameter isO(logd(V )) where

d is the expected degree [85]. Moreover the fraction of all graphs with fixed V and E such

that the diameter is greater than c log(V ) for a fixed constant c converges to zero as V

diverges [83, 89].

If storage is not an issue than the list of ancestral edges can be used to construct the curl

directly from the list of chords without any additional searching. This direct approach is

marginally faster when storage is not an issue, and is easier to implement since it doesn’t

require a method for detecting the overlap of two paths and removing extra edges.

Consider a particular chord, k. Then M(k, :) stores the endpoints of the chord. Then

the difference of the path from the start of the chord to the root and the path from the end of
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the chord to the root form the desired cycle (see Figure 3.19). Therefore we can construct

the curl by subtracting two matrices from each other, one with all the paths from the start

of the chords to the root, and one with all the paths from the ends of the chords to the root.

This procedure does not require searching backwards from the endpoints of each chord, but

does require extra operations to cancel overlapping paths. Generally these extra operations

are not particularly expensive since the length of the paths typically scales in logd(V ) [84]

(or slower [87]).

The paths back to the root from an arbitrary vertex is the list of ancestral edges of that

vertex. So, for a chord with endpoints i and j we need only recall the ancestral edges of i

and j. We then define two separate lists. One list records all the paths from the starting node

of each chord to the root. The other lists all the paths from the ending node of each chord

to the root. These lists contain the the edge indices associated with these paths (lists of

ancestral edges). To distinguish which sets of indices in each list are associated with each

loop we add (j − 1)E to the edge indices for the jth loop. Since there are only E edges no

edge has index greater than E. Therefore we can distinguish which loop is associated with

any element of the two lists by dividing the value by E and rounding down.

Once we have generated these two lists we produce two sparse vectors with LE entries

each, and with value 1 at all entries corresponding to a number in the appropriate list. Then

the vectors are reshaped into two L × E matrices. Since we added (j − 1)E to all the

entries of the lists corresponding to the jth loop, those entries map to the jth row of the

reshaped matrices. We then subtract the second matrix from the first (adding in the chords)

to produce the curl.

When tested both of these algorithms numerically and found that they typically ran in

time O(V logd(V )) for sparse random connected networks. A sample of the runtimes and

average length of the basis loops for a sequence of random networks from size 10 to 104 is
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Figure 3.20: Time to construct the curl per loop in the curl using a depth first search and
a breadth first search. One hundred random networks were sampled per network size, V .
Results for random networks with a fixed average degree of 5 are shown in red, and a
Delaunay triangulation of V nodes drawn uniformly from the unit box [0, 1] × [0, 1] are
shown in blue.

shown in Figure 3.20, and is compared to the equivalent runtimes is a depth first search is

used instead of a breadth first search.

Note that the run time per loop using a depth first search is proportional to the number of

nodes in the network, while the run time per loop is close to constant. For larger networks

the run time using a breadth first search scaled in log(V ). Therefore the overall runtime

using depth first search was observed to be O(V 2), while using breadth first search was

O(V log(V )).

Th difference in run time per loop reflects the average size of the basis loops produced

by each method. The average length of the basis loops is shown in Figure 3.21. Note that

the average loop produced using a depth first search is longer than the average loop using a

breadth first search. Using a depth first search the loop lengths scale in O(V ), while using

a breadth first search the loop lengths scale in O(log(V )). For example, the average length

of the loops using a breadth first search with fixed average degree 5 fits to log5/2(V ) + 0.74
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Figure 3.21: Length of the average cycle in the fundamental cycle bases built using a
depth first search and a breadth first search. One hundred random networks were sampled
per network size, V . Results for random networks with a fixed average degree of 5 are
shown in red, and a Delaunay triangulation of V nodes drawn uniformly from the unit box
[0, 1]× [0, 1] are shown in blue.

with R square 0.9994. The length of the loops in a fundamental basis are controlled by

the average distance between the endpoints of the chords through the tree. The average

distance between two random vertices through the tree generated by a breadth first search

is typically smaller than in a depth first search. Since the cost of constructing a loop in the

basis is governed by the length of the loop, building a fundamental basis using a breadth

first search is cheaper than using a depth first search.

We use a breadth first search to construct fundamental bases from now on since it is

faster, produces smaller average loops, and, as a consequence, reuses edges less on average.
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3.5.3 A Search Procedure for Constructing a Weakly Fundamental

Cycle Basis

In Section 3.5.2 we introduced a simple search procedure for finding a fundamental cycle

basis given only an adjacency structure. A breadth first search is used to build a spanning

tree for the network. The chords left out of the spanning tree are stored. Then to construct

a loop from each chord we search backward through the tree from each endpoint to find the

point where the two paths from the endpoints of the chord first overlap. Here we show that,

after a simple modification, a similar search procedure can be used to construct a weakly

fundamental cycle basis with small loops.

The procedure begins in the same way. The vertices are ordered in decreasing order of

degree and the node with maximal degree is set as the root of a tree. Then a breadth first

search is performed out from the root. The search is ordered so that the neighborhood of

leaves with large degree are always searched before the neighborhood of leaves with small

degree. As the tree is constructed all chords are recorded.

Order the chords by the average distance of their endpoints from the root of the tree.

This introduces an ordering on the basis cycles. Since a breadth first search is used to build

the tree no edge connects any endpoints whose distance from the root differs by more than

one. Therefore, if the edges are ordered by the mean distance of their endpoints to the root,

then the edges are ordered into groups so that we always consider all of the edges between

nodes a distance d from the root before edges between nodes distance d and d + 1, before

edges between nodes a distance d+ 2 from the root, etc.

Consider the loop l corresponding to the lth furthest chord from the root. Let the

endpoints of l be i(l), j(l). Then search through a subset of the edges of the full graph for a

path from j(l) back to i(l). To construct a fundamental basis this subset was constrained to
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the edges of the spanning tree. Suppose that we search backwards through T ∪
(
∪l−1
j=1Cj

)
.

That is, search backwards through both the spanning tree and the chords of any loops that

have already been added to the basis. Since the loops are ordered by the average distance

of their endpoints from the root, if i(l) and j(l) are distances d and d+1 from the root, then

we are searching over a subgraph containing the every node and edge within a distance d

from the root. The same is true if the endpoints of the chord are both a distance d + 1

from the root. As soon as the two searches intersect a loop is formed. By expanding the

subgraph searched each time a loop is added we increase the possibility of finding a short

loop. By construction this loop is one of the shortest loops that can be formed using the

specified chord in T ∪
(
∪l−1
j=1Cj

)
.

The breadth first searches leaving each endpoint may intersect at multiple nodes si-

multaneously if there are multiple shortest loops involving the chord and T ∪
(
∪l−1
j=1Cj

)
.

Choose one of these loops, denote it Cl, and add it to the set of cycles {C1, C2, ...Cl}. If

the number of times each edge is used in the cycle basis is tracked then the cycle could

be chosen to minimize the total reuse of edges. This process will necessarily produce a

weakly fundamental cycle basis, with one cycle for each chord, since each time a cycle is

added to the set it uses at least one edge used by no other cycles. In addition, since the

cycle were associated with the chords, the ordering of the chords fixes the order in which

the boundary cycles should be removed to perform the iteration in Theorem 13 to recover

θ. Moreover, by construction each cycle added is as small as possible using only the edges

in T ∪
(
∪l−1
j=1Cj

)
. This keeps the cycles in the cycle basis small. Finally, each cycle Cl is

chosen to minimize the reuse of edges from ∪l−1
j=1Cl−1 given that the cycle is as short as

possible, so the basis will avoid overusing edges when possible.

By construction every cycle in a weakly fundamental cycle basis constructed using the

algorithm described above must have length less than or equal to the cycle formed by the
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Figure 3.22: Length of the average cycle in fundamental and weakly fundamental cycle
bases using a breadth first search. One hundred random networks were sampled per
network size, V . Results for random networks with a fixed average degree of 5 are
shown in red, and a Delaunay triangulation of V nodes drawn uniformly from the unit box
[0, 1] × [0, 1] are shown in blue. Note that the length of the cycles produced in the weakly
fundamental cycle basis are always shorter than the cycles produced in the fundamental
basis, and that for the triangulation the average cycle length is close to 3. The minimal
cycle basis for the triangulation (the triangulation itself) would have average cycle length
equal to 3.

same chord in a fundamental cycle basis based on the same tree. The average cycle length

using a fundamental and weakly fundamental basis are compared in Figure 3.22. If the

average degree of the vertices is fixed to 5 then, using a fundamental basis the length of the

cycles fits to log2.5(V ) + 0.74 (r-squared equal to 0.9994). Using a weakly fundamental

basis the length fits to log4(V ) + 1.465 (r-squared equal to 0.9998). Thus, for large enough

V , the cycles produced using a weakly fundamental basis are about 1.5 times shorter than

the cycles formed using a fundamental basis.

The difference between the two bases when applied to the random triangulations is

more striking. For a random triangulation the minimum cycle basis should have average

cycle length equal to three since the set of all triangles is a planar basis for the graph.

Moreover, since the graph is planar no edge should be used by more than two cycles, so the
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average number of times any edge is reused should be less than two.

The length of the cycles in the fundamental basis increase at the same rate when applied

to the random triangulations as when applied to the random graphs with average degree

fixed. Thus, when using a fundamental basis the cycle lengths grow logarithmically in the

number of vertices.

In contrast, when the weakly fundamental basis is used the average cycle length remains

close to 3, peaking at V ≈ 300 with average length 3.18, then decays back towards 3,

reaching an average of 3.13 at V = 104. It follows that the weakly fundamental cycle basis

is close to minimal. The average number of times any edge appears in the basis reaches a

maximum of 2.1 ± 0.01 for V ≈ 600, and the average over the ensemble of graphs of the

maximum number of reuses approach 5.5 ± 0.5, indicating that the weakly fundamental

basis is also close to a planar basis. In contrast the average edge reuse and maximum edge

reuse increased monotonically in V if a fundamental basis was used, with the maximum

crossing 100 reuses at V on the order 103.

The weakly fundamental search algorithm is very efficient for graphs with many neigh-

boring small loops, since each search only continues until a loop is found. In fact, when

tested on a sequence of random Delaunay triangulations with 10 to 105 vertices this method

ran in O(V ) time, with an average cycle length of 3.14 for large networks.

The run time of this search is approximately linear in V if the length of loops found and

average degree of each node is independent of the total number of nodes in the network.

Then the depth of each loop search is independent of the number of nodes, and the number

of nodes searched within that depth is approximately constant. If the largest cycle found

by this method has perimeter P and the average degree of each node is d then the expected

number of nodes searched by each loop search is roughly 2ddP/2e since the largest tree

leaving the endpoint of each chord will have diameter less than or equal to dP/2e. In
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Figure 3.23: The computational cost per loop to construct a weakly fundamental cycle
basis. One hundred random networks were sampled per network size, V . Results for
random networks with a fixed average degree of 5 are shown in red, and a Delaunay
triangulation of V nodes drawn uniformly from the unit box [0, 1]×[0, 1] are shown in blue.
The left panel is a log-log scale, and the right panel is linear. Note that the computational
cost per loop is approximately constant for the random triangulation, but increasesO(V 1/2)
for random networks with a fixed average degree (increases with slope 1/2 on the log-log
plot for V > 102).

Figure 3.23 the computational cost per loop of building a weakly fundamental cycle basis

on a random triangulation is approximately constant in V since the cycle lengths remained

near 3, and beneath 6, for V ∈ [102, 104]. The exact cost of a weakly fundamental basis

search for a random graph which finds cycles with average cycle length P depends on the

degree distribution and clustering of the network since it depends on the average size of the

search trees used to complete each basis loop.

In contrast, if the average loop size grows with V then the computational cost per loop

will increase as nodes are added. In Figure 3.23 the computational cost per loop of building

a weakly fundamental basis for uniformly sampled random graphs with fixed average

degree increased proportional to V 1/2 (fits to 1.1V 0.51 + 1.32 with r-squared 0.9991). This

scaling can be argued directly from the expected sizes of the spanning trees used to find the
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loop associated with each chord. The average path length between any pair of randomly

chosen endpoints increases proportional to logd(V ) where d is the average degree. Then,

since the edges are drawn uniformly, the expected length of the shortest path segment

connecting two endpoints of a chord is approximately logd(V ). Since the loops are found

by a pair of searches starting from each edge the length of the search trees is less than

dlogd(V )/2e. Then the size of each search tree is proportional to ddlogd(V )/2e = O(V 1/2).

If the average degree of each node is fixed then the number of loops grows proportional to

V , so the computational cost for building the weakly fundamental basis is O(V 3/2).

Thus, for networks with small loops, or with a high clustering coefficient, the cost of

building a weakly fundamental cycle basis may be close to constant per loop, while for

networks without any tendency to cluster, the computational cost per loop may scale in the

square root of the number of nodes.

Kavitha provides bounds for the minimal total length of fundamental and weakly funda-

mental bases. Every graph has a weakly fundamental basis of length O(E log(V )/log(E
V

))

thus there is a minimal weakly fundamental cycle basis with total length that scales slower

than E log(V ) in the graph size. In contrast, the equivalent bound for fundamental bases is

O(V 2). Finding a minimal fundamental or weakly fundamental cycle basis is APX hard6

[33] Depending on the application it may be enough to work with the weakly fundamental

basis produced by the search procedure outlined in this section. If the resulting basis is not

sufficiently minimal then the length of the basis can be reduced by searching for pairs of

overlapping cycles in the basis who could be combined to form a pair of shorter cycles.

6A problem is APX hard if there is no polynomial time approximation algorithm unless P = NP .
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3.5.4 Special Case: Planar Graphs

Suppose G is planar and biconnected7 How can we find a planar cycle basis for G using

only its adjacency structure?

Let F denote the faces of the graph after some embedding. Then F \ Fj is a planar

basis for any j ∈ [1, L+ 1]. Whichever face is not included is the exterior face of the graph

in some embedding. It follows that, if we can identify the faces of the planar graph, then we

can easily construct a cycle basis by choosing a face to consider as the exterior, and setting

the cycle basis equal to all other faces of the planar graph. For planar graphs a minimum

planar basis consisting of the interior faces can be found in linear time by solving an all-

pairs min-cut problem on the dual, which runs inO(V 2 log(V )), orO(V 2) time depending

on the implementation [90, 36, 33].

Suppose we find a cycle C in G. How can we tell if it is a face? If the cycle, C, is a

face of the planar graph then the graph formed by removing all edges and nodes from the

cycle, G \ C, is still connected. If, on the other hand, the cycle is not a face, then after

removing the cycle the graph will be broken into two or more disconnected components -

and the separated components can be sorted into the interior and exterior of the cycle [36].

It follows that a cycle is a face if an only if ot can be removed from a planar graph without

separating the graph into two components.

This classification rule introduces an intuitive algorithm for finding all of the faces

of a planar graph. The algorithm is based on recursively partitioning the planar graph

into smaller graphs. In contrast, all of our algorithms thus far have been edge insertion

algorithms, in which edges are added one at a time to build the cycle basis. It is possible

to build a planar cycle basis and embedding by adding edges or nodes one at a time

7If G is singly connected then isolate all singly connected components and apply the method to each singly
connected component separately
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(cf. [91, 92]), however these algorithms require careful ordering of the edges [32]. The

partitioning approach is inspired by Hopcroft’s planarity test [32] and Rusoz’ algorithm for

enumerating all of the cycles of a planar graph [37]. First we present a graphical algorithm

in which the partitioning is performed explicitly. Then we present a modified version of

the partitioning algorithm that uses a depth first search to avoid searching over the same

subgraphs repeatedly.

Initialize a depth first search from some node in the graph. Continue the depth first

search until we reach a node who only neighbors nodes we have already added to the tree.

This is the first leaf in the tree. As the search progresses store all of the chords. If the search

is stopped at the first leaf then the tree is a path, and any cycle formed by a chord consists of

the chord, plus all edges in the segment of the path between the endpoints. Thus the length

of every cycle can be computed by indexing the nodes in the order they are discovered by

the search and subtracting the lower endpoint index from the larger endpoint index of each

chord. Everytime a chord is added compute the length of the associated cycle and compare

it to the length of the largest cycle found thus far. If it is the larger then update the length of

the largest cycle and store that chord as the chord corresponding to the longest cycle. Thus,

once the first leaf of the tree is found we can easily identify the largest cycle formed by a

back-edge along the first branch of the spanning tree.

Form a new graph G \ C by removing all the nodes and edges in the cycle from the

graph. Then check whether the resulting graph is connected. If it is connected then the

cycle is a face. If it is not connected then the cycle is not a face. To check if the graph is

connected start a search from a node in G \ C. If the search reaches every node in G \ C

then the graph is connected. The cost of the search is strictly less than V + E since every

vertex and most of the edges in G \ C will be checked once.

Suppose that the cycle is a face. Then, by convention, we will let it be the exterior
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face of the graph. Suppose the cycle is not a face. Then G \ C can be separated into two

components, an interior and an exterior. This sorting can be accomplished using the method

presented in [32]. We skip the implementation details since this version of the partitioning

algorithm is included to provide graphical intuition for the improved algorithm discussed

at the end of the section.

Let G1 denote the union of the first component with the cycle C, and let G2 denote the

union of the second component with C. Then both G1 and G2 are planar graphs, and C is a

face of both graphs. By convention let C be the exterior face for both of the new graphs.

The motivation for starting by searching for a large loop is to attempt to subdivide G into

two graphs, each approximately one-half the size of G. In either case we are left with a set

of planar graphs with a cycle that is the exterior face of each planar graph.

A bridge is a path through a planar graph that intersects two different nodes in the

exterior face without using any of the edges of the exterior face. Pick an initial node in the

exterior face and search out from the node without using any of the edges in the exterior

face. Once another node from the exterior face is reached the path back from that node to

the starting node in the search tree is a bridge. The union of the bridge with the exterior

face forms a pair of neighboring cycles that share the bridge. Denote these cycles C1 and

C2. As before, identify whether or not each cycle is a face, and if it is a face store it in the

list of faces found. If the cycle is not a face then the planar graph can be subdivided into

two smaller planar graphs exactly as before, and the exterior face of the two graphs are C1

and C2. Then the process can be iterated. At each stage the goal is to pick a bridge that

separates the planar graph into two components of approximately equal size.

Thus the procedure is as follows. Identify a large cycle C. Remove the cycle from the

original graph and identify any connected components. If the remaining graph is connected

(C is a face) then let G1 equal (G \ C1)∪ C1 = G and let G2 = ∅ ∪ C = C. Then both G1 and
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G2 are planar and the exterior face of each is C. Then, for each planar graph that is not a

face find a bridge connecting two different nodes in the exterior face. Form a cycle from the

bridge and the exterior face. If no such bridge can be found then find a loop starting from

a node in the exterior face. Then iterate the procedure used for the first cycle. Anytime a

face is identified add it to the list of faces and keep a tally on each edge of how many of the

identified faces it is included in. Anytime an edge is used in two faces it can be removed

from the graph. An example is illustrated in Figure 3.24

This process iteratively partitions the planar graph into smaller and smaller components

until all of the faces are identified. Once all the faces are identified a planar basis can be

constructed by removing one face from the list.

The computational cost of this partitioning algorithm depends on how close each bridge

comes to halving each subgraph. At each step a bridge is used to split a graph into two

parts. Therefore the algorithm produces a binary tree of graphs with one leaf for each face

in the graph. There are L + 1 faces so the tree so has L + 1 = E − V + 2 leaves. A

binary tree with n leaves always contains 2n − 1 vertices, so the algorithm always runs in

2(L + 1) − 1 = 2L − 1 steps. The cost for each step depends on the size of the graph

treated in the step. The cost to search for a bridge is strictly less than the cost to search the

entire subgraph, which is linear in the number of vertices plus the number of edges. Once

the bridge is found the cost of identifying exterior and interior components is also linear in

the size of the subgraph [32]. A connected component can be found by a search procedure.

Thus the computational cost of each partitioning step is linear in the size of the subgraph

partitioned.

Now consider the total cost of partitioning every graph in the list of subgraphs generated

at a particular stage. If no faces have been identified yet then the union of the set of

components is the original graph. The components may overlap at the nodes and edges
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Figure 3.24: Constructing a planar basis by recursively partitioning the graph. In the first
stage a loop is found. The loop is shown in orange. The graph is then split into two
planar graphs. The loop is a face of each of the two components. Then a bridge is found
connecting two nodes in the face. The bridges are shown in green. The bridge is used to
separate the graph again. The loop formed by the bridge and a half of the original exterior
face is an exterior face for the two components. This process is repeated recursively until
all 12 faces of the original graph, including the exterior face, have been found. Note that the
tree has 12 leaves, one for each face, and 11 junctions where a planar graph is partitioned
into two smaller planar graphs. Also note that the height of the tree is 4, which is the
minimum possible height since 24 = 16 is the smallest factor of 2 greater than or equal to
12.

in the exterior cycles. By construction no node or edge is ever included in more than two

components, so the sum of all the nodes and all the edges in all of the subgraphs is strictly

less than twice the sum of all the nodes and edges in the original graph. Once a face has

been found it becomes a leaf in the binary tree of components, so if faces have already been

found then they do not contribute to the sum. Thus the cost of each stage is linear in the

size of the original graph, and the overall cost is less than the product of the height of the
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binary tree with the size of the original graph.

The number of stages depends on the height of the binary tree. If, at every stage,

one of the exterior cycles identified is a face then the binary tree includes L + 1 stages,

so has height L + 1. Then the overall cost will scale quadratically in the size of the

original graph. In contrast, if the number of faces is a power of two, and every exterior

cycle/bridge found splits each component so that half of the faces of the component fall

into one subcomponent, and half in the other, then the tree has height log2(L + 1), so the

overall cost will be O((E + V ) log2(L)) = O((E + V ) log2(E − V )). No binary tree

with L + 1 leaves is shorter than dlog2(L + 1)e, so the minimal computational cost of the

partitioning algorithm is O((E + V )dlog2(L))e.8

The principal cost of performing this algorithm is the repeated need to search for the

connected components of a graph after some nodes and edges have been removed. This re-

quires repeatedly searching subgraphs of the same the graph, so is inefficient. An improved

algorithm is presented below which avoids researching the same subgraph multiple times.

It is inspired by [32], and uses one depth first search to contruct a sequence of cycles that

are used to partition the graph.

Start by running the first step of the previous algorithm to completion. Then, either we

find a face of the original graph, or we split it into two pieces, and the cycle used to split

the graph is an exterior cycle for each component. To find the connected components we

8These considerations highlight the importance of finding a bridge which comes as close to halving each
component as possible. To guide the bridge search pick an initial node on each exterior cycle, and compute
the cumulative sum of the degree of the nodes in the exterior cycle moving around the cycle clockwise,
excluding edges between nodes in the cycle. Then run a depth first search on the component without the
edges of the cycle, starting from the initial node. If a bridge, or set of bridges was found then pick the
bridge which arrives at the node on the exterior cycle which comes as close to halving the sum of the degree,
excluding cycle edges, of all nodes in the exterior cycle as possible. Then, since we assumed the graph was
biconnected, all edges leaving a node in the cycle that is not an edge in the bridge must be part of a face in
one of the components after partitioning the graph. Thus, by picking the bridge to halve the net degree of
nodes on either side of the bridge, only counting edges not in the cycle, we hope to halve the graph so that
close to an equal number of faces are contained on either side of the bridge.
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had to run a search over the original graph with the cycle removed. Implement this search

as a depth first search over the components, starting from a node in the cycle, and searching

edges in the cycle before any other edges in the component. Then, after the first partitioning

stage, we have a spanning tree for each connected component of G\C. Focus on a particular

component. If we can construct an algorithm for finding the faces of a component, then we

can run the algorithm on the original set of components separately to find all faces of the

original graph.

Therefore, without loss of generality, assume that we start with a planar graph, and with

a spanning tree that starts by tracing around the exterior face of the graph. Let T denote

the spanning tree formed by the search. Run the search to exhaustion so that all chords

are found. Orient all the edges in the direction they were searched. Then, if we cross any

chord backwards, and trace backwards through T we will necessarily form a cycle. Keep a

list for every node of the chords arriving at that node, and keep a list of which chords have

been used. Keep a list of cycles, and keep a list of faces found.

As when building a weakly fundamental cycle basis our goal is to use each chord once,

adding to the list of cycles each time the chord is added. Mark the first chord as used. Then,

using the list of chords arriving at each node, find all chords arriving at nodes in the cycle

that have not been used yet. If there are no such chords add the cycle to the list of faces,

remove the cycle from the list of cycles. Then pick a new chord and start again. If there is

such a chord cross one of them, then trace backwards through T until we reach the cycle.

An example is shown in Figure 3.25.

Now there are two possibilities, either we arrive back at the node we left, or we arrive

at a different node in the cycle. If arrive back where we started then we have found a new

cycle. Add the new cycle to the list of cycles. If we did not arrive where we started then

the path traced back across the chord through T is a bridge between two different nodes in
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Figure 3.25: Partitioning a cycle into two cycles using a bridge. The solid edges represent
the edges in the spanning tree, and the dashed edges are the chords. The arrows point in the
direction of the search. The orange cycle is partitioned into two cycles by the blue bridge.
The bridge is found by crossing a chord backwards from a node in the cycle, then tracing
back through the spanning tree to the cycle.

the cycle. Then the cycle can be split into two cycles, both sharing the bridge. Remove the

original cycle from the list and add both of these new cycles to the list of cycles.

This initializes a list of cycles. Pick the first cycle in the list. Search for any chords

arriving at the cycle that have not been used yet. If there are none the cycle is a face. Add it

to the list of faces, and remove it from the list of cycles. If there is a set of chords arriving

at a node in the cycle which has not been used yet then pick one and cross it backwards.

Mark the chord as used. As before, trace backwards through the tree until we arrive back

on the cycle. If we arrive back at the same node we left we have found a new cycle. Add

the current cycle and the new cycle to the end of the list of cycles, and remove the current

cycle from the front of the list. Alternatively, if we found a bridge, form two cycles using

the bridge and the current cycle, remove the current cycle from the front of the cycle list,

and add the two new cycles to the back. If, at some point the list of cycles is empty but not
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all chords have been used then pick an unused chord and start the process again. Continue

until all chords have been used and the cycle list is empty. If the all chords are used and

there are still cycles in the cycle list remove them from the cycle list and add them to the

list of faces.

How many faces does this method produce? Every face in the list of faces starts as a

cycle in the list of cycles. Every cycle in the list of cycles is added after crossing a chord.

When a chord is crossed we either find an entirely new cycle, or partition an existing cycle

into two cycles. In the first case one cycle is added to the list, in the second two are added

and one is removed. Thus, every time a chord is crossed the cycle list gains one new cycle.

Cycles leave the cycle list once there are no chords arriving on the cycle that have not been

used. When a cycle is removed it is added to the list of faces, so, moving a cycle from the

cycle list to the face list does not change the sum of the lengths of the two lists. Thus, the

sum of the length of the two lists increases by exactly one cycle every time a chord is used.

Since there are L chords, and both lists start empty, after all L chords are used the sum of

the length of the two lists is L. Then all of the cycles in the cycle list are moved into the

face list, so the method will always produce L faces.

The set of L faces is a set of L cycles. To show that they form a planar cycle basis it is

enough to show that they form a cycle basis, and that no edge is ever used in any cycle more

than twice. The latter is easy to show directly from the structure of the algorithm. Edges

only enter the set of cycles when a chord is crossed. If they are part of a new cycle then

they appear once. If they enter as part of a bridge they appear twice. Once an edge enters

it remains part of at most two cycles, since, if an edge is part of a cycle then moving that

cycle to the set of faces does not increase the number of times the edge is used, adding an

entirely new cycle to the set of cycles adds an entirely new list of edges so does not increase

the number of times the cycle is used, and partitioning a cycle by adding a bridge splits the
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cycle into two parts before adding new edges, so does not change the total number of times

any edge already in the cycle is used. Therefore no edge appears in the set of L faces more

than once.

All that remains is to show that that the set of L faces are a cycle basis. Consider the set

of cycles formed by appending the list of faces to the list of cycles at a intermediate stage

in the algorithm. Then a curl operator could be constructed associated with that set, and the

number of independent cycles in the set would be the rank of the curl. Now, when a chord

is crossed either one row is removed and two are added (a bridge is found), or a new row

is added to the end (an entirely new cycle). If a new row is added it includes an edge no

other row includes, the chord, so must be independent of the previous rows. If a bridge was

found then an existing cycle is split in two, the original cycle is removed, and the two new

cycles are added. This can be represented by first finding one cycle that uses the bridge and

adding a row associated with it. This row includes an edge no other row uses, the chord, so

is independent of all previous rows. Then subtract that row from the row associated with

the original cycle, and move it to the end. These are elementary row operations so do not

change the rank of the curl. Thus, whenever a chord is crossed the rank of the curl increases

by one. Moving a cycle from the list of cycles to the list of faces only permutes the rows

so does not change the rank. After L chords have been crossed the curl has rank L, so the

set of cycles form a cycle basis.

Therefore this cycle partitioning algorithm is guaranteed to produce a planar cycle basis.

The algorithm is more efficient than the graph partitioning algorithm since it only requires

one initial search which has cost order O(E + V ), then the algorithm has one stage for

every chord, so always runs in L stages. For each stage we trace back through a spanning

tree, then through a cycle to form a loop. This has an expected cost equal to the length

of the cycle formed by the back trace. If this cycle only uses edge from the tree then it is
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added to the end of the list of cycles. If, instead, the cycle is formed by combining part of

the original cycle with a bridge then two new cycles need to be formed, both sharing the

bridge, so the cost is twice the length of the bridge plus the length of the original cycle. All

other operations simply involve permuting rows of the curl, so the overall computational

cost will depend on the average cycle size formed each time a chord is added, and how

quickly these cycles shrink as the graph is partitioned

The cycle partitioning algorithm is an example of a backtracking algorithm [37]. Back-

tracking algorithms are widely used to enumerate the cycles of graphs. For example, [93]

presents a time optimal algorithm for enumerating all cycles of a graph via backtracking

[37]. Hopcroft’s planarity test [32] is an example of a backtracking algorithm. Back-

tracking algorithms usually cannot be efficiently parallelized. An advantage of working

with a binary partitioning is that, at each stage, the component graphs/cycles can each be

partitioned in parallel. Rusoz presents a parallelizeable algorithm for finding all cycles of

a planar graph in O(V 2) time [37]. Another alternative to the approach developed here is

to use a planar graph drawing algorithm to identify the faces.

3.6 Summary

In Section 3.2 we illustrated the decomposition for a sequence of simple networks. These

included trees, loops, networks with isolated loops, an example with a pair of linked

loops, and complete networks. For loops, or networks with isolated loops, the rotational

potential and flow can be recovered by evaluating the curl around each loop, then dividing

by its perimeter. For complete networks the decomposition can be performed directly by

computing the divergence of f at every node, then dividing by the number of nodes in the

network. This shortcut will be used in Chapter 4 to compare the HHD to existing ranking

methods defined on complete graphs.
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In Section 3.3 we developed a framework for performing the HHD on a graph formed

by the products of smaller graphs. This framework offered insight into the cycle space of

lattices and hypercubes, and provided explicit construction rules for building the operators

of product graphs using Kronecker products of the operators defined on the factor graphs

(see Section 3.3.2). The framework also led to an elegant spectral method (Section 3.3.3)

for performing the HHD on lattices that reduces the cost from O(V 2) to O(V log(V )) by

using an FFT. The implementation details are described in Section 3.4.3.

In Section 3.5 we developed general purpose numerical methods for performing the

HHD given only the adjacency structure of the network and the edge flow. We showed

that construction of the gradient and node Laplacian is trivial, and that the potential, con-

servative, and rotational flows can be computed easily using classical techniques once

the gradient is formed. The rotational potential depends on the chosen cycle basis. The

cycle basis is not unique, and depending on the application some cycle bases may be more

appropriate than others. Three search algorithms were presented that are designed to find a

fundamental cycle basis, weakly fundamental cycle basis, and planar cycle basis.
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Part III

Structure: Application to Tournaments
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Chapter 4

Application to Tournaments: Theory

4.1 Preface

This chapter is adapted from a paper submitted to SIAM Review on cyclic competition in

tournaments. Some of the derivations presented in Chapter 2 are repeated here since this

chapter is designed to be self-enclosed. The derivations are included to show how the HHD

can be motivated in an applied setting.

This chapter applies the HHD to competitive tournaments. The HHD is used to simul-

taneously rank and rate competitors, to identify competitive cycles, and to quantify how

cyclic competition is. We compare the HHD to existing methods. The comparison shows

that the HHD is conceptually similar to existing methods, but computationally simpler,

and offers a more unified analytic approach. The chapter concludes by introducing trait-

performance models. A trait-performance model is a statistical model for sampling edge

flows. The edge flow is assumed to model the perfromance of competitors, and is a

function of the competitors’ traits, which are sampled from a trait distribution. We study
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the expected sizes of transitive (conservative) and cyclic (rotational) competition when the

edge flow is sampled from a trait-performance model. We show that the expected size of

the cyclic and transitive components are controlled by the density of the network, and by

the correlation in the edge flow on pairs of edges that share an endpoint.

4.2 Introduction: Tournaments, Ranking, and Intransi-

tivity

Competitive tournaments are important across disciplines. Examples range from ecology

and animal behavior [94, 95], to psychology and sports [96, 97]. Rating and ranking is

important in each of these areas. In sports, ranking and rating teams and players is a topic

of broad popular interest. Rating is important in biology since fitness is an intrinsic rating of

competitive ability since survival and reproduction are influenced by repeated competitive

interactions with many individuals. Ranking is especially important in politics, as many

electoral systems determine a winner by aggregating votes into a partial ranking of the

candidates. Ratings and rankings are often sought since they simplify the description of

a tournament by assigning each competitor a single number that purports to measure how

good they are.

Not all tournaments allow for a consistent ranking of competitors. This observation

motivates classification into transitive and intransitive tournaments. A tournament is tran-

sitive if knowing that A usually beats B, and B usually beats C, is enough to conclude

that A usually beats C. Transitive tournaments are consistent with a global ranking of all

the competitors. An intransitive tournament is a tournament that is not consistent with

any global ranking. Intransitive tournaments must contain at least one cycle where the
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transitive assumption fails. Examples of intransitive tournaments appear in practically

every discipline where tournaments are studied [18, 98, 99, 100, 101], and are the norm

rather than the exception when using real data [16, 97, 102, 94, 95, 103, 104]. Intransitivity

may arise due to uncertainty in observed data [97, 104], or may be intrinsic to competition

as in the game of rock-paper-scissors.

Intransitivity is important for two reasons.

First, intransitivity presents a challenge when ranking competitors since no ranking is

consistent with the tournament. For example, Condorcet’s paradox is a voting paradox

in which voter’s preferences lead to cyclic community preferences [98].1 Because of

the cyclic community preferences there is no way to fairly rank the candidates, and, as

a consequence, pick a winner of the election.

Second, when intransitivity is intrinsic to the structure of the tournament then the

tournament contains cyclic structure, as in rock-paper-scissors. Cyclic structures can rad-

ically alter optimal strategies [18] and long term dynamics [99, 101, 105, 106, 107]. For

example, in ecology it is widely hypothesized that intransitive competition between species

promotes biodiversity since no species dominates. This hypothesis is based on extensive

theoretical work [94, 99, 101, 105, 106, 107, 108] and limited case-studies of small species

assemblages [109, 102, 110, 111, 103]. However, the importance of intransitivity in real

natural communities is controversial [112, 113, 114] - in part because there are few robust

metrics for measuring intransitivity from incomplete and noisy data. It has been shown that

uncertainty in data can easily be conflated with observed intransitivity, and that common

sampling methods for filling in missing data overestimate intransitivity [95].

Thus there is a need for ranking and rating methods that are robust to intransitivity and

1Suppose there are three candidates in an election and three voters. Suppose that the first voter prefers A
to B to C, the second B to C to A, and the third C to A to B. Then A would beat B in an election between the
pair, B would beat C, and C would beat A.
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measures of intransitivity that can handle noisy and incomplete data.

Jiang et al introduced the discrete Helmholtz-Hodge Decomposition (HHD) as a general

method for ranking objects from incomplete and imbalanced data [16]. The decomposition

is a network theoretic tool that we adapt to the study of competitive tournaments. The

HHD accomplishes three fundamental tasks. First, it assigns a rating to each competitor.

Competitors can be ranked accordingly. Second, it produces a measure of intransitivity that

quantifies how far an observed network is from the nearest perfectly transitive network.

Third, it represents the observed network as the direct sum of perfectly transitive and

a perfectly cyclic networks. This decomposition provides an elegant characterization of

intransitivities present in data, and can reveal underlying cyclic tendencies in tournaments.

This last property was leveraged by Candogan to identify cyclic structures within collec-

tions of competing strategies [18].

When compared to existing ranking methods and intransitivity measures, the discrete

HHD is attractive has a number of advantages. It is more general than some classical meth-

ods since it applies to arbitrary network topologies and can accommodate imbalanced data

[16]. It is also more informative because it provides a clear description of both underlying

transitive and cyclic structures. Most ranking methods and intransitivity measures focus on

the transitive component while the HHD puts the transitive and cyclic components on equal

footing. Finally, it remains efficiently computable even for large, incomplete networks

[16]. In contrast, Slater’s index [104] requires solving an NP hard optimization problem

[115, 116], and Kendall’s index [97] requires a complete network.

This chapter aims to answer two fundamental questions:

1. Why use the HHD when other methods exist?

2. Having chosen to use the HHD, what do we expect when pairwise competitive ad-
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vantage derives from traits drawn from an underlying distribution?

Answering the first question is important since there are many possible methods to

choose from, so the choice of method should be made in a principled way. Answering

the second question is important since it builds a conceptual bridge from the competitors

and competitive event to the overall structure of tournament. As in Landau [117], we

seek to understand how the underlying distribution of traits among competitors, and the

relationship between traits and success influence the overall tournament.

This is an important question across disciplines. In biology the relationship between

certain traits and success in competition for survival and reproduction is intrinsically related

to fitness, and selection for heritable traits [118]. For example, competition for social domi-

nance among male elephant seals depends on their body mass [119] and competition among

male dwarf Cape chameleons depends on coloration, head size, and body length [118].

Success in these competition events is correlated with reproductive success, suggesting

that heritable traits which improve a male’s chances of success are strongly selected for

[119]. In sports the relationship between the traits of a player or team and their success

is an area of active interest - for athletes, owners, fans, and researchers alike. The rise of

sabermetrics, the statistical study of baseball, is a popular example [120]. Sabermetrics

have been used to predict the performance of players and teams based on their previous

statistics. This includes the prediction of wins and losses as in [121] where it was found

that the success of a team depended on a variety of traits including batting average, fielding

percentage, slugging percentage, and starting pitcher earned run average.

This chapter answers questions 1 and 2 as follows:

1. Rather than imposing the HHD framework ad hoc, we show that it arises naturally

from the study of ranking and intransitivity. To illustrate this point, we provide a
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different derivation of the HHD than is provided by [16]. Instead of starting from the

decomposition, we propose two special classes of tournaments with clear statistical

motivation. We then show that any tournament can be uniquely decomposed into

a combination of tournaments from these classes. This decomposition is the HHD

(see Theorem 19). Next we illustrate that the HHD can be reached by six different

approaches (corollary 19.1), and is thus robust to varying motivations.

2. We show that, under simple assumptions on the distribution of traits, the expected

sizes of the components of the decomposition can be computed explicitly from the

number of competitors, number of pairs who could compete, and the correlation in

the performance of A against B with A against C. This correlation is shown to equal

the uncertainty in the expected performance of a competitor. This relation links a

decomposition of uncertainty in performance, to correlations in performance, and to

tournament structure (see Theorem 20 and corollary 20.1).

The answers to the second question prove, under minimal assumptions, a series of

intuitive statements about transitive/cyclic competition that appear, as heuristics, across the

literature. These include:

1. (a) The more predictable the performance of A against a randomly drawn competi-

tor (i.e., the less the performance of A depends on their opponent) the more

transitive the tournament.

(b) The less predictable the performance ofA against a randomly drawn competitor

(i.e., the more the performance ofA depends on their opponent) the more cyclic

the tournament.

2. (a) The more correlated the performance of A against B with the performance of

A against C, the more transitive the tournament.
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(b) The less correlated the performance of A against B with the performance of A

against C, the more cyclic the tournament.

3. The more pairs of competitors who could compete, the more cyclic the tournament

is, on average.

4. Filling in missing data by random sampling overestimates intransitivity.

The chapter is structured as follows. In Section 4.3 we provide some necessary back-

ground. Next, in Section 4.5, we derive the HHD in the context of tournaments and

develop the associated ratings and intransitivity measure. In Section 4.6 we show how

assumptions about the statistics underlying competition promote or suppress intransitivity.

We focus on trait-performance models in which performance is assumed to be a function

of traits, which are sampled from a trait distribution. We present a theorem (20) which

allows the expected size of the intransitivity measure to be computed directly from the

number of competitors, edges in the network, and correlation in the performance of A

against B with A against C. This result is extended by a corollary (20.1) which shows

that the correlation in performance is related to a decomposition in the uncertainty of the

performance of A against B. These results lead to a deeper conceptual understanding of

how cyclic structure can arise from uncertainty in performance, and can be suppressed by

correlation in performance. We present an example to illustrate the explanatory power of

this theorem in Section 4.7.

4.3 Background

Consider an ensemble of m competitors. Assume that each competition event involves

exactly two competitors, and never results in a tie. This standard assumption [97, 94] can
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be weakened to allow for ties. We will refer to competition of this kind as a tournament.2

A tournament is specified by a schedule, and a set of win probabilities. The schedule

fixes the order of events, and could be either fixed or random. For each possible pairing

there is a pair of win probabilities. Let pAB denote the probability competitor A beats B.

The shorthand A > B denotes the case when A is expected to beatB (pAB > 1/2). It is the

direction of competition. In principle the win probabilities could change in time, and could

depend on the history of the process. We will focus on tournaments with unchanging win

probabilities since evolving probabilities require additional modeling of temporal dynamics

(see [122]). In addition we assume that the schedule and win probabilities are independent.

We distinguish the structure of competition, which depends primarily on the win probabil-

ities, from the dynamics of a tournament which depend on both the win probabilities and

the schedule.

The win probabilities may be conveniently represented using a competition network,

G� = (V , E). Assign each competitor a node in the network. Introduce a pair of directed

edges between each pair of competitors who could compete with each other. The edge from

B toA is assigned the weight pAB. In all that follows we will assume that the tournament is

finite, connected and reversible. That is there are finitely many competitors, for any pair of

competitors A B there is a path from A to B and from B to A through G� with probability

greater than zero, and that pAB 6= 0 or 1.

Sometimes it is preferable to simplify the competition network by rounding all weights

less than 1/2 to 0, and all weights greater than 1/2 to 1. This can be conveniently repre-

sented as an unweighted graph G→ which contains all directed edges from G� with weights

greater than a half, and an undirected edge between all pairs with pAB = 1/2. This graph

represents the expected direction of each competition event, as opposed to the probability

2This is distinct from a complete tournament in which it must be possible for all pairs to compete.
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of each event. Most intransitivity measures focus on this graph (see [97], [117], [104]).

A ranking is an ordered list of competitors from best to worst. This can be specified by

a rank functionRwhich returns the rank of each competitor. Note that this is distinct from a

rating, r, which is a function that returns a real number for each competitor [123]. Rankings

are often generated by first generating a rating for each competitor, then listing them in

decreasing order. Rankings and ratings provide an intuitive description of competition

in which some innate competitive ability determines the performance of each competitor

against all opponents.

Ranking methods are diverse, and well studied. Famous examples include the Page-

rank method used by Google to sort search results [124], the Massey and Colley methods

used by the NCAA to rank basketball and football teams [123], and the Elo rating/ranking

widely used by chess federations [122, 125]. The rating system produced by the HHD is a

kind of log-least squares rating as is frequently used in paired comparison [96, 126, 127].

Examples of least squares rating systems are included in [128, 129, 123, 130, 131, 132].

A survey of least squares rating systems and a comparison to the ratings produced by the

HHD is provided in Sections 4.4.1 and 4.5.4.

A competitive network G� is consistent with a ranking R if A > B whenever R(A) <

R(B). If a competitive network is consistent with a ranking then this ranking is unique

and the network is transitive. Transitive networks satisfy the intuitive property that if we

consider some sequence of competitors with monotonically increasing rank, A > B >

C > D then A > D. That is, G→ contains no cycles, and all the edges in G→ point from

competitors who have high ranks (low ratings) to competitors with low ranks (high ratings).

If G→ contains a cycle, then there exists a sequence of competitors such that A > B >

C > .... > A, and the tournament is intransitive. If a network is intransitive then it is

not consistent with any ranking [100]. Speaking broadly, measures of intransitivity either
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count the number of intransitive triangles present in G→ [97], or measure how far G→ is

from a nearby transitive network [104]. The Kendall measure [97] counts the number of

intransitive triangles in G→. This can be done efficiently, however prioritizes triangles

over larger loops and does not weight edges equally [133, 104]. The Slater measure

of intransitivity is the minimum number of edge directions that need to be reversed in

order to transform G→ into a transitive network [104]. While conceptually preferable [16],

finding the closest transitive network is an NP hard problem [134], [135], [136], [16].

Despite some fast heuristics [116], this limits the application of the Slater measure to small

networks. The intransitivity measure associated with the HHD is conceptually analogous

to the Slater measure, but can be computed efficiently even for very large networks. Note

that transitivity and intransitivity are defined relative to the direction of competition, that is,

the sign of pAB−1/2, rather than the exact value pAB. In contrast the intransitivity measure

associated with the HHD is continuous in the win probabilities, so uses all the information

available in G�. A survey of intransitivity measures and a comparison to the intransitivity

measure associated with the HHD is provided in the Section 4.4.

4.4 Survey of Existing Methods

4.4.1 Least Squares Ranking Methods

The most direct method for rating competitors in a tournament is to rate each competitor by

their win percentage. That is, if competitor A plays nA games and wins WA of them then

competitor A is assigned the rating WA/nA. The competitors are then ranked in decreasing

order by their win percentages [123]. This method is appealingly simple, and is widely

used within conferences in professional sports including the NFL, NBA, NHL, and MLB
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[128]. That said, rating by win percentages is susceptible to bias because it does not

take into account which opponents a competitor frequently faces. If the schedule pits A

against strong opponents more often than against weak opponents then the win percentage

of team A will underestimate their expected win percentage against an average team. This

sort of bias is minimized in sports where each team plays a representative fraction of the

conference or league3, however is a serious problem when the number of competitors is

large and the number of games is small [129, 130]. For example, the 117 college football

teams each only play 11 games a season, so cannot possible play a representative sample

of their league [128].

Biases of this kind motivate rating systems that take into account the strength of sched-

ule. These include the rating system proposed by Massey, Colley, and Keener for ranking

college football teams [128, 129, 123, 130].4 Both the Colley and Massey methods are

examples of a least squares rating method. Least squares rating methods attempt to find a

rating that is a “best fit" to an edge flow which reflects the win probabilities.

An edge flow is an alternating function f on the directed edges of a graph [16]. Here

alternating means that, given a pair of competitors A,B, fAB = −fBA. In general the edge

flow is chosen to reflect the win probabilities, so that a large positive edge flow from A to

B indicates a high probability that A beats B, while a large negative edge flow from A to

B indicates a low probability that A beats B. If fAB = 0 then the probability A beats B

should be 1/2. Examples of edge flows include:

fAB = pAB −
1

2
, fAB = logit(pAB) = log

Å
pAB

1− pAB

ã
. (4.1)

3Baseball, basketball, professional football, or hockey
4Ranking is historically important in college football, where the winner each year was determined by

rankings, not victory in a play-off series [128, 130]. Rankings that did not account for strength of schedule
could lead to controversy when declaring a champion [129].
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The former arises naturally when using methods based on win frequencies [128, 123],

while the latter arises naturally from Elo type rating systems [137, 138, 123]. The latter is

often referred to as a log-odds, or logit, edge flow.

Given an edge flow we need a method to aggregate the edge flows into a set of ratings

that accounts for the strength of different competitor’s schedules.

Let r be a rating function that returns an estimate of the competitive ability of each

competitor. Since competitive ability does not have an absolute scale we will assume

that r is always chosen so that the sum of the ratings equals zero. In order for r to be

interpretable the probability that A beats B should be related to the difference in rA and

rB. A particularly simple choice would be to look for r such that the difference in ratings

matches the edge flow [123, 130]:

rA − rB = fAB (4.2)

Then competitor A is rated higher than competitor B when there is a large edge flow

from B to A (high probability A beats B).

Notice that, if there exists an r which satisfies equation eq. (4.2) then if pAB = 1/2 then

r(A)−r(B) = 0, so r(A) = r(B). Moreover, ifA andC are not directly connected, but are

connected through a shared neighborB, then r(A)−r(C) = r(A)−r(B)+r(B)−r(C) =

fAB + fAC . To see that this accounts for differences in strength of schedule suppose that

A only ever plays B who plays both A and C. Suppose that A and B are equally matched,

but C is worse than both. Then B will have the best win record of the three, so would be

rated higher than A using win frequency. However, using eq. (4.2), r(A) = r(B) > r(C)

so the rating system correctly rates A the same as B, thus accounting for the fact that A has

a tougher schedule than B.
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Equation eq. (4.2) is a linear equation that maps from a function r on them competitors,

to a function f on each edge of G�. Let E denote the number of edges in the network. If

the network is a tree (contains no loops) then E = m − 1. Otherwise E ≥ m. Since we

required that
∑m

j=1 r(j) = 0 the rating function only has m − 1 degrees of freedom. It

follows that, whenever the competitive network contains a loop, there may not exist any r

which satisfies eq. (4.2). Therefore, instead of looking for an r that recovers the edge flow

exactly, we look for the rating that most closely recovers the edge flow [131, 132]. 5

A natural proposal is to minimize the least squares error between r(A)− r(B) and fAB

on all edges. This error may be weighted by a set of weights wAB ≥ 0. Prior information

about the ratings may be incorporated by introducing a regularization termR(r) ≥ 0 which

pushes the final ratings away from ratings where the regularization is large. For example,

if R(r) = α||r||2 for some α > 0 then the regularization term helps ensure that none of

the ratings are too extreme. A general least squares rating system adopts ratings r which

satisfy:

r = argminu∈Rm:
∑
u=0{

∑
ij∈E

wij [(ui − uj)− fij]2 +R(u)}. (4.3)

The Massey systems sets wij equal to the number of events observed between i and

j, fij to the point differential, and does not introduce any regularization [123]. If the

point differential is modified to account for home field advantage then this is the Stefani

system [132]. The Colley system also sets wij to the number of events observed between

5The existence of an exact solution to eq. (4.2) depends on the presence of loops because of the possibility
of intransitivity. If there is an intransitive loop in the network then there could be some cycle around which
f are all positive. There is no rating that can capture this intransitivity, since if equation eq. (4.2) is satisfied
then following a path in G→ in the positive direction of an edge flow would lead to a monotonic increase in
ratings. This is impossible if there is a cycle around which the edge flows all point in the same direction,
since, starting from A, and arriving at a B later in the cycle we would conclude r(B) > r(A), but starting
fromB and moving in the same direction toAwe would conclude r(A) > r(B). Therefore equation eq. (4.2)
can not be satisfied exactly if the network is intransitive.
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each pair, but sets fij equal to one half the number of observed wins minus the number of

observed losses, divided by the number of games plus two. Note that this is close to the win

frequency minus one half. Colley also usesR(r) = 2||r||2. This suppresses overly large or

small ratings. This regularization can be derived from Laplace’s rule of succession when

estimating the win probability from an observed win frequency [128, 123]. This leads to

more conservative ratings.

Alternatively, setting fij to the log-odds recovers the family of logarithmic least squares

rating systems used in the pairwise comparison literature [139, 140, 126, 127]. Setting wij

equal to the number of observed events and using the log-odds produces a system that

has been used to rank professional tennis players [96], to rank items in paired comparison

studies [126, 127], and to rank the wealth of nations [141]. This method is often used in

decision theory when responses to paired comparisons are assumed to be ratios of non-

negative quantities [126, 127, 141], or to find an approximate solution to the Bradley-Terry

model. 6

The ratings produced by our application of the HHD are least squares ratings with a

logit edge flow. In this chapter the weights are all set to one and no regularization is used as

it is assumed that the win probabilities are known. When, as in most empirical settings, the

win probabilities are unknown, but estimable from observed win frequencies, then weights

and regularization can be chosen based on Bayesian considerations (see Appendix B.1.1).

6As an example, a log least squares method proposed by Sismanis, Elo++, won the kaggle chess ratings
competition [142]. The kaggle chess rating competition was an open source competition that provided data
on 73,000 games among 8,000 competitors. The data was divided into a training data set of 65,000 games,
and a test set of the remaining 8,000. Competitors were allowed to train ratings systems on the training
set, and then were ranked based on the accuracy of their rating systems when used to predict the outcomes
of the test set. The Elo++ method uses least squares ranking with a logit edge flow and a bias associated
with a player playing white or black, and with the weights chosen to emphasize recent games. Like Colley,
Sismanis regularized the least squares rating problem. Unlike Colley, whose regularization penalized large
ratings, Sismanis’ regularization term penalized large differences between the rating of a competitor and their
neighbors. This choice of regularization was motivated by the observation that most chess players primarily
play opponents of similar ability [142].
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4.4.2 Measures of Intransitivity

Existing intransitivity measures can be broadly broken into two categories: measures based

on triangle census, and measures of the distance to nearby transitive networks.

Triangle Census:

Consider a triangle consisting of three competitorsA,B,C. Assume that these competitors

are all connected in G�. Then either the triangle is intransitive (the directed edges in G→

point around the cycle), or it is transitive.

Kendall [97] proposed measuring the transitivity, K, of a network by counting the total

number of all triangles in G→ that are intransitive, normalizing this count by the maximum

possible, and then subtracting this ratio from 1. This measure was originally designed for

pairwise comparison of objects, where it was assumed that all pairs could be compared

with each other [97]. That is, the method was developed for complete tournaments.

For a complete tournament the total number of intransitive triangles can be computed

analytically without counting over all triangles by computing the variance in the in-degree

of the nodes of G→ [97]. This is the principle advantage of Kendall’s measure [95].

Let k denote the number of intransitive triangles in G→ and let kmax be the maximum

possible. Kendall defined his measure of transitivity (or “consistency") to beK = 1− k
kmax

.

Therefore the associated measure of intransitivity is:

IntK(G→) =
k

kmax
. (4.4)

This means that, if the tournament is complete then the Kendall measure IntK(G→) can

be computed analytically by computing the variance in the in-degree of each node. In

general, the larger this variance the more transitive the tournament.
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Landau defined a related measure, h which is simply the variance in the in-degree of

each node, scaled by the maximum possible variance [117]. This is equivalent to Kendall’s

K if the number of competitors is odd [133, 95]. As written this is a transitivity measure

since it increases as the network becomes more transitive. We will refer to IntL(G→) = 1−h

as Landau’s intransitivity measure. This measure was rediscovered by Laird [94], and was

used to show that intransitive competition between species promoted coexistence.7

Both the Kendall measure and the Landau measure are restricted to complete tourna-

ments. More general approaches are needed since most data sets are far from complete

[95, 16].

If the underlying tournament is incomplete then it is still possible to perform a triangle

census explicitly by checking every triangle. This idea was proposed by both Shizuka [95]

and de Vries [143]. Shizuka’s measure is defined as the proportion of all triads that are

intransitive:

IntSh(G→) =
number of intransitive triangles

number of triangles
. (4.5)

Here the normalization is done with respect to all triangles, since it is easier to find

the total number of triangles than the maximum number of intransitive triangles [95]. If

the direction of all edges are chosen randomly then on average a quarter of all triangles

are intransitive [95, 144]. Therefore, observing IntSh(G→) < 0.25 is an indication that the

network is more transitive than would be expected if all pairwise relations were chosen

randomly. Most empirical networks exhibit IntSh(G→) < 0.25 [95].

Shizuka’s method differs from other popular methods which start by either randomly

filling in missing edges [143], or by replacing missing edges with a pair of edges each
7Laird et al normalize the measure slightly differently. They normalize by the difference between the

maximum possible variance and the minimum possible variance. The minimum possible variance is nonzero
if m even.
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weighted by 1/2 [133]. Once all missing edges have been filled either the Kendall or

Landau metrics can be used. These methods should be avoided if the underlying network

is not complete (missing edges due to structure not lack of data), or if there is correlation

structure in the orientation of the edges that is not accounted for by randomly filling in the

missing edges. It has been observed that these imputation procedures typically overestimate

the degree of intransitivity [95]. Using the metric of intransitivity associated with the HHD

we will explicitly show that adding edges, especially adding edges without incorporating

correlation structure, typically increases the expected degree of intransitivity. For this

reason it is important to develop measures of intransitivity that, like Shizuka’s measure,

do not require randomly filling in missing data.

Distance to Transitive Network:

An alternative family of intransitivity measures follow from the measure proposed by Slater

[104]. Slater proposed measuring the intransitivity of a competitive network by counting

the minimum number of competitive reversals (flipped edges in G→) needed to reach a

transitive network [104]. Unlike the Kendall measure, Slater’s index of intransitivity does

not treat triangles as fundamental units. Note that, in a tournament that is not complete

there may be intransitive cycles of length greater than 3, but no intransitive cycles of length

3.8 The Kendall measure also puts more weight on the orientation of edges that appear in

many triangles than in few triangles [133, 104]. Slater’s measure weights edges equally

and does not emphasize triangles over loops of other sizes [104]. For this reason the Slater

measure is sometimes considered conceptually preferable [16]. This same measure was

rediscovered by Petraitis, in the context of complete tournaments. Petraitis normalized

8For example, if the network consists of many large loops but no triangles these loops may well be
intransitive, but that intransitivity cannot be measured with a triangle census.
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the measure by the maximum number of possible reversals needed to reach the closest

transitive tournament [100].

The Slater measure is defined by a choice of metric on graphs. If G→ and G ′→ are two

different directed graphs that differ only in the direction of their edges then the Kendall τ

distance (or bubble sort distance) is the total number of edges in the two directed graphs

that point in different directions. We will denote this τ(G,G ′). Let T denote the family of

all transitive graphs. Then the Slater index of intransitivity can be written:

IntSl(G→) = min
G′→∈T

τ(G→,G ′→). (4.6)

A transitive network that minimizes the distance to the original network is Kemeny

optimal. Note that any transitive network is consistent with a unique ranking of the com-

petitors. A Kemeny optimal ranking is a ranking which generates a competition network

as close as possible to the original network. In essence this is a ranking that leads to the

fewest observed upsets [129]. Note that there may be more than one transitive G ′ that is a

distance IntSl(G→) from G, hence more than one Kemeny optimal rating.

This method can be generalized by assigning each edge in G� a weight equal to pAB

or the number of observed times A beat B, then letting τ be the sum of the weights on

the edges of G� that do not appear in G→ (the total probability or number of upsets). The

associated closest transitive network gives the Kemeny optimal ranking. Young showed

that this ranking is a maximum likelihood estimator of a true ranking if a true ranking

exists and there is a fixed upset probability [145], [146].

Finding Kemeny optima is known to be a NP complete problem [134], [135], [136],

[16], as it is equivalent to solving the minimum feedback arc-set problem [115]. While

some fast heuristics exist [116], in practice the Slater measure is often implemented using
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a brute force search over all possible m! rankings as in [94].9 As a result Slater’s measure

is used less widely than Kendall’s.

An alternative to the Slater index that is easier to use in some contexts was proposed by

Ulrich [114]. Instead of looking for a Kemeny optimal ranking, Ulrich proposed measuring

the distance between the original network, and a network generated by a relevant, easy to

compute ranking. For example, if the tournament can be cast as a Markov chain then the

steady state distribution of the Markov chain can be considered a rating of each competi-

tor, and the associated ranking can be used to generate a transitive directed network G ′→.

Then the distance between G→ and G ′→ can be used as a measure of intransitivity This is

numerically much easier because the steady state is an eigenvector of the transition matrix,

so the problem of finding the transitive network to compare to reduces to an eigenvector

problem.10 This approach was adopted by [113] in a large scale study of the degree of

intransitivity present in grassland ecosystems.

A summary of the methods discussed thus far is included below. Note that some of the

methods are restricted to complete graphs because the appropriate normalization constant

is only known for complete graphs. If these measures were not normalized then they could

easily generalize to other network topologies.

The intransitivity measure associated the HHD is attractive since it retains the con-

ceptual clarity of Slater’s approach, while remaining computationally tractable, and in the

case of complete graphs, is analytically tractable. Like Slater’s measure the intransitivity

measure associated with the HHD measures the distance to a closest transitive network.

The two differ in the choice of metric used to define “closest". Slater’s metric depends on

9Note that, if the graph is sufficiently sparse, then it is more efficient to perform a brute force search over
all 2E possible directed graphs.

10As originally proposed this measure is normalized by the maximum number of possible flips. This limits
the application to complete graphs where the appropriate normalization constant is known as a function of
m.
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the number of competitive reversals, which is not continuous in the win probabilities. In

contrast the metric used by the HHD is continuous in the win probabilities, and leads to a

trivial optimization problem with a unique solution. This optimization problem does not

change when the network structure changes, and, as a consequence the intransitivity mea-

sure produced by the HHD allows for completely arbitrary network structure. Therefore,

using the HHD does not require filling in missing edges, or introducing a normalization

factor that is difficult to compute.

The intransitivity measure associated with the HHD also differs from all of the metrics

presented here in that it is continuous in the win probabilities p.11 This is an important

distinction since it allows the measure to distinguish between a loop A → B → C → A

with win probabilities 0.51 on each edge from the same loop with win probabilities 0.99

on each edge. This leads to a more nuanced view of intransitivity, which is detailed in the

following section.

4.5 The Network HHD

The Network Helmholtz-Hodge Decomposition (HHD) can be derived by defining two

special classes of tournaments. These parallel the two classes of games defined in [18].

4.5.1 Arbitrage Free and Favorite Free Tournaments

Arbitrage Free Tournaments (Perfectly Transitive)

A currency market is said to be arbitrage free if it is impossible to make money by exchang-

ing currencies in a cyclic fashion [16]. By analogy we define an arbitrage free tournament
11Petraitis [100] proposed an extension of his measure to the continuous case by changing the metric

between directed graphs to a metric on weighted directed graphs, where the metric is set to the sum of the
absolute value of the difference in weights across all edges.
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to be a tournament for which it is impossible to expect to make money by betting on cyclic

sequences of events. Specifically, a tournament is arbitrage free if, for any cyclic sequence

of competitors C = {i1, i2, . . . , .in, in+1 = i1}, a sequence of wins where ij loses to ij+1

(i1 loses to i2 loses to i3 and so on) is equally likely as a sequence of wins where ij beats

ij+1 (i1 beats i2 who beats i3 and so on). This requires that the win probabilities satisfy a

cycle condition.

Cycle Condition: A tournament is arbitrage free if and only if, for every cycle C =

{i1, i2, . . . , in, in+1 = i1}, the win probabilities satisfy:

pi1i2pi2i3 ...pini1 = pi1in ...pi3i2pi2i1 . (4.7)

The cycle condition can be expressed more simply by dividing the right hand side across

to the left hand side and then taking a logarithm. This gives the equivalent condition:

n∑
j=1

fijij+1
= 0 (4.8)

where the fij is the log-odds that competitor i beats competitor j:

fij = logit(pij) = log

Å
pij

1− pij

ã
. (4.9)

Therefore the cycle condition is satisfied if and only if the sum of f around any cycle is

zero. The log-odds, f , are an example of an edge flow, an alternating function, fij = −fji,

on the edges [16].

Lemma 15 (Arbitrage Free Tournaments are Transitive). A tournament is arbitrage free

if and only if its win probabilities are consistent with a unique set of ratings r that satisfy
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pij = logistic(ri − rj) constrained to
∑

i ri = 0 12. Moreover if a tournament is arbitrage

free then it is transitive.

Proof. Suppose that a tournament is arbitrage free. Then it must satisfy the cycle condition.

This implies that the sum of f around any cycle is zero. It follows that, for any pair

of endpoints A,B, the value of the sum of f over a path connecting A to B is path

independent.

To recover the associated ratings, pick an arbitrary spanning tree of the network and an

arbitrary starting competitor A.13 Then let uB equal the sum of f over the path connecting

A to B in the tree. Finally let rB = uB − 1
m

∑
i ui. Then, by construction,

∑
i ri = 0. It

remains to show that ri − rj = fij for all connected pairs i, j. By construction, this must

be true for all i, j that are connected through an edge in the spanning tree. Consider an

edge not in the spanning tree (a chord) connecting i and j. Let i1 = A, i2, . . . , il = i and

j1 = A, j2, . . . , jk = j be the paths from A to i and j through the spanning tree. Then

ri − rj = ui − uj =
∑l−1

n=1 fin+1in −
∑k−1

n=1 fjn+1jn =
∑2

n=k fjn−1jn +
∑l−1

n=1 fin+1in which

is the sum over the path from j to A then from A to i. If the chord was added to the path

then this would complete a loop from j to A to i back to j (see Figure 4.1). By assumption

the sum of f around any loop is zero, so ri− rj + fji = ri− rj − fij = 0, or, ri− rj = fij .

Therefore, if a tournament is arbitrage free then there exist a set of ratings r such that

ri − rj = fij . Since fij = logit(pij) this implies pij = logistic(ri − rj). These ratings are

unique since the sum of f is path independent, hence the ratings generated by the spanning

tree construction are independent of the choice of tree.

Suppose that pij = logistic(ri − rj). Then fij = ri − rj for all connected i, j. This

means that, given a path i1, i2, . . . , in the sum fi2i1 + fi3i2 + ...finin−1 = rin − ri1 as the

13A spanning tree is a subgraph of the network that contains no loops, includes all competitors, and is
connected.
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Figure 4.1: The spanning tree construction for recovering the ratings for an arbitrage-free
tournament. The tree is shown with solid lines, and the chords with dotted lines. The root
of the tree, A is marked in grey. Two vertices, i and j connected by a chord ij, are shown in
blue and green respectively. The sequence of nodes leading from A to i and j are labelled.
Then, by the cycle condition, the sum around the loop marked with arrows is zero, hence
fij = ri − rj .

sum is telescoping. If the path is a loop then in = i1 so the sum equals zero. This means

that f satisfies the cycle condition, so the tournament is arbitrage free.

Suppose the tournament is arbitrage free. Then pij = logistic(ri − rj) for a unique set

of ratings r. This means that pij > 1/2 if and only if ri > rj . It follows that A > B if

and only if rA > rB, so the win probabilities are consistent with the ranking induced by the

ratings r. This means that the tournament is transitive.

Theorem 15 shows that arbitrage free tournaments are the only tournaments which

exactly match the logistic rating model pij = logistic(ri − rj). This is the model assumed

by the Elo rating system [137, 138, 123].14

Arbitrage free tournaments are also the only tournaments which match the Bradley-

14The Elo rating system was originally proposed to rate chess players, but is also used to rank Sumo
wrestlers [125], English league football teams [138] and international football teams. In the latter example
the Elo method was the most predictive out of all methods tested [147]. The Women’s World Cup uses a
variant on the Elo method [147].
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Terry model:15 pij = qi/(qi+ qj) where qi ≥ 0 for all i [139, 140]. If a network is arbitrage

free, then from setting qi = exp (ri) it follows that pij = qi/(qi + qj). Alternatively, if the

tournament satisfies the Bradley-Terry model, then setting ri = log (qi) produces a rating

which satisfies pij = logistic(ri − rj), so the network must be arbitrage free. The values,

q, which appear in the Bradley-Terry model are widely used as ratings.

Since arbitrage free networks are a special class of transitive networks, we will refer

to these networks as “perfectly" transitive. Note that a perfectly transitive network must

satisfy the cycle condition, which is a requirement on the values of p rather than simply

the sign of p − 1/2. Hence, while all perfectly transitive networks are transitive, not all

transitive networks are perfectly transitive. For example, if pAB = 0.99, pBC = 0.99, and

pAC = 0.51 then the tournament is transitive, even though pAC is much smaller than might

be expected given pAB and pBC . This tournament is not perfectly transitive since it does

not satisfy the cycle condition.

Favorite Free Tournaments (Perfectly Cyclic)

In contrast to arbitrage free tournaments, we define a favorite free tournament to be a

tournament for which it is impossible to make money on average by betting on a favorite

competitor over his or her neighbors. Specifically, we require that in a favorite free tourna-

ment A is equally likely to beat all of their neighbors, as to lose to all of their neighbors.

This leads to a neighborhood condition.

Neighborhood Condition: A tournament is favorite free if and only if, for every com-

15The Bradley-Terry model is widely used in pairwise comparison and to rank competitors in tournaments.
Examples include professional tennis [148], Cape dwarf chameleons [118] and northern elephant seals [119].
Bradley-Terry models accounting for surface type, and discounting old games, have been shown to be
effective in predicting the outcome of ATP tennis tournaments, consistently outperforming standard rankings
[148]. In a meta-study of predictive models the Bradley-Terry model had moderate predictive accuracy when
compared to regression based methods, but was generally outperformed by Elo based methods which were
the most accurate of all methods tested [149].
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petitor i with neighborhood N (i), the win probabilities satisfy:

∏
j∈N (i)

pij =
∏

j∈N (i)

pji. (4.10)

Like the cycle condition, the neighborhood condition can be written directly as a con-

dition on the log-odds edge flow f . Dividing across by the left hand side and taking a

logarithm we see that a tournament satisfies the neighborhood condition if and only if the

sum of fij over the neighborhood of i is zero for all competitors i:

∑
j∈N (i)

fij = 0. (4.11)

If the neighborhood condition is satisfied then it can be extended to all sets of competi-

tors. Let S be a set of competitors and let N (S) be the set of all competitors not in S who

neighbor S. Then the neighborhood condition implies:

∑
j∈N (S),i∈S

fij = 0. (4.12)

This identity follows from the discrete divergence theorem, which states that the sum of f

over the neighborhood of S equals the sum of the divergence of every competitor in S. If

i and j are both in S then the sum over the neighborhood of i contributes fij , and the sum

over the neighborhood of j contributes fji = −fij . Therefore all the internal edges cancel

in the sum. So
∑

j∈N (S),i∈S fij =
∑

i∈S
∑

j∈N (i) fij =
∑

i∈S 0 = 0.

The cycle condition defined a special subset of transitive tournaments. The neighbor-

hood condition also defines a special class that can be seen as a subset of a larger class -

the class of cylic tournaments.

We define a cyclic tournament to be a tournament such that, if there is a path from A to
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B in G→, then there must be a path back from B to A in G→.

Lemma 16 (Favorite Free Tournaments are Cyclic). A favorite free tournament is cyclic,

and is never transitive unless pij = 1/2 for all connected ij.

Proof. Suppose that a given tournament is favorite free. Then
∑

j∈Ni fij = 0 for all i. This

leaves two distinct possibilities, either fij = 0 for all j ∈ N (i), or there is some j such that

fij 6= 0. The former case requires pij = 1/2 for all j ∈ N (i). We will refer to this case as

the neutral case. If the neighborhood of i is not neutral then fij 6= 0 for some j ∈ N (i).

Since the sum over all j is zero this means that there must be at least one other edge ik

such that sign(fij) = −sign(fik). This means that, if there is an edge into competitor i in

G→ there must also be at least one edge out of i in G→ (recall that if pij = 1/2 then there

are a pair of edges between i and j, one from i to j and one from j to i).

Since the neighborhood condition can be extended from the neighborhood of competi-

tors to the neighborhood of sets this property can also be extended to sets. That is, if there

is an edge into the set S in G→ then there must also be an edge out of the set S in G→.

Now suppose that there is a path from A to B in G→. It remains to construct a path back

to A.

Define the nested sets S0(B), S1(B), . . . ,, where Sd(B) is the set of all nodes that can

be reached from B with a path in G→ of length less than or equal to d. Now since there

is a path from A to B in G→ there is an edge in G→ arriving at {B} = S0(B). Thus there

is a path from A to all competitors in S1(B). Now there are two possibilities, either A is

in S1(B), or A is not in S1(B). If A is in S1(B) then we are done. If not, then there is

an edge entering S1(B) in G→ since there is a path from A /∈ S1(B) to B ∈ S1(B). Then

the neighborhood condition implies that there is an edge out of S1(B), which means that

S2(B) 6= S1(B). Now the logic repeats. Either A is in S2(B), in which case we are done,
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Figure 4.2: A favorite free tournament must be a cyclic tournament. The arrows represent
the direction of competition. If the network is favorite free, then, if there is an edge pointing
into a set, there must be an edge pointing out of it. A path from A to B is shown in
black. Then the sets S1(B), S2(B), S3(B) are shown as shaded polygons. These contain
all competitors distance 1, 2, and 3 (respectively) from B. These sets continue to expand
until they include A, hence there is a path from B to A.

or it is not. If it is not then there must be an edge entering S2(B) so there must be an edge

leaving S2(B) so S3(B) 6= S2(B). This means that, as long as A /∈ Sd(B) there is a larger

set Sd+1(B) 6= Sd(B) which can be reached from B. Since we assumed that there are

finitely many competitors this can only continue until A is contained in Sd(B) for some B.

This proof technique is illustrated in Figure 4.2.

Suppose that the tournament is transitive, favorite free, and not neutral. Since it isn’t

neutral there must be at least one pair ij such that pij > 1/2. This means that ri > rj and

there is an edge from j to i in G→. But, if the tournament is favorite free then there must

be some other path from i back to j in G→. This means that rj > ri since there is a path in

G→ from j to i. This is clearly a contradiction. This implies that a cyclic tournament is not

transitive unless it is neutral: pij = 1/2 for all ij.16

So, just as the cycle condition (no tendency to cycle) implied transitivity, the neighbor-

16This shows that the two classes of tournaments are distinct, as their only overlap is the neutral case. Note
that a neutral tournament is considered transitive since it can be consistently ranked - all competitors should
be ranked the same.
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hood condition, (no favorites) implies that the network is cyclic, and is only transitive if

it is also completely neutral. As before, whether a tournament is cyclic or not depends on

the sign of pij − 1/2, while the neighborhood condition is a condition on the values of pij .

This motivates the definition: a tournament is perfectly cyclic if and only if it is favorite

free. As before, all perfectly cyclic tournaments are cyclic, but not all cyclic tournaments

are perfectly cyclic.

Note that, unlike perfectly transitive tournaments where f is determined by a set of

ratings r, we are not currently equipped to relate the edge flow of a favorite free tournament

to a lower dimensional representation. In Section 4.5.2 we will show that a favorite free

tournament has edge flows f which can always be represented as a sum of cyclic intensities

(or vorticities) on a set of loops. This result will parallel the conclusions of theorem 15.

4.5.2 The Discrete HHD

Given these two classes of tournaments it is natural to ask: can a generic tournament be

decomposed into a perfectly transitive (arbitrage free) part and a perfectly cyclic (favorite

free) part? We answer in the affirmative. This is the Helmholtz-Hodge decomposition.

Operators

In order to define the decomposition succinctly it is helpful to have a pair of operators

analogous to the gradient and curl operators in the continuum. We simplify the topological

presentation in [16] by expressing the decomposition entirely through linear algebra.

First, we define the edge space RE , where E is the number of pairs i, j who could

compete. Index each pair so that edge k has endpoints (competitors) i(k), j(k). Note that

this requires assigning each edge an arbitrary start and endpoint so that positive f indicates

motion from the start to the end, while negative f indicates motion from the end to the start.
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This is simply a sign convention.

Let the discrete gradient operator G be the matrix which maps from Rm to RE by

setting:

[Gu]k = ui(k) − uj(k). (4.13)

Notice that if r is a rating function on the nodes, then attempting to find r such that

ri − rj = fij is equivalent to looking for r such that Gr = f . Since any arbitrage

free tournament admits a unique rating r such that Gr = f it follows that the space of

perfectly transitive networks is equivalent to the space of tournaments with edge flow f in

the range of the gradient. Assuming that the tournament is connected, the gradient has a

one-dimensional nullspace parallel to the vector [1; 1; ...1]. It follows that G(r + c) = Gr

if c is some constant. This motivates the constraint
∑

i ri = 0 used throughout, since the

edge flow only determines the size of differences in ratings, not the actual ratings.

The gradient transpose, Gᵀ is the discrete divergence operator. The divergence maps

from the space of edges to the space of nodes (competitors) such that:

[Gᵀf ]i =
∑
N (i)

fij. (4.14)

The neighborhood condition eq. (4.11) is equivalent to requiring that Gᵀf = 0. That

is, the space of favorite free tournaments is equivalent to the space of tournaments with

edge flow f in the null space of the divergence. Note that, like the divergence operator

in the continuum, the discrete divergence obeys the divergence theorem (the sum of the

divergence on the neighborhood of each competitor in a set is the same as the sum of the

edge flow into the set).

In order to build a parallel description for perfectly cyclic tournaments, we need a space

of loops. First define the sum of two cycles C1, C2 to be all edges included in either C1 or
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Figure 4.3: The gradient, divergence, and curl for an example network.

C2 but not both. Equipped with this addition operation, the space of cycles is a vector

space, which can be represented with a cycle basis. A cycle basis is a collection of linearly

independent cycles C1, C2, . . . , CL such that any other cycle C can be expressed as a linear

combination of cycles in the loop basis [150].

Any connected graph admits a cycle basis. A constructive method for finding a cycle

basis follows. First, pick a spanning tree of the network. Then the spanning tree includes

m − 1 edges, and E − (m − 1) edges are left out. These are the chords. By construction,

the tree does not contain any loops. If one chord is added to the tree then the network

contains exactly one cycle. Note that no two chords can produce the same cycle, and that

the set of cycles produced by adding the chords to the spanning tree is necessarily linearly

independent since no chord appears in more than two of these cycles. Therefore, if we

enumerate the chords from 1, 2, . . . , L = E − m + 1 then the set of cycles C1, . . . , CL

associated with each chord is a cycle basis. A basis generated by a spanning tree is a

fundamental cycle basis [34, 150]. This basis is not unique, since there are often many

different possible spanning trees, moreover not all cycle bases need be constructed via a
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spanning tree.

Next define the cycle space RL to be the space of real vectors with one entry for each

cycle in a chosen cycle basis. The dimension of the cycle space L = E − m + 1 is the

cyclomatic number of the network [34, 150]. Then we define the discrete curl operator to

be the matrix which maps from RE to RL (edges to cycles) by summing f around each

loop. That is, if the set of edges {k1, k2, . . . , knl} = Cl then:

[Cf ]l =

nl∑
h=1

fi(kh)j(kh). (4.15)

Note that in order to perform this sum, each loop must be assigned an arbitrary direction

of traversal. This is simply a sign convention.

In general we will only consider curl operators that are defined with respect to cycle

bases such that there exists an invertible L × L matrix T for which TC = C̃, where C̃ is

the curl operator defined with respect to a fundamental cycle basis.

The curl is analogous to the curl in continuous space, which is a path integral over

infinitesimally small loops. Note that the discrete curl defined in this way is more general

than the discrete curl defined in [18] or [16]. Jiang and Candogan restrict the curl operator

to only act on connected cliques of three nodes (triangles), and then introduce additional

operators to account for cliques containing more nodes. This construction can lead to

unintuitive conclusions. For example, if pAB = pBC = pCD = pDA = 0.99 then there

is clearly a cyclic tendency in the competition, but if the curl is restricted to only act on

triangles, then the curl of this graph is zero. Here we extend the curl to act on loops of

arbitrary length since, like [104], we do not see a fundamental distinction between cyclic

structure on triangles and cyclic structure on larger loops. If desired, we could partition the

curl operator into blocks, each according to loops of a fixed length, and treat each block as
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the curl operator restricted to loops of a given size.

The operators for an example network are provided in Figure 4.3.

Lemma 17 (Orthogonality of Operators). The curl C and the gradient G are orthogonal,

regardless of the choice of cycle basis.

Proof. Consider the product CGu for some arbitrary vector u ∈ Rm. The product Gu

produces an edge flow, so the product CGu produces a vector whose entries are the sum of

that edge flow around a set of loops. Consider an arbitrary path i1, i2, . . . , in. Then the sum

of Gu over the path is (ui2 − ui1) + (ui3 − ui2) + ...(uin − uin−1) = uin − ui1 . Therefore,

if the path is a loop, in = i1 so the sum is zero. It follows that CGu = 0 for all u ∈ Rn so:

CG = 0, GᵀCᵀ = 0 (4.16)

where the second equation follows trivially by transposing the first equation.17

Lemma 18. If C is a discrete curl operator then if Cf = 0, there exists a set of ratings r

such that Gr = f .

Proof. This is a direct consequence of theorem 15. If C is a curl operator, then there exists

an invertible transform T such that C = TC̃ where C̃ is the curl operator with respect to

some fundamental cycle basis. Then Cf = TC̃f = 0 if and only if C̃f = 0. Since C̃ is

defined with respect to a fundamental cycle basis, C̃ is defined with respect to a spanning

tree T which generates the cycle basis. Requiring that C̃f = 0 is equivalent to requiring

that the sum of f around every loop formed by adding one chord into the tree is zero.

17Note that the product GC has no meaning in our framework. Even if the range of C and domain of G
were of compatible dimension, the product has no natural interpretation since C maps to loops and G acts on
nodes.
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This condition is sufficient to reconstruct r such that Gr = f using the spanning tree

construction given in the proof of Theorem 15, where the chosen tree is T .

theorem 17 and theorem 18 establish that any f in the range of the gradient is in the

nullspace of the curl, and any f in the nullspace of C is in the range of the gradient. That

is, if f = Gr then Cf = 0 and if Cf = 0 then f = Gr for some rating r. Therefore the

range of the gradient is the nullspace of the curl. The equivalence of these two spaces and

the orthogonality of the operators allows us to decompose f into unique perfectly transitive

and perfectly cyclic components. This is the HHD.

The Discrete Helmholtz-Hodge Decomposition

We are now equipped to prove that every edge flow can be represented as the sum of a

perfectly transitive (arbitrage free), and perfectly cyclic (favorite free) edge flow - thus

any tournament can be represented as a unique combination of a perfectly transitive and

perfectly cyclic tournament. Similar proofs are provided in [18] and [16] .

Theorem 19 (The HHD). Any f ∈ RE can be decomposed such that:

f = ft + fc (4.17)

where ft is arbitrage free (perfectly transitive) and fc is favorite free (perfectly cyclic):

Cft = 0, Gᵀfc = 0. (4.18)

and both are unique. In addition, there exists a unique rating r satisfying
∑

i ri = 0 such

that ft = Gr and for any choice of cycle basis there exists a unique vorticity v ∈ RL such
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that fc = Cᵀv. Thus the original edge flow f can be uniquely decomposed:

f = Gr + Cᵀv. (4.19)

Proof. By the fundamental theorem of linear algebra (Fredholm alternative):

RE = null(Gᵀ)⊕ range(G). (4.20)

theorem 17 and theorem 18 guarantee that range(G) = null(C), so:

RE = null(Gᵀ)⊕ null(C). (4.21)

This establishes equation eq. (4.17), where ft is the orthogonal projection of f onto

null(C) and fc is the orthogonal projection of f onto null(Gᵀ).

To prove that the arbitrage free and favorite free fields can be expressed using ratings

and vorticities, write:

RE = null(C)⊕ range(Cᵀ). (4.22)

Then using null(C) = range(G):

RE = range(G)⊕ range(Cᵀ). (4.23)

Equation (4.23) means that there exists an r such that Gr = ft, and there exists a v

such that Cᵀv = fc. We have already proved r was unique. To prove that v is unique

we use rank nullity. Equation eq. (4.23) guarantees E = rank(G) + rank(Cᵀ). In general

G has rank m− 1 since the Laplacian, GᵀG, has nullity equal to the number of connected

components in the network [34]. We assumed the network is connected, soGᵀG has nullity
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Figure 4.4: A schematic representation of the decomposition for a complete tournament on
three competitors. The edge flow f is set equal to logit(p), and then broken into a set of
ratings r and vorticities v, such that f = Gr + Cᵀv.

1, thus G has a one-dimensional nullspace. This nullspace corresponds to the vector of all

ones, since the gradient of a constant is zero. Therefore rank(Cᵀ) = E− (m− 1) = L. By

construction, Cᵀ has L columns, therefore Cᵀ is full rank. It follows that the linear system

Cᵀv = f has a unique solution if f ∈ range(Cᵀ).18

This proves that an arbitrary tournament can be decomposed into a perfectly transitive

and a perfectly cyclic tournament, where the perfectly transitive tournament is specified

by a set of ratings, and the perfectly cyclic tournament is specified by a set of vorticities.

The ratings associated with the HHD are the Hodge ratings proposed by [16]. Figure 4.4

provides a schematic representing the decomposition.

The gradientG has exactly 2 nonzero entries per edge, so it becomes more sparse as the

number of competitors increases. As a consequence, the decomposition can be performed

efficiently, even for large, fully connected networks. Methods are discussed in [18, 16],

and in Chapter 3.

18This result could also be obtained more intuitively as follows. Note that if C is defined with respect to
a fundamental cycle basis, then by ordering the edges so that all of the chords are indexed before all of the
edges in the tree, the operator C is a block matrix whose first L× L block is the identity. It follows that C is
in row reduced echelon form and has rank L. The column rank of a matrix is its row rank so the rank of Cᵀ

is also L.
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The intransitivity measure associated with the HHD is the size of the cyclic component

||fc||2. Because the HHD is a decomposition onto orthogonal subspaces, this measure is

equal to the distance from f to the closest perfectly transitive tournament. Therefore the

Helmholtz-Hodge intransitivity measure is conceptually analogous to the Slater intransitiv-

ity measure [104], and its variants [100], [113], [114]. Similarly, the transitivity measure

associated with the HHD is the size of the transitive component ||ft||2, and is the distance

from f to the closest perfectly cyclic tournament.

Note that these measures are continuous in p. This sets the measure associated with

the HHD apart from classical methods which depend only on the direction of competition

encoded in G→ such as the Kendall [97] or Slater [104] measures. These methods are

discrete in p. This distinction is important, since it means that the Helmholtz-Hodge

measure distinguishes between the cases pAB = pBC = pCA = 0.99 and pAB = pBC =

pCA = 0.51 (intransitivity 7.96 and 0.07 respectively). Using the discrete measures,

these two tournaments are equally intransitive. Thus the Helmholtz-Hodge measure is

distinguishes between strong and weak intransitive cycles, and so reflects the absolute

strength of cyclic competition. The discrete measures reflect the relative strength of cyclic

competition since they only depend on the sign of f , which depends on both fc and ft.

If the transitive part is large then it may mask weaker cyclic competition when using a

discrete measure. For example, if pAB = 0.99, pBC = 0.99 and pCA = 0.49 then it is

clear that the probability that C beats A is much larger than might be expected using any

predictive rating of the competitors. However, in this example competition is transitive

so all discrete measures of intransitivity would return their minimal value, 0. In contrast,

the Helmholtz-Hodge measure returns intransitivity 5.29. These examples are illustrated in

Figure 4.5 Normalizing the Helmholtz-Hodge measures by ||f ||2 produces the equivalent

relative measures: ||fc||2/||f ||2 and ||ft||2/||f ||2.
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Figure 4.5: Transitivity and intransitivity of 104 triangular networks with randomly drawn
win probabilities. The horizontal axis is the size of the transitive component and the vertical
axis is the size of the cyclic component. Each scatter point is a sampled network. Blue
scatter points are transitive, red are intransitive. The large black circles represent example
networks. The text next to each example gives the probability A beats B, B beats C,
and C beats A. If all of these numbers are greater than 0.5 then the network is intransitive.
Note that the classification into transitive and intransitive draws a sharp distinction between
networks whose win probabilities are nearly identical, while networks with similar win
probabilities remain close to each other when using the Hodge measures. Also note that
the boundary between transitive and intransitive networks is an angular sector, hence this
classification is based on the relative sizes of the transitive and cyclic components, not their
absolute sizes. In contrast, the Hodge measures reflect the absolute size of each component.
Thus the example with win probabilities 0.99, 0.99, 0.49 can be transitive and the example
0.51, 0.51, 0.51 can be intransitive, even though the former has a larger cyclic component
than the latter.
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Comparison of the Hodge ratings and intransitivity measure to existing methods is

provided in the Section 4.5.4.

Equivalent Formulations

Here we present six different approaches that arrive at the same decomposition. These

provide different and useful perspectives on the HHD, and illustrate that it is robust to

varying motivations. The ensuing Corollary follows directly from standard properties of

projection onto orthogonal subspaces, so we omit the proof.

Corollary 19.1 (Equivalent Formulations). The following six decompositions are equiva-

lent:

1. f = ft + fc where ft is arbitrage free and fc is favorite free;

2. f = ft + fc where ft = Gr for some rating r and fc = Cᵀv for some vorticity v;

3. the ratings r satisfy:

r = argminu|∑i ui=0

{
||Gu− f ||22

}
(4.24)

and set ft = Gr, fc = f − ft;

4. the vorticities v satisfy:

v = argminv{||Cᵀv − f ||22} (4.25)

and set fc = Cᵀv, ft = f − fc;
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5. f = ft + fc where ft = Gr for the unique ratings r such that the circulant f − ft is

favorite free;

6. f = ft + fc where fc = Cᵀv for the unique vorticities v such that f − fc is arbitrage

free.

The first decomposition separates f into a pair of flows each defined by what it is

not: namely, one is not circulatory, and the other has no tendency to diverge or converge.

The second decomposition separates f into a pair of flows each defined by what they are:

namely, one is perfectly transitive, and the other is perfectly cyclic. The equivalence of

these two decompositions was established by theorem 19.

The next two decompositions are based on fitting problems. In each case the goal is to

represent f as nearly as possible when restricted to the range of an operator. Decomposition

3 searches for a set of ratings r such the error, Gr − f , is minimized in the least squares

sense. This means that the ratings produced by the HHD are a type of least squares rating,

in particular, log least squares rating [96, 126, 127]. Least squares ratings methods are

widely used [128, 129, 123, 130, 131, 132]. Comparisons are provided in the Section 4.5.4.

Decomposition 3 also shows that the HHD is equivalent to finding the nearest perfectly

transitive edge flow.

Similarly, Decomposition 4 searches for a set of vorticities v such that the error Cᵀv−f

in approximating f with Cᵀv is minimized in the least squares sense. This is equivalent to

finding the nearest perfectly cyclic edge flow. Although the literature has focused almost

exclusively on Decomposition 3, decompositions 3 and 4 are dual to one another. This

parity in approach sets the HHD apart from existing methods.

The final two decompositions are defined by enforcing a constraint on the residue when

approximating f with either the gradient of a set of ratings or the curl transpose of a set of
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vorticities. These approaches can be motivated as follows. Suppose one sought a rating r

such that Gr approximated f . The error in this approximation (the circulant) is Gr − f .

As long as the divergence of the circulant is nonzero the approximation has not captured a

tendency of the edge flow to either point inwards towards, or outwards from, a competitor.

If the net flow into a competitor is positive, then that competitor tends to outperform their

neighbors in a way that the ratings fail to capture. Therefore it would be natural to adjust

the ratings until the net flow into or out of any set of competitors is zero. That is, until the

divergence of the circulant is zero, or equivalently, the circulant is favorite free.

The final decomposition can be motivated similarly. Define the divergent, Cᵀv − f to

be the error upon approximating f with vorticity v. As long as the curl of the divergent

is nonzero, the approximation has failed to capture some tendency of f to circulate. This

tendency to circulate is exactly what the vorticities are meant to capture, so it is natural

to look for a v such that the curl of the divergent is zero on every loop. That is, until the

divergent is arbitrage free.

Corollary 19.1 shows that the decomposition into arbitrage free and favorite free com-

ponents, perfectly transitive and perfectly cyclic components, the nearest perfectly tran-

sitive approximation, the nearest perfectly cyclic approximation, the perfectly transitive

approximation with favorite free circulant/error, or the perfectly cyclic approximation with

arbitrage free divergent/error, are all the same. The fact that the HHD is equivalent to all of

these different approaches motivates its use.

4.5.3 Solution Methods

Corollary 19.1 casts the HHD as a pair of linear least squares problems:
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ft = Gr, r = argminu∈Rm|∑i u=0{||Gu− f ||22}

fc = Cᵀv, v = argminw∈RL{||Cᵀw − f ||22}.
(4.26)

These least squares problems can be solved by standard numerical techniques. It can

be helpful to recast the problem using the associated normal equations:

GᵀGr = Gᵀf

CCᵀv = Cf.

(4.27)

These are the discrete Poisson equations. They are analogous to the Poisson equations

in continuous space,∇2r(x) = ∇·f(x) and∇2v(x) = ∇×f(x) which are used to perform

the Helmholtz decomposition of a vector field f(x) [16]. The matrix GᵀG is the standard

node Laplacian for the network. It is given by subtracting the unweightedm×m adjacency

matrix A from the degree matrix D 19:

GᵀG = D − A. (4.28)

Therefore the ratings r associated with the HHD are solutions to the linear system, (D−

A)r = Gᵀf. Similar systems are used to solve for the Massey and Colley systems, only the

Laplacian has to be adjusted to account for the number of observed events [128, 130, 123].

This equation is easy to interpret. Consider the ith competitor. Suppose the ith competi-

tor has degree di = |N (i)|. Let r̄i = 1
di

∑
j∈N (i) rj be the average rating of the neighbors

of i. Then the left hand side of the discrete Poisson equation 4.27 is equal to the difference

between the rating of competitor i, and the average rating of its neighbors, weighted by

the number of neighbors: [GᵀGr]i = di(ri − r̄i). We expect this to be positive when i is

19The adjacency matrix A has entries aij = 1 if i and j are connected and zero otherwise. The degree
matrix D is diagonal, and has diagonal entries djj equal to the degree of competitor j, |N (j)|.
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better than its average neighbor, and negative when i is worse than its average neighbor.

Note that this is equivalent to [GᵀGr]i =
∑

j∈N (i)(ri−rj) so the left hand side may also be

interpreted as the net difference between the rating of i and the rating of all of i’s neighbors.

The ith entry on the right hand side is the sum of all fij where j ∈ Ni. This is positive if i

tends to beat most of its neighbors, and negative if i tends to lose to most of its neighbors.

Taking the second interpretation of the left hand side, and dividing both sides by di we see

that the discrete Poisson equation requires that, for every i, the difference in rating between

i and its average neighbor (the average difference in ratings) must equal the average flow

into i.

This equation can also be solved efficiently. Note that the original equation GᵀGr =

Gᵀf does not have a unique solution since it does not enforce
∑

i ri = 0. The easiest

way to enforce this constraint is to arbitrarily set r1 = 0. Then the corresponding row and

column can be removed from the equation, which now has a unique solution. Then, after

the equation is solved all of the ratings can be shifted so that the mean rating is zero. Once

a row and column have been removed the fastest direct method is typically Cholesky de-

composition since the node Laplacian is square and symmetric. If the tournament is sparse

then iterative methods such as CGLS or LSQR converge quickly and are recommended by

[16]. The iterative approach is also attractive since it only requires a routine for performing

the product [GᵀG]u for arbitrary u ∈ Rm. This can be done efficiently since the action of

the node Laplacian only requires knowledge of the adjacency structure (which competitor

competes directly with which other competitors). This is the recommended method if the

tournament is large and sparse.

If the network is complete then the discrete Poisson equation GᵀGr = Gᵀf can be

solved analytically. If there are m competitors competing in a complete tournament then:
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r =
1

m
Gᵀf. (4.29)

Regardless the method used, once the Hodge ratings r are known then the perfectly

transitive component ft = Gr can be easily computed. Similarly, once the perfectly

transitive component is known the perfectly cyclic component fc is simply given by f −ft.

Therefore, to find the two components it is enough to solve the discrete Poisson equation

for the ratings20. This means that most of the decomposition can be performed without ever

specifying a cycle basis.

To solve for the vorticities we may either solve the least squares problem 4.26, the

associated discrete Poisson equation 4.27, or the overdetermined linear system Cᵀv = fc.

The latter is guaranteed to have a solution since fc ∈ range(Cᵀ).

4.5.4 Comparison

Comparison of Hodge rating to Least Squares Rating Methods

When the tournament is arbitrage free then Cf = 0 so f = Gr for Hodge ratings r.

Theorem 15 established that r are consistent with the Elo rating and the Bradley-Terry

ratings since the win probabilities pij = logistic(ri − rj) and pij = qi
qi+qj

where qi = eri .

This close connection to the Bradley-Terry model is noted in [16].

When the tournament is not arbitrage free then there are no ratings r which satisfy

Gr = f , so the Hodge ratings are the solution to the unweighted least squares problem

4.27. Since the Hodge ratings r minimize the least squares error between Gr and f the

Hodge ratings are equivalent to the log least squares approach used by [96, 126, 127, 141].

20Note that the same is true of the vorticities, but there are more applications in which the ratings are of
primary interest. Moreover the Poisson equation for the ratings is m − 1 dimensional while the Poisson
equation for the vorticities is L dimensional, and in most applications m < L.
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As noted before this is equivalent to using an unweighted Massey rating system with fij =

logit(pij). Weighting by the number of games produces a Massey type rating system, while

weighting by the number of games and regularizing to account for the Laplace rule of

succession produces the Colley rating system [128, 123, 130]. It can be shown that these

two systems can be derived from an appropriate choice of prior when the win probabilities

are estimated from an observed series of wins and losses.

When the tournament is complete the Hodge ratings r are given by r = 1
m
Gᵀf , or,

examining one term at a time:

ri =
1

m

m∑
j 6=i

fij =
1

m

∑
j

log

Å
pij
pji

ã
= log

(Ç∏m
j 6=i pij∏m
j 6=i pji

å1/m
)
. (4.30)

Therefore, when the tournament is complete the rating of the ith competitor is equal to

their average log-odds against a randomly drawn opponent, including themselves 21. This

is, equivalently, the log of the geometric average of their odds against a randomly drawn

opponent. Therefore qi = eri may be interpreted as the geometric average of the odds

that competitor i beats a uniformly drawn opponent [126]. Alternatively, this may also be

interpreted as the log of the odds that i beats all other competitors, divided by m.

Note that the odds that i beats all other competitors depends on the ratio of the proba-

bility that i beats all of its neighbors to the probability that i loses to all of its neighbors.

These are the two probabilities that appeared in the neighborhood condition that defines

favorite free tournaments (see Equation (4.10)) . If a tournament is favorite free then these

two probabilities are equal, so the log of the ratio is zero. It follows that if a tournament is

complete and favorite free then the Hodge ratings are all zero.

If the tournament is not complete then it is not true that r = 1
m
Gᵀf , however it is still

21The odds that they beat themselves are one to one so the log-odds are zero
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true that r satisfy the discrete Poisson equation GᵀGr = Gᵀf . Therefore:

ri − r̄i =
1

di

∑
j∈N (i)

fij =
1

di

∑
j∈N (i)

log

Å
pij
pji

ã
= log

(Ç∏m
j∈N (i) pij∏m
j∈N (i) pji

å1/di
)
. (4.31)

This means that, when a tournament is not complete, the difference in the rating of the

ith competitor, and the average rating of its’ neighbors, is equal to the average log-odds that

competitor i beats a uniformly drawn opponent from its neighborhood. This means that the

only difference in interpretation when moving from a complete tournament to an arbitrary

tournament is that the ratings of a competitor i in an arbitrary tournament are given by the

average log-odds that they beat a randomly drawn opponent from their neighborhood, plus

the average rating of their neighbors. The addition of the average rating of their neighbors

accounts for the strength of their neighborhood/schedule.

As in a complete tournament this can be reinterpreted as the average rating of the

neighborhood plus the log of the geometric average of the odds that i beats a randomly

drawn neighbor, or, plus the log of the odds that i beats all neighbors scaled by the size of

the neighborhood. Also as before, if the tournament is favorite free then the log-odds that i

beats all of its neighbors is equal to zero, so in a favorite free tournament the rating of every

competitor is equal to the average rating of their neighbors. Therefore, if a tournament is

favorite free then the Hodge rating of every competitor is equal to zero.

Comparison of Hodge intransitivity to existing Intransitivity Measures

The Helmholtz-Hodge intransitivity measure is defined to be the distance between the true

edge flow f and the nearest perfectly transitive edge flow, where distance is measured by

the l2 metric. Lemma 6 corollary 19.1 guaranteed that this is equivalent to the two-norm of
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the perfectly cyclic component of f .

Clearly this measure is analogous to the Slater measure defined in Equation (4.6), which

was the distance between a competitive network and the nearest transitive network, with

distance measured in the number of competitive reversals [104]. Like the Slater measure,

the Helmholtz-Hodge measure is associated with a nearest transitive tournament. When

considering only the sign of pij − 1/2 the nearest transitive tournament was the Kemeny

optimal tournament, and was associated with a Kemeny optimal ranking. Since the nearest

perfectly transitive tournament to the original tournament is given by the perfectly transitive

component of the HHD, the Hodge ratings r may be thought of as analogous to the optimal

ratings, since they produce the perfectly transitive edge flow closest to the true edge flow.

Therefore the Helmholtz-Hodge intransitivity measure can be reasonably considered a

member of the family of “distance to nearest transitive" intransitivity measures which

included the Slater [104], Petraitis [100], and Ulrich measures [114].

Unlike the Slater measure the Hodge-Helmoltz intransitivity measure is:

1. associated with a unique nearest perfectly transitive tournament, specified by the

Hodge ratings,

2. can be applied to any finite, connected, reversible tournament,

3. is efficiently computable for large networks,

4. is analytically computable for complete tournaments and is analogous to the Landau

measure in this case,

5. and is continuous in p and f .

The first point is guaranteed by the uniqueness of the decomposition. The following

three points are all established by the fact that the measure can be computed directly from
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the ratings, IntH(f) = ||fc||2= ||Gr − f ||2, and the ratings can be solved for efficiently by

solving the discrete Poisson equations, or the original least squares problem.

The numerical methods for solving for the ratings scale well, and are very efficient

when the tournament is sparse. Since the HHD has a unique solution for all finite connected

reversible tournaments, and since the same numerical methods can be applied in all cases,

the Helmholtz-Hodge intransitivity measure generalizes to all finite connected reversible

tournaments.

If the tournament is complete then the ratings are given by r = 1
m
Gᵀf so fc = (I −

1
m
GGᵀ)f and:

IntH(f) = ||(I − 1

m
GGᵀ)f ||2 (4.32)

In the complete case the intransitivity measure is analogous to the Landau measure since

||ft||22= fᵀt ft = (ft+fc)
ᵀft = fᵀft = 1

m
fᵀGGᵀf = 1

m

∑m
i=1[Gᵀf ]2i

22. This is the variance

in the divergence of f evaluated at each node since the mean value of the divergence is zero.

The mean value of the divergence is zero since 1
m

∑m
i=1[Gᵀf ]i = 1

m
1ᵀGᵀf where 1 is the

vector of all ones. But 1ᵀGᵀ = G1 and the gradient of a constant is zero. Therefore ||ft||22

is the variance in the divergence of the edge flow. For a given f the largest the variance

in the divergence of f could be is ||f ||22 (when f is perfectly transitive). Therefore, if we

normalize the transitivity by its largest possible value then this normalized transitivity is the

variance in the divergence, ||ft||22, divided by the largest this variance could possibly be,

||f ||22. The corresponding intransitivity is one minus this ratio. In comparison the Landau

measure is one minus the ratio of the variance in the in-degree of each node to the largest

that this in-degree could be. The in-degree of each node is analogous to the divergence

since, if the edge flow is rounded to 1/2 when fk > 0 and −1/2 when fk < 0, then the
22since fᵀc ft = vCGr and CG = 0.
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variance in the in-degree is the variance in the rounded edge flow.

The final point, that the Helmholtz-Hodge measure is continuous in p, is obvious from

the fact that f is a continuous function of p, the perfectly cyclic component fc is an

orthogonal projection of f onto a fixed subspace, and the two norm of fc is continuous in the

entries of fc. This is an important point since it means that the Helmholtz-Hodge measure

distinguishes between pAB = pBC = pCA = 0.99 and pAB = pBC = pCA = 0.51. Using

the discrete measures these two tournaments are equally intransitive. Using the Hodge-

Helmoholtz measure the former has intransitivity 7.96 and the latter has intransitivity 0.07.

This means that the Helmholtz-Hodge measure is capable of distinguishing between strong

and weak intransitive cycles, so reflects the absolute strength of cyclic competition. The

discrete measures reflect the relative strength of cyclic competition since they only depend

on the sign of f , which depends on both fc and ft. If ft is very small relative to fc on every

edge then the discrete measures will all return their maximum possible values, indicating

strong intransitivity, even if fc is itself very small (as in the example given above). Alter-

natively, if the transitive part is large then it may mask weaker cyclic competition when

using a discrete measure. For example, if pAB = 0.99, pBC = 0.99 and pCA = 0.49 then

competition is transitive so all discrete measures of intransitivity would return their minimal

value, 0. However it is clear from the probabilities that the probability that C beats A is

much, much larger than might be expected by any reasonable rating of the competitors

given that A beats B 99 out of 100 events and B beats C 99 out of 100 events. In contrast,

the Helmholtz-Hodge measure returns intransitivity 5.29. Note that this is larger than the

value returned for the intransitive loop with win probabilities 0.51.

Therefore the Helmholtz-Hodge measure may be viewed as a measure of the absolute

strength of cyclic competition, as it measures the size of the perfectly cyclic component

independent of the size of the transitive component. This means that it is not necessarily
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zero even if the network is transitive. This should be no surprise as not all transitive

tournaments are perfectly transitive, and the Helmholtz-Hodge measure is the distance

between the given tournament and the nearest perfectly transitive tournament. In effect,

the intransitivity measure associated with the HHD measures how closely the ratings r can

predict the probabilities via pij = logistic(ri − rj).

4.6 The Trait-Performance Theorem

How intransitive is a typical tournament? Using the intransitivity measure associated with

the HHD, this question is the same as asking, how cyclic is a tournament on average?

Answering this question requires defining a statistical model for sampling tournaments

- in particular, for sampling edge flows. How do assumptions about the distribution of

possible edge flows affect the expected strength of cyclic competition? What statistical

features tend to promote or suppress cyclic competition?

We initially explore these questions for a generic null model in which the edge flow,

F , is sampled randomly from an unspecified distribution. This analysis identifies which

statistical features of the edge flow, and which features of the network topology, influence

the expected strength of cyclic competition. This sets the stage for our main result. If the

edge flow is sampled using a trait-performance model, then the correlation structure of the

edge flow takes on a canonical form which depends only on two statistical quantities: the

variance in the flow on each edge, and the correlation in the flow on pairs of edges that

share an endpoint. This simplified correlation structure allows us to express the expected

sizes of the cyclic and transitive components in a simple closed form that separates the

influence of the network topology from the chosen trait-performance model.
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4.6.1 Generic Null Models

We start by considering a generic null-model for the edge flows f . Let F ∈ RE be a random

edge flow drawn from some distribution. Assume that the expected edge flow f̄ = E[F ] is

known, as is the covariance V = E[(F − f̄)(F − f̄)ᵀ].

Let Pc be the orthogonal projector onto the space of perfectly cyclic (favorite free)

tournaments. Then the expected absolute strength of cyclic competition is:

E[||Fc||2] = E[F ᵀP ᵀc PcF ] = E[F ᵀPcF ] = E

[∑
kl

(Pc)kl FkFl

]
=

∑
kl

(Pc)kl E[FkFl] =
∑
kl

(Pc)kl (f̄kf̄l + vkl) = ||f̄c||2+trace(PcV )

(4.33)

where ||f̄c||2= f̄ᵀPcf̄ and trace(PcΣ) =
∑

kl (Pc)kl vkl is the matrix inner product between

the projector and the covariance matrix.

Therefore, no matter the underlying distribution of edge flows, the expected strength of

cyclic competition is determined exclusively by three quantities: the expected edge flow,

the covariance in the edge flow, and the topology of the network (which determines Pc).

The matrix inner product can be simplified if the flows on each edge are independent.

Then V is diagonal with entries σ2
k = E[(Fk − f̄k)

2]. It follows that trace(PcV ) =∑E
k=1 (Pc)kk σ

2
k.

The nonzero eigenvalues of a projector all equal one, so its trace equals the dimension

of the space it projects onto. The projector Pc projects onto the space of perfectly cyclic

tournaments, which has dimension L = E − (m− 1). Therefore
∑

k (Pc)kk = L. Rewrite

the expected strength of cyclic competition:

E[||Fc||2] = ||f̄c||2+L
E∑
k=1

Å
(Pc)kk
L

ã
σ2
k. (4.34)
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Since the diagonal entries of an orthogonal projector are always nonnegative, the right

hand term can be interpreted as a weighted average of the variance on each edge. Therefore,

when the edges are independent, the expected strength of cyclic competition is given by the

strength of the cyclic component of the expected edge flow, plus the dimension of the loop

space times a weighted average of the variance on each edge. Similarly, the expected

strength of transitive competition is:

E[||Ft||2] = ||f̄t||2+(m− 1)
E∑
k=1

Å
(Pt)kk
m− 1

ã
σ2
k (4.35)

and the expected total strength of competition is:

E[||F ||2] = ||f̄ ||2+Eσ̄2 (4.36)

where σ̄2 is the average of the variance in the flow on each edge. Equation eq. (4.36) is

valid even if the edges are not independent, as the projector onto the full space is simply

the identity.

Equations eq. (4.34) - eq. (4.36) show that the contribution to the expected strength

of competition from the variances is not distributed equally between the transitive and

cyclic spaces. Instead, the amount that is cyclic is proportional to the number of cycles,

while the amount that is transitive is proportional to the number of competitors. As a

result, adding edges to a network will typically increase the expected degree to which

competition is cyclic. It follows that sparse networks with randomly drawn edge flows will

be relatively more transitive than would be expected given f̄ , while dense networks will

typically be more cyclic. It also follows that, for a posterior distribution of possible edge

flows given observed data, uncertainty will likely lead to an overestimate of the degree to
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which competition is cyclic, if the network is dense.

Further simplifications emerge when a network is edge-transitive or has homogeneous

variances σ2
k. A network is edge-transitive if the edges are indistinguishable once the node

labels are removed. This symmetry implies that pkk is independent of k, regardless the

space the projector maps onto. Therefore (Pc)kk = L/E and (Pt)kk = (m− 1)/E. Thus:

E[||Fc||2] = ||f̄c||2+Lσ̄2

E[||Ft||2] = ||f̄t||2+(m− 1)σ̄2

E[||F ||2] = ||f̄ ||2+Eσ̄2

(4.37)

where σ̄2 = 1
E

∑E
k=1 σ

2
k.

Any symmetric network, or complete network, is edge-transitive, so these equations

apply to all symmetric networks and all complete networks with edge flows drawn inde-

pendently on each edge. Alternatively, if the variances σ2
k do not depend on k, then any

weighted average of the variances is equal to σ̄2. In this case equations eq. (4.37) also

apply.

These results show that, in general, the expected strengths of cyclic and transitive

competition depend on the expected edge flow, the uncertainty in the edge flow, and the

topology of the network. Increasing the uncertainty in the edge flow increases the expected

strength of both cyclic and transitive competition, but does not increase both equally.

If the graph is sparse, then increasing the uncertainty will typically promote transitive

competition more than cyclic. If the graph is dense, then increasing the uncertainty will

typically promote cyclic competition more than transitive. If a tournament is complete,

then E = m(m − 1)/2 so (m − 1)/E = 2/m and L/E = 1 − 2/m. It follows that for

a complete tournament with more than four competitors, any uncertainty in the edge flow
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will typically bias competition to appear more cyclic than transitive. This is necessarily

true if the edges are drawn independently, and the graph is either edge-transitive or the

variances on each edge are all the same.

Numerical studies have suggested that filling in missing edges with randomly drawn F

typically overestimates the degree to which competition is cyclic [95]. Our result provides a

rigorous explanation for this observation. When the edge flow F is drawn randomly to fill in

missing data, it is usually drawn independently and identically distributed, cf. [143]. From

equation eq. (4.37) it is clear that if edges are added until the network is complete, then, for

any tournament with more than four competitors, the resulting “imputed" tournament will

likely be significantly more cyclic than the original tournament. Therefore, unless the edge

flows are well-modeled by assuming that the Fk are independent and identically distributed,

and that all pairs of competitors could compete, this procedure is not valid for estimating

the strength of cyclic competition in a partially observed tournament.

The simplified equations eq. (4.34) - eq. (4.37) are valid only if the edge flows are

drawn independently, which is rarely the case for real-world tournaments. When the edge

flows are not drawn independently, the edge flow covariance matrix is not diagonal, and the

simplification leading from Equation (4.33) to Equation (4.34) no longer holds. This makes

it more challenging to identify how the topology of the network promotes or suppresses

cyclic competition. Nevertheless, as we show in the next section, using a more principled

model for sampling F , ensures that the covariance matrix V takes on a canonical form.

This form clarifies the interaction between the topology of the network and the distribution

of edge flows.
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4.6.2 Trait-Performance

The outcomes of real-world competition events are typically influenced by a constella-

tion of underlying traits of the competitors. Examples of trait-based competition models

abound, ranging from sports23 to biology. 24 In some cases, trade-offs inherent in certain

traits have been observed to lead to cyclic competition between organisms [102, 103].25

In such examples, trade-offs lead to advantages against certain opponents, and weaknesses

that are exploited by others. In evolutionary biology, trade-offs of this kind challenge the

notion that members of intransitive communities can be consistently ranked according to

fitness. Intransitivity can lead to deeply counterintuitive evolutionary dynamics [151, 152],

and may promote biodiversity since no single species has an absolute advantage over all

competitors [101, 105, 106, 107, 113]. These considerations motivate a study of how

demographics (the distribution of traits), and the way traits confer success, either promote

or suppress cyclic competition.

Therefore, we now suppose that win probabilities p can be modeled as a function of

23Some predictive tennis models estimate the probability that one competitor will beat another based on a
parameterized model for the probability that each player will win a point, where the underlying parameters
depend on traits of the players [149]. Similarly, considerable effort has been devoted to predictive models for
baseball based on team and player statistics [121].

24Ecological studies of competition for dominance in social hierarchies have analyzed how traits confer
success, because selection acts on heritable traits contributing to reproductive success. Examples include
competition among male northern elephant seals [119] and male Cape dwarf chameleons [118]. Relevant
traits for elephant seals include body mass, length, age, and time of arrival on the beach [119]. Relevant traits
for chameleons include body mass, length from snout to base of tail, length of the tail, jaw length, head width,
casque size, and size of a pink colored flank patch used in signaling [118].

25Two particularly famous examples are side-blotched lizards and colicin producing E. coli [102, 103].
In the former example, large orange-throated males maintain large territories, medium blue-throated males
defend small territories, while small yellow-throated ‘sneaker’ males resemble females and do not maintain
territories. Orange-throated males typically defeat the smaller blue-throated males, who defeat the even
smaller yellow throated males, who defeat the orange throated males by sneaking into their territories [103].
In the latter example, three strains of E. coli were grown in direct competition in a laboratory setting. The
first strain produced a colicin toxin, the second was susceptible to the toxin, and the third was resistant to
the toxin but not toxin-producing. In the absence of the resistant strain, the toxic strain could outcompete
the susceptible strain. In the absence of the toxic strain, the susceptible strain could outcompete the resistant
strain, which reproduced more slowly because resistance is costly. But, in the absence of the susceptible
strain, the resistant strain could outcompete the toxic strain by reproducing more quickly [102].
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some underlying traits x of each competitor. Let X(i) = [X1(i), . . . , XT (i)] denote the T

randomly sampled traits of the ith competitor. Then let f(x, y) be a performance function,

such that f(x, y) is the log-odds that a competitor with traits x would beat a competitor

with traits y.

To construct a trait-performance model assume that:

1. The trait vectors of the competitors are drawn independently and identically from a

trait distribution πx.

2. There exists a performance function f(x, y) that maps from Rᵀ×Rᵀ to R. We require

that the performance function is alternating f(x, y) = −f(y, x) for any trait vectors

x and y in the support of πx. This ensures that f can be used to generate an edge

flow. It also ensures that the performance function is fair, E[f(X, Y )] = 0, since

if X and Y are drawn i.i.d then E[f(X, Y )] = E[f(Y,X)] = −E[f(X, Y )] which

implies E[f(X, Y )] = 0.

3. There exists a connected competitive network G� with edges representing possible

competition events, and the network is either fixed a priori or sampled independently

from the traits.

Assumptions 1 and 3 are the most restrictive. The first assumes all competitors are

drawn from the same demographic pool. Different demographic pools can be incorporated

into the model by adding a trait which indexes which pool each competitor is sampled from,

provided that trait can be sampled independently of the graph. For example, Major League

Baseball team budgets vary widely. In 2018 the Yankees’ total value was over 4.6 billion

dollars, which was more than the total value of the bottom six teams combined [153]. This

difference resoucres gives high value teams the opportunity to pay higher salaries26 and
26For example, in 2019 the Yankees’ combined payroll was three times larger than the Marlins’.

244



thus attract star players. Thus rich teams are in a different demographic pool than poor

teams, so the wealth of the teams could be incorporated as one of their traits.

The third assumption treats the network topology (who competes with whom) indepen-

dently from the traits of the competitors. This may not be realistic if competitors avoid

competing when they are likely to lose [142]. This also limits our ability to model systems

where traits are heritable, or distributed differently across different clusters of competitors

(different divisions, or local populations).

The second assumption is the least restrictive since it is valid whenever the probability

that one competitor beats another can be conditioned on the traits of the competitors,

independent of their location on the network.

Under these assumptions, we define a trait-performance model as follows. First, sample

X(i) ∼ πx for all competitors i. Then, set Fk = f(X(i(k)), X(j(k))), where i(k), j(k)

are the endpoints of edge k.

Theorem 20 (Trait-Performance). Let G� be a competitive network satisfying assumption

3. If the traits of each competitor are drawn independently from πx, and the edge flow

is defined by Fk = f(X(i(k)), X(j(k))) where f(x, y) is an alternating performance

function, then the covariance V of the edge flow has the form:

V = σ2 [I + ρ (GGᵀ − 2I)] (4.38)

where σ2 is the variance in Fk for arbitrary k, and ρ is the correlation coefficient between

f(X, Y ) and f(X,W ) for X, Y,W drawn i.i.d from πx.
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Moreover:

E
ï

1

E
||F ||2

ò
= σ2 decompose−−−−−−−→


E
ï

1

E
||Ft||2

ò
= σ2

ï
(m− 1)

E
+ 2ρ

L

E

ò
E
ï

1

E
||Fc||2

ò
= σ2 (1− 2ρ)

L

E

(4.39)

Therefore, the expected absolute strength of competition is independent of ρ, the size

of the transitive component is monotonically increasing in ρ, and the size of the cyclic

component is monotonically decreasing in ρ. The correlation ρ ranges from 0 to 1/2, and

if ρ = 1/2 then competition is perfectly transitive.

Proof. First consider the covariance matrix V .

Since the trait vectors are drawn i.i.d from the trait distribution, the diagonal entries of

the covariance are given by:

Vkk = E
î
(f(X(i(k), X(j(k)))2

ó
= E
î
(f(X, Y ))2

ó
≡ σ2 (4.40)

where X, Y are drawn i.i.d from the trait distribution, and σ2 is the variance in f(X, Y ).

Thus, the diagonal entries of the covariance are identical.

The off-diagonal entries are Vkl = E [f(X(i(k)), X(j(k))) · f(X(i(l)), X(j(l)))] .

Suppose the edges k and l do not share an endpoint. Then i(k) 6= i(l) or j(l) and

j(k) 6= i(l) or j(l). Then f(X(i(k)), X(j(k))) is a function of two random vectors,

and f(X(i(l)), X(j(l))) is a function of two other random vectors, where the pair of

random vectors are independent. It follows that f(X(i(k)), X(j(k))) is independent of

f(X(i(k)), X(j(k))). Then, since competition is fair for all alternating performance func-

tions Vkl = E [f(X(i(k)), X(j(k))) · f(X(i(l)), X(j(l)))] which, by independence, equals

E [f(X(i(k)), X(j(k)))]E [f(X(i(l)), X(j(l)))] = 0. It follows that the support of the
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covariance matches the adjacency structure of the edges of the competition network.

If the edges do share an endpoint, then there are four possibilities. Either i(k) = i(l),

j(k) = j(l), i(k) = j(l), or j(k) = i(l). We say that the edges are consistently oriented

if they share either the same starting point or the same ending point, and are inconsistently

oriented if the endpoint of one is the start of another. Since all the trait vectors are drawn

i.i.d., we suppress the indices and let the three trait vectors Y,W,Z be drawn i.i.d. from πx.

The performance function is alternating, so:

E[f(Y,W )f(Y, Z)] = E[f(W,Y )f(Z, Y )] ≡ ρσ2

E[f(Y,W )f(Z, Y )] = E[f(W,Y )f(Y, Z)] = −E[f(Y,W )f(Y, Z)] = −ρσ2

(4.41)

where ρ is the correlation coefficient between f(Y,W ) and f(Y, Z). Notice that a positive

correlation indicates that the probability that A beats B is increased by conditioning on the

event that A beats C.

The edge graph is the graph with a node for each edge in the competition network, and

with an undirected edge between nodes corresponding to connected edges in the compe-

tition network (Figure 4.6). Let AE be the weighted adjacency matrix for the edge graph

with aEkl = +1 or −1 if edges k and l are consistently or inconsistently oriented with

respect to a shared endpoint. Then:

V = σ2 [I + ρAE] . (4.42)
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Figure 4.6: The edge graph (right) associated with a competitive network (left). The middle
panel shows an intermediate graph where a node has been introduced for each edge. The
edges of the competitive network become the nodes of the edge graph. The edges of the
edge graph correspond to nodes in the competitive network that are the shared endpoint
of a pair of edges. These are labeled with a + or − to indicate whether the edges are
consistently or inconsistently oriented with respect to the shared endpoint.

The weighted adjacency matrix AE for the edge graph is equal to GGᵀ − 2I since:

[GGᵀ]kl = (ei(k) − ej(k))
ᵀ(ei(l) − ej(l)) =



2 if k = l

1 if i(k) = i(l) or j(k) = j(l)

− 1 if i(k) = j(l) or j(k) = i(l)

0 else


(4.43)

where ei ∈ Rm is the indicator vector for node i. Thus we establish eq. (4.38).

All of the absolute measures of the strength of competition (squared) are given by the

squared length of the orthogonal projection of the edge flow onto some subspace. Let PS be

an arbitrary orthogonal projector onto some subspace S. By construction, the edge flow is

zero mean, therefore, by equation eq. (4.33), the expected value of the associated measure

248



is:

E
[
||FS||2

]
= trace(PSV ) (4.44)

where V is the covariance matrix of the edge flow F .

The intensity of competition, ||F ||2, corresponds to the projector I , ||Ft||2 corresponds

to the projector Pt, and ||Fc||2 corresponds to the projector Pc. Then, by equation eq. (4.44):

E
ï

1

E
||F ||2

ò
=

1

E
trace(V ) =

E

E
σ2 = σ2. (4.45)

This formula establishes that the absolute strength of competition only depends on the

variance σ2 in each individual performance function.

To compute ||Ft||2, use equation eq. (4.44) with projector Pt:

E
ï

1

E
||Ft||2

ò
=

1

E
trace(PtV ) =

σ2

E
trace (Pt[I + ρ(GGᵀ − 2I)])

=
σ2

E
trace (Pt) +

ρσ2

E
trace (Pt(GG

ᵀ))− 2ρσ2

E
trace (Pt) .

(4.46)

The trace of an orthogonal projector equals the dimension of the subspace it projects

onto, so trace(Pt) = m− 1. The range of GGᵀ is in the range of G, which is the subspace

Pt projects onto. It follows that PtGGᵀ = GGᵀ so trace(PtGG
ᵀ) = trace(GGᵀ) = 2E (see

equation eq. (4.43)). Therefore:

E
ï

1

E
||Ft||2

ò
= σ2

ï
m− 1

E
+ 2ρ

E − (m− 1)

E

ò
= σ2

ï
m− 1

E
+ 2ρ

L

E

ò
. (4.47)

Since L ≥ 0, E[ 1
E
||Ft||2] increases monotonically in ρ: the larger ρ, the more A beating

B is correlated with A beating C, implying transitive competition.

To compute the expected absolute strength of cyclic competition (squared) we take
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advantage of the orthogonality of the decomposition f = fc + ft:

E
ï

1

E
||Fc||2

ò
= E
ï

1

E
||F ||2

ò
− E
ï

1

E
||Ft||2

ò
= σ2 [1− 2ρ]

L

E
. (4.48)

It follows that the expected absolute strength of cyclic competition is monotonically

decreasing in the correlation coefficient ρ. Note that, as when considering the generic null

models, dense networks promote cyclic competition.

To conclude we show that ρ ∈ [0, 1/2], so the expected measures are maximized and

minimized when ρ is 0 or 1/2, respectively.

The correlation ρ is nonnegative since W and Z are i.i.d., thus f(y,W ) and f(y, Z) are

also i.i.d., so:

σ2ρ = EY,W,Z [f(Y,W )f(Y, Z)] =

∫
Rᵀ

EW,Z [f(y,W )f(y, Z)]πx(y)dy

=

∫
Rᵀ

EW [f(y,W )]EZ [f(y, Z)]πx(y)dy =

∫
Rᵀ

EW [f(y,W )]2πx(y)dy ≥ 0

(4.49)

Here expectation is taken with respect to the variables in the subscript.

To prove that ρ ≤ 1/2, note that all covariance matrices are positive semi-definite, so,

for any vector u:

uᵀV u = σ2uᵀ(I + ρ(GGᵀ − 2I))u = σ2(1− 2ρ)||u||2+ρuᵀGGᵀu ≥ 0. (4.50)

If E > m− 1, then the network has at least one loop, so the range of Cᵀ is non-empty,

hence the nullspace of Gᵀ is non-empty. Choosing u perfectly cyclic sets Gᵀu = 0 so

σ2(1− 2ρ)||u||2≥ 0 which requires ρ ≤ 1
2
. If E = m− 1 then the network is a tree, so all

competition is necessarily perfectly transitive.

It follows that the expected absolute strength of transitive competition is minimized
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when ρ = 0, and maximized when ρ = 1/2. In contrast, the expected strength of cyclic

competition is maximized when ρ = 0, and minimized when ρ = 1/2.

If ρ = 1/2 then E[||Fc||2] = 0. The measure is nonnegative for all edge flows.

Therefore, its expected value is only zero if the probability that ||Fc||2 6= 0 is zero. In

this case, the tournament is arbitrage free. It follows that, if ρ = 1/2, then the tournament

must be perfectly transitive.27

Theorem 20 establishes that the expected degree to which competition is transitive or

cyclic depends principally on the density of the network, and the correlation structure of F .

In particular, the degree to which a network is cyclic or transitive depends on the correlation

between the performance of A against B with the performance of A against C. The larger

this correlation, the more consistently each competitor performs, hence the more consistent

the network is with a set of ratings.

The variance σ2 and the correlation coefficient ρ could be computed given an assumed

trait distribution πx and performance function f(x, y). This could be done analytically if πx

and f lead to simple calculations. Otherwise, σ2 and ρ can be approximated numerically.

The analytic method follows.

Suppose that X, Y are drawn from a sample space Ω which is a subset of Rᵀ. Then,

for trait distribution πx, the variance in f(X, Y ) is given by σ2 = EX,Y [f(X, Y )2] which

equals the double integral,
∫

Ω

∫
Ω
f(x, y)2πx(y)πx(x)dydx. Then, substituting into Equa-

27Note that ρ = 1/2 guarantee perfect transitivity but ρ = 0 does not guarantee that the tournament
is perfectly cyclic. A counterexample suffices to explain why. Suppose each competitor chooses rock,
paper, or scissors uniformly and independently. Suppose there are three competitors and the tournament
is complete. Then, in order for the tournament to be perfectly cyclic, rock must be chosen by one competitor,
scissors by another, and paper by the last. There are 6 ways this can happen but there are 27 possible
tournaments. Therefore a three competitor system has a 21/27 chance of being perfectly transitive, even
when the underlying performance function is clearly cyclic.
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tion (4.49):

ρ =

∫
Ω

(∫
Ω
f(x, y)πx(y)dy

)2
πx(x)dx∫

Ω

∫
Ω
f(x, y)2πx(y)πx(x)dydx

. (4.51)

Note that the correlation coefficient is only large if it is possible to find some set of

traits which are expected to perform either well or poorly on average, and if these traits

occur with sufficient probability. That is, there must be some x such that |EY [f(x, Y )]| is

large, and such that πx(x) is not too small. From this expression, it is not surprising that

the expected strength of transitive competition is monotonically increasing in ρ. If there is

a set of traits x which, on average, either overperform or underperform against randomly

drawn opponents, and are frequently sampled, then a random sample of m competitors is

expected to include some who perform well, and some poorly, against their neighbors. If,

on the other hand, the expected performance conditioned on traits x is close to neutral,

then ρ is small and competition is expected to be cyclic. In a rock-paper-scissors style

game in which competitors are randomly and uniformly assigned rock, paper, or scissors,

then conditioning on receiving a particular trait does not change the probability that an

individual with that trait will win most contests, hence the tournament is expected to be

highly cyclic.

Another way to read eq. (4.51) is as follows. Define the expected performance of traits x

to be EY [f(x, Y )]. Then since EX [EY [f(X, Y )]] = EX,Y [f(X, Y )] = 0, EX [EY [f(X, Y )]2]

is the variance in the expected performance. Therefore ρ is the ratio of the variance in the

expected performance to the variance in performance. A large variance in the expected

performance means we are likely to sample some competitors who perform well, or poorly,

against most opponents. Consequently, the sampled edge flow is expected to be more

transitive than cyclic.

Rereading theorem 20 in this way leads to the following insight:
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Corollary 20.1. If the traitsW,X, Y are sampled independently from πx and F = f(X, Y )

then the correlation coefficient ρ is proportional to the variance in the expected perfor-

mance:

ρ =
1

σ2
cov(f(X, Y ), f(X,W )) =

1

σ2
Var (E[F |X]) . (4.52)

Let ν be the expected variance in the performance:

ν =
1

σ2
E [Var(F |X)] . (4.53)

Then ν = 1 − ρ, so E[||Fc||2] is monotonically increasing in ν, E[||Ft||2] is monotoni-

cally decreasing in ν, and ν = 1
σ2 Var[f(X, Y )− f(X,W )].

Proof. The proof of equation eq. (4.52) is given by equation eq. (4.51), and the fact that

E[F ] = 0. Then ν = 1− ρ follows by the law of total variance:

σ2 = Var(F ) = E [Var(F |X)] + Var [E(F |X)] = σ2(ρ+ ν). (4.54)

Since E[||Fc||2] is decreasing in ρ, it is increasing in ν. Similarly, since E[||Ft||2] is

increasing in ρ, it is decreasing in ν.

The final expression for ν follows from σ2ν = σ2(1− ρ) which equals Var[f(X, Y )]−

cov[f(X, Y ), f(X,W )]. Since Y and W are i.i.d., Var[f(X, Y )] = 1
2
(Var[f(X, Y )] +

Var[f(X,W )]). Substituting in gives σ2ν = 1
2
E[(f(X, Y )−f(X,W ))2]. Since E[f(X, Y )]

equals E[f(X,W )] this raw second moment is the variance in f(X, Y )− f(X,W ).

Theorem 20 identifies which statistical feature of the trait distribution and performance

function promotes transitive and suppresses cyclic competition. Corollary 20.1 comple-

ments this understanding by showing which feature suppresses transitive and promotes
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Figure 4.7: A schematic representing the conclusions of Theorem 20 and Corollary 20.1.
The left hand side decomposes the uncertainty in performance into the uncertainty in the
expected performance given X , and the expected uncertainty in the performance given X .
These uncertainties are converted into ρ and ν which describe the correlation structure of
triples of competitors. The sizes of ρ and ν, plus the topology of the network, determine the
expected sizes of the transitive and cyclic components. Thus we convert a decomposition
of the uncertainty in the performance into a decomposition of the intensity of the edge flow
representing competition.

cyclic competition. Transitive competition is promoted by the uncertainty in expected

performance, Var[E(F |X)], and suppressed by the expected uncertainty, E[Var(F |X)].

Conversely, cyclic competition is suppressed by uncertainty in the expected performance,

and promoted by expected uncertainty. If the uncertainty in expected performance is large,

then we are likely to sample some competitors who are consistently better, or worse, than

their neighbors, hence competition is mostly transitive. If the expected uncertainty in

performance is large, then it is difficult to predict the performance of a single competitor

against their neighbors, since performance is competitor dependent, hence competition is

mostly cyclic.

Together Theorem 20 and corollary 20.1 provide conceptual bridges between uncer-

tainty in the flow on each edge, correlation structure on edges that share an endpoint, and
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cyclic/transitive structure on the network (see section 4.6.2). They establish the intuitive

statements that conclude the introduction (p. 194). For example, the expected uncertainty

in the performance of A against a random competitor is σ2ν = 1
2
EX [VarY (f(X, Y )|X)].

Thus, “the less predictable the performance ofA against a randomly drawn competitor, the

more cyclic the tournament” (see 1b). Then, by the equivalence of EX [VarY (f(X, Y )|X)]

to Var(f(X, Y )− f(X,W )), “the more the performance of A depends on their opponent,

the more cyclic the tournament.”

It remains to understand how the choice of trait dimension, trait distribution, and perfor-

mance function influence ρ, and consequently the expected degree of cyclic competition.

We provide an illustrative example below.

4.7 Example

Suppose that each competitor has a set of T traits. Assume that the traits are chosen so that

the performance function f(x, y) is non-decreasing in xj , and non-increasing in yj , for all

j. This amounts to choosing a sign convention for each trait so that increasing any trait

improves performance. Then a competitor with traits x has an advantage (in trait j) over

an opponent with traits y if xj > yj .

In some events, competitors with a large advantage in a given trait can dominate, so that

the event is primarily mediated by that trait. That is, competitors press their advantages.

For example, a performance function of this type is the extremal performance function

f(x, y) = xj−yj , where j is the dimension in which this difference is largest in magnitude,

j = argmaxj|xj − yj|. In the extremal performance model, the performance is completely

controlled by the largest advantage, so competitive events are as one-sided as possible,

given the competitor’s traits.
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Figure 4.8: The correlation coefficient ρ for two different performance functions and three
different trait distributions as a function of the number of competitive traits. Error bars
represent three standard deviations in the estimated correlation coefficient. The “Press Your
Advantage" panel shows ρ(T ) for the extremal performance model: f(x, y) = xj − yj for
j that maximizes the difference. The“Fair Fight" panel shows ρ(T ) for f(x, y) = xj − yj
for j that minimizes the difference.

Consider, in contrast, a competitive event in which competitors cannot press their

advantages. For example: f(x, y) = xj − yj for the dimension j = argminj|xj − yj|

that minimizes the advantage. This rule could model a contest in which competitors are

required to reach a consensus about how to compete in advance or, where the weaker

competitor controls which traits primarily mediate the competitive event. Competitors

could be motivated or compelled to compete without pressing advantages by an external

mediating body. For example, a sports league is motivated to keep teams evenly matched,

even if the individual teams are motivated to win.

Suppose that the traits are drawn i.i.d from either an exponential, Gaussian, or uniform

distribution. In each case, the variance of the trait distribution has no effect on ρ so, without

loss of generality, each distribution is chosen to have variance one.

We estimated the correlation coefficient ρ for all six models (two performance func-

tions, three distributions) with trait dimension varying from 1 to 25. To estimate the
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correlation coefficient for a given model and trait dimension we sampled 106 triples of trait

vectors X, Y,W and computed f(X, Y )f(X,W ). Averaging over all 106 triples gave an

empirical estimate for the covariance, which was then normalized by an empirical estimate

of the variance σ2. Figure 4.8 shows the results.

For all three choices of trait distribution, ρ(T ) was larger if the extremal advantage

model was used instead of the fair-fight model. This indicates that, the more competitors

can press their advantages, the more transitive competition is, on average. This is not

surprising, since in the fair-fight model, the traits mediating performance for competitor

A against competitor B are likely different from the traits mediating competition between

A and C. As a result, the success of competitor A is highly competitor dependent. Thus

competition is more cyclic.

Note that this conclusion is much easier to test using the trait-performance theorem

(Theorem 20) than by sampling a series of random edge flows. Using Theorem 20, we only

needed to sample trait vectors for triples of competitors to evaluate ρ. This simplification

greatly reduces the sampling cost.

In all six models tested, ρ(T ) is decreasing in T , so the expected proportion of competi-

tion that is cyclic is increasing. This matches the results in [117], where increasing the trait

dimension typically decreased the expected degree of transitivity. This is intuitive, since

larger T allows more ways for two competitors to compete, so it is harder to assign a single

rating to a competitor.28

When using the extremal performance model the correlation ρ(T ) decays much faster in

T for Gaussian and uniform traits than for exponential traits. This is because exponentially

sampled traits are more likely to include large outliers. Since the extremal performance

model sets f to the largest trait difference, the performance is more likely to depend on the

28Note that while this is often true it is not true for all trait-performance models.
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outlier traits of each competitor. If a competitor has one particularly large trait, and T is

large, then it is unlikely that any other competitor has a comparably large trait value in the

same dimension. As a result, the competitor with the largest trait usually competes along

that dimension and their performance against other competitors is fairly consistent. This

leads to a relatively high ρ.

On the other hand, if the traits are drawn uniformly from [0, 1] then no competitor can

achieve a universal advantage by having one extremely large trait value. Instead, as the di-

mension of the trait space increases, competitors succeed by having a large trait value where

their opponent has a small trait value - that is, by exploiting their opponents’ weaknesses.

In this situation, the relevant trait dimension that determines the outcome of competition

depends on whom each competitor competes with. Consequently the correlation ρ becomes

very small as T becomes large, so competition becomes predominantly cyclic.

In the fair-fight model all three trait distributions produce nearly identical correlations,

since outlier traits do not mediate performance. Instead, performance is mediated by

average traits, since the smallest advantageXj−Yj is likely to come from a trait dimension

where both Xj and Yj are close to their expected values.

This example illustrates the explanatory power of the trait-performance theorem. By

separating the influence of network topology from statistical assumptions about compe-

tition, the theorem facilitates numerical hypothesis testing and affords deeper insights by

focusing the questions we ask about competitive tournaments.

4.8 Summary

The discrete HHD provides a natural, unified method for ranking and measuring intransitiv-

ity via a decomposition into perfectly transitive and cyclic components. The expected size

of these components can be computed from the correlation structure of the edge flow. Using
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a trait-performance model simplifies the correlation structure so that the decomposition of

the edge flow can be related to the correlation in adjacent edges, and to a decomposition

of the uncertainty in the edge flow. Intuitive statements about the expected sizes of the

components can be rigorously proven for such models, which provide conceptual insight,

as illustrated in Section 4.7. Future work should address other case studies, both inspired

by real systems and chosen to illustrate generic behavior.

Further theoretical work could address random network topologies. If the network is

sampled independently of the edge flow then the results of theorem 20 are largely un-

changed. Future work might consider random networks whose distribution depends on the

traits of each competitor, or ensembles whose traits are not i.i.d. For example, competitors

who are neighbors in the network might have positively correlated traits. Correlation

between network structure and traits would be important in an evolutionary setting where

the hereditary nature of traits matters. Future work could also investigate null models

with differently structured covariances in the edge flow. Studying these models will help

contextualize the HHD when applied to real tournaments.

This work can is extended to data from real tournaments in Chapter 5. By studying win-

loss records it is possible to infer the log-odds edge flow, and thus estimate the components

of the HHD. Chapter 4 provides essential context by offering comparison to null models.

Moreover, when an exhaustive win-loss record is not available, Theorem 20 suggests that

the expected size of the cyclic component could be estimated by estimating the correlation

coefficient ρ, which may be easier to estimate robustly.
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Chapter 5

Application to Tournaments: Data

5.1 Preface

Like Chapter 4, this chapter is an expanded version of a manuscript that is in preparation

for submission. The chapter is written so that it can be read independently of the other

chapters, though the reader will gain a deeper appreciation for the approach and objectives

if they read Chapter 4 first.

This chapter builds on the theory developed in Chapter 4. In order to apply the HHD

to competitive tournaments directly the win probabilities must be known. These are rarely

known in practice, so must be estimated from observed data. In this chapter we develop a

series of estimation and hypothesis testing methods that are used to apply the HHD to data

from real-world tournaments. Examples from politics and animal competition are explored

(see Section 5.5 and Section 5.6).
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5.2 Introduction

A tournament consists of a set of competitors who compete in pairwise competition events.

Tournaments are familiar in sports, but also appear widely in animal behavior and politics.

In virtually all tournaments there is great interest in ranking the competitors from best

to worst. In sports, rankings are widely published, dictate draft orders and post-season

schedules, and are obsessed over by fans. The famous school-yard question, who is the

“Greatest of All Time" [149], is a ranking question. Outside of sports, rankings play

an important role in decision making and data science. Examples in this vein include

ranking colleges [154, 155, 156], ranking of web search results [124, 157], and ranking

of movie suggestions on streaming platforms [158, 159, 160]. Some election systems can

also be considered a ranking process. In biology ranking competitors is important as many

animal societies are hierarchical, and dominance in a hierarchy is associated with greater

reproductive success [119]. Thus ranking plays an essential role in our understanding of

competitive systems across applications. In part, this ubiquity is due to rankings’ attractive

simplification of competitive systems into an ordered list.

Ranking is so pervasive that systems that cannot be consistently ranked due to rock-

paper-scissor type cycles are almost universally treated as either surprising or disturbing.

In psychology and economics, individuals with cyclic preferences are considered flatly

“irrational", and the assumption that individuals have well ranked preferences is a founding

axiom of choice theory [161]. In social choice theory and political science, cyclic prefer-

ences in the aggregate electoral opinion are considered “irrational", “paradoxical," and

even “chaotic" [162, 163]. In biology, cyclic competitive systems are treated with some-

what less alarm, but with equal surprise and interest. Extensive theoretical work suggests

that cyclic competition may maintain biodiversity by preventing competitive exclusion
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[94, 99, 101, 105, 106, 107, 108], and may lead to deeply counter-intuitive evolutionary

dynamics such as “survival of the weakest" [151]. As a result, there is an entrenched

debate between two perspectives on competitive systems across fields. One camp, typically

empirically motivated, argues that most tournaments are amenable to ranking and do not

exhibit cyclic behavior. The other, supported by theory and select case-studies, argues that

not all tournaments can be ranked, cycles play an important role in some systems, and that

the ranking perspective is an impoverished simplification of real systems.

The debate described above is usually presented as a discussion of transitivity (linearity

in some fields). A tournament is transitive if knowing A usually beats B, and B usually

beats C, implies A usually beats C. If a tournament is transitive then there exists a

unique ranking of the competitors that is consistent with the expected outcome between

each pair of competitors. Not all tournaments are transitive, nor is it always clear from

observed data whether a tournament is transitive [164]. Intransitive tournaments contain

rock-paper-scissor type cycles in which A beats B beats C beats A, so are characterized by

cyclic structure, not hierarchical structure. Two illustrative examples of observed cycles in

competitive systems are presented below, one from politics and one from sports.

First we consider public opinion regarding intervention in Iraq’s invasion of Kuwait

in 1990. Gaubatz [165] reconstructed public preferences for four different options of

the U.S. response: withdrawal without involvement, sanctions, unilateral military inter-

vention, or multilateral military intervention. Based on polling data Gaubatz concluded

that aggregate public opinion was intransitive, with multiple preference cycles among the

four options. According to Gaubatz 55 percent of the public preferred unliateral military

intervention to multilateral military intervention, 69 percent preferred sanctions to unli-

ateral military intervention, and 57 percent preferred multilateral military intervention to

sanctions [165].
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Second we consider the Houston Astros, Seattle Mariners, and Pittsburgh Pirates of

American Major League Baseball. In 2019 the Astros had the highest win percentage of

any baseball team in the American League (AL) West division (107 wins to 55 losses). In

contrast the Mariners had the lowest win percentage in the AL West (68 to 94), and the

Pirates had the lowest win percentage in their division, the National League Central, (69

to 93). Predictably, the Astros won 18 of the 19 games they played against the Mariners,

with an average lead of 3.21 runs over the 19 games. The Mariners won all three of the

games they played against the Pirates, with an average lead of 3.33 runs over the three

games. How did the Pirates fair against the Astros? Seemingly against all odds the Pirates

won two of the three games they played against the Astros, leading by an average of 6

runs over the three games - more than either the Astros led the Mariners or the Mariners

led the Pirates. These sorts of underdog victories are not uncommon in baseball. Since

1980 fifteen to twenty percent of all triples of baseball teams have produced intransitive

run records.

These examples raise two important issues regarding the transitivity/intransitivity de-

bate. First, examples of cycles in competitive systems are often anecdotal and based on

individual case-studies (cf. [102, 109, 103] or [166, 167, 168, 169]). While useful for

illustrating that cycles can and do occur in important situations, case-studies cannot be

used to study how frequently cycles occur [170]. Moreover, methodology differs between

case-studies, making comparison difficult, and clouding the statistical significance of the

collection of observed cycles [171]. In some cases, examples of dubious statistical sig-

nificance are reported (cf. [172]), and in others, usually historical examples, statistical

significance is only cursorily addressed if at all (cf. [168]). Therefore it is essential to

move past documenting individual cases, and to perform repeatable analysis across many

data sets simultaneously. Efforts to perform meta-studies of this kind have been performed
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to different extents within each field (cf. [173, 112, 174, 175, 176]). Building on the meta-

analysis approach we present a unified method that can be applied to commonly accessible

data. The methods are fully documented in the appendix and publicly available code is

provided online which implements the methods. To avoid relying on case studies that are

difficult to compare we apply these methods to large scale datasets that allow for repeated

analysis of systems across years, and comparison between systems. We highlight a few

case-studies within the data sets, but contextualize the case-studies by comparing them to

multiple examples from comparable competitive systems.

The second important issue raised by the examples is that intransitive cycles may be

observed by chance when finitely many events are observed, even if the underlying system

is transitive. This issue is raised clearly by the Pirates example. Are the intransitive run

records observed in baseball flukes? Were the Pirates lucky in 2019, or is competition

between some Major League Baseball teams inherently intransitive?

To distinguish these two scenarios we say that intransitivity is structural ifA is expected

to beat B is expected to beat C is expected to beat A, whereas intransitivity is incidental

if A happened to beat B who happened to beat C who happened to beat A. Structural

intransitivity is intrinsic to the win probabilities whereas incidental intransitivity is a con-

sequence sampling error. Distinguishing between structural and incidental intransitivity is

inherently a question of statistical significance as event data can only tell us what happened,

not the probability of what happened. The standard approach is to propose a measure of

intransitivity/transitivity that can be used as a test statistic. The measure is evaluated on the

data, and is compared to the distribution of values it could take on under a null hypothesis.

If the measure is much larger or smaller than what is expected then the null hypothesis is

rejected. Multiple measures of intransitivity/transitivity have been proposed and are used

as test of transitivity [133, 143, 16, 97, 94, 104, 100, 114]. In this paper we will use
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the measure proposed by Jiang et al., Hodge intransitivity [16]. A critical shortcoming in

some areas of the transitivity/intransitivity debate is that statistical significance of observed

cycles is not always addressed [171], thus it is not always possible to tell whether observed

cycles are structural or incidental. Jiang et al. do not address statistical significance in [16].

To avoid this issue we develop methods for quantifying the uncertainty in each quantity we

estimate, and complement our estimation techniques with hypothesis testing.

Measuring intransitivity is especially important in systems that are structurally intran-

sitive since the extent and intensity of cycles will determine how much is lost by trying

to reduce the tournament description to a ranking. Structural cycles can alter long term

dynamics [101, 105, 106, 107], can promote diversity amongst competitors [94, 99, 108],

and can alter optimal strategies [18].1 Alternatively, in a decision making context such as an

election, the extent of cycles will determine how difficult it is to make a decision, and how

arbitrary the ultimate decision is. This is the principle reason cycles are of such concern

to social choice theorists. If aggregate preferences are highly cyclic then the outcome of

elections can depend heavily on strategic deal-making [177], the order in which choices

are presented [166], or the individuals with the agenda setting power [168]. At its most

extreme, underlying cyclic preferences can lead to the Rikerian view of politics in which

political outcomes are determined by strategic manipulation of factions not popular opinion

[170, 169, 178]. These considerations strongly motivate the need for an understanding of

both whether and to what degree real competitive systems are cyclic.

The goal of this chapter is to quantify how cyclic different competitive systems are, and

1The prevalence of cycles can reflect the range of successful strategies and degree to which competitor’s
must adapt their strategy to suit their opponent. If you know your opponent will choose rock you should
choose paper, if you know your opponent will choose scissors you should choose rock, and if you know your
opponent will choose paper you should choose scissors. If, on the other hand, competitive ability is described
by a single number then the objective is simply to maximize that number, so the optimal strategy is opponent
independent.

265



to identify cycles within those systems. The methods proposed are designed to be easily

applied to different data sets so that they can be compared. The methods also incorporate

uncertainty quantification and hypothesis testing in order to distinguish when observed

results are likely structural or possibly incidental. All of the methods used in this chapter

are documented in the appendix, and implemented in publicly available code. All of the

data used has also been made publicly available. The data sets include some interesting

and relevant cases (for example, the 2016 and 2020 American presidential elections), but

are primarily chosen for their breadth of scope.

The chapter proceeds as follows. The basic theory needed to understand our methods is

presented in Section 5.4. We emphasize the distinctions between our methods and standard

methods for studying cyclic competition, and argue that our method provides a more nu-

anced understanding of competition than the classical categorization into the transitive and

intransitive classes. Estimation, uncertainty quantification, and hypothesis testing methods

are briefly summarized. In Sections 5.5 and 5.6 we apply our methods to a series of

examples. The first example section considers a series of elections drawn from Danish,

Dutch, and American politics. American presidential elections in 2000, 2016, and 2020 are

highlighted as case-studies. The second example section considers a series of experiments

in animal behavior regarding competition between birds in a pecking order. These examples

are based on data from a meta-study of intransitivity in competition between animals [95].

Our choice of method is motivated separately for each of these two example applications in

order to demonstrate the relevance of the analysis in each field and to highlight important

similarities and differences between fields. Results from an analogous study of Major

League Baseball are briefly discussed in Section 5.7 in order to highlight the importance

of uncertainty quantification and testing for the statistical significance of conclusions. To

conclude possible future work is proposed.
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5.3 The HHD Reviewed

A tournament is conveniently represented with a competitive network. A competitive

network has one vertex for each competitor, and a pair of directed edges connecting com-

petitors who could compete. Let V be the number of competitors and E be the number of

edges. The directed edge from B to A is weighted by the probability A beats B, which is

denoted pAB. The set of probabilities p are the win probabilities.

The Hodge-Helmholtz Decomposition (HHD) is a decomposition of an edge-flow on

a graph [16]. In Chapter 4 we advocated for the log-odds edge flow when considering

competitive tournaments. The log-odds edge flow is defined by first indexing all of the

pairs of connected competitors, and assigning each edge an arbitrary reference orientation.

If k indexes an edge let i(k), j(k) denote the start and the end of the edge respectively. Then

the log-odds edge flow is the vector f where fk = log(pj(k)i(k)/pi(k)j(k)) = logit(pj(k)i(k))

is the log of the odds j(k) beats i(k). If fk > 0 then j(k) is expected to beat i(k). If

fk < 0 then j(k) is expected to lose to i(k). When fk = 0 the two competitors are equally

matched. In general, large |fk| indicates that the competition event is predictable and the

competitors are unevenly matched, while small |fk| indicates that the competition event is

unpredictable and the competitors are evenly matched. Since logit(p) diverges to ±∞ as p

goes to zero or one we assume that none of the win probabilities equal zero and one.

The HHD decomposes f into two components, each drawn from a different class of

tournaments.

The first class is the class of perfectly transitive, or arbitrage free, tournaments. A

tournament is arbitrage free if the probability of observing a cyclic sequence of wins does

not depend on the direction around the cycle (A beats B beats C beats A is just as likely

as A beats C beats B beats A). A tournament is arbitrage free if the sum of f around any
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cycle is zero.

If a tournament is arbitrage free then there exists a rating such that the edge flow on edge

k is given by the difference in the ratings of the competitors at either end of the edge; fk =

rj(k) − ri(k). This implies that pAB = logistic(rA − rB) = exp(rA)/(exp(rA)− exp(rB)).

The Elo rating method [137] assumes that the win probabilities satisfy the first form, while

the Bradley-Terry rating system [140, 139] assumes that the win probabilities satisfy the

second form for some ratings exp(r), which are widely used predictive rating systems

[179, 137, 139, 140, 119, 138, 148, 118, 142]. A predictive rating system assumes that the

probabilityA beatsB can be expressed as a function of the ratings ofA andB. In Chapter 4

we showed that any tournament that satisfies the Elo or Bradley-Terry model must also be

arbitrage free. Thus a tournament satisfies the Elo or Bradley-Terry models if and only if it

is arbitrage free.

If a tournament is arbitrage free then it is necessarily transitive. In a transitive tourna-

ment, knowing pAB > 1/2 and pBC > 1/2 implies pCA > 1/2. Arbitrage free tournaments

satisfy a stronger transitive property. If pAB and pBC are known then pCA can be computed

from pAB and pBC .2 This is true for any edge in a cycle if the win probabilities on the other

edges are known. Thus the value of the win probability, not just the sign relative to 1/2,

on any edge in a cycle is determined by the win probabilities on the other edges. For these

reasons we refer to the class of arbitrage free tournaments as perfectly transitive.

In contrast, we define the class of favorite-free tournaments. A tournament is favorite

free if the probability a competitor beats all of their neighbors in a row is equal to the

probability that they lose to all of their neighbors in a row. A tournament is favorite free if

the sum of f over each neighborhood equals zero. All favorite free tournaments are cyclic.

2Further, if pAB > 1/2 and pBC > 1/2 then pAC > max{pAB , pNB} > 1/2. The inequality pAC > 1/2
is sometimes called weak stochastic transitivity, and the inequality pAC > max{pAB , pNB} is sometimes
called strong stochastic transitivity [180, 164].
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A tournament is cyclic if for every path from A to B, such that every edge in the path is

crossed from the expected loser to the expected winner, then there exists a path from B to

A with the same property. Thus every path segment can be completed to form a cycle.

Like arbitrage free tournaments, which are specified by a set of ratings, favorite free

tournaments are specified by a set of vorticities. Each vorticity is associated with a loop

in the network, and the value of the vorticity represents the tendency of the system to

cycle around that loop. The probability of observing j(k) beat i(k) is a sum of all the

vorticities on loops that include edge k. For these reasons we refer to the class of favorite

free tournaments as perfectly cyclic.

The HHD uniquely decomposes an edge flow f into a perfectly transitive edge flow

ft and a perfectly cyclic edge flow fc [16]. To perform the HHD, we define the discrete

gradient operator G ∈ RE,V to be the matrix the incidence matrix of the directed graph

given by introducing a directed edge from i(k) to j(k) for each k. Then:

[Gr]k = rj(k) − ri(k). (5.1)

the space of perfectly transitive tournaments is the space of tournaments whose log-

odds edge flow is in the range of G. The space of perfectly cyclic tournaments is the space

of tournaments with edge flow in the null space of Gᵀ. Therefore there exist unique ft and

fc such that:

f = ft + fc such that ft ∈ range{G}, fc ∈ null{Gᵀ}. (5.2)

where ft is the orthogonal projection of f onto the range of G, and fc is the orthogonal

projection of f onto the nullspace of Gᵀ. The components can be solved for by first solving
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the associated least squares problem for the ratings:

r = argminu|∑v
i=1 ui
{||Gu− f ||2}. (5.3)

This is the same least squares problem used in an unweighted log-least squares rating sys-

tem. Least squares rating systems and log-least squares systems are widely used in pairwise

comparison and sports rankings [128, 126, 127, 123, 130]. The transitive component is

given by setting ft = Gr, and the cyclic component is given by setting fc = f − ft.

Therefore, if f is known then all that is required to perform the HHD is to solve the

least squares problem defined by Equation (5.3). This least squares problem can be solved

efficiently, even for large networks, since the gradient operator is sparse, and gets sparser

the more competitors are added to the network [16].

The components of the HHD can be used to measure how cyclic a tournament is. The

natural measures in this context are ||ft||2 and ||fc||2. These are the absolute sizes of the

transitive and cyclic components. The Hodge intransitivity measure is the size of the cyclic

component [16]. The absolute size of the cyclic component is the distance of f from the

perfectly transitive subspace, and is the minimum amount of error needed when attempting

to approximate f with the gradient of some rating r. Therefore ||fc||2 is a measure of

how far the given tournament is from satisfying the assumptions underlying either the Elo

or Bradley-Terry rating systems. By comparing the sizes of the two components we can

determine whether competition is principally transitive or principally cyclic. This motivates

the relative measure: ||fc||2/||f ||2. The relative measure is zero if competition is perfectly

transitive and one if competition is perfectly cyclic.

We choose to use the Hodge intransitivity measure instead of other existing measures

(cf. [97, 117, 100, 95, 104, 114]) for two conceptual reasons:
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Figure 5.1: Conceptual representation of an arbitrary tournament according to the sizes of
the transitive and cyclic components of the edge flow. The horizontal axis corresponds
to the size of the transitive component, and the vertical axis to the size of the cyclic
component. At the origin all win probabilities equal 1/2 so the tournament is neutral.
As either component becomes large the win probabilities approach either 0 or 1. If there
is no transitive component then the tournament is perfectly cyclic, if there is no cyclic
component then the tournament is perfectly transitive. Classification into the transitive and
intransitive, or cyclic and acyclic classes depends on the sign of the edge flow, thus the
level sets of discrete measures of transitivity/intransitivity correspond to angular sectors in
the plane.

1. The Hodge measure is really one of a pair of measures. These two measures are the

sizes of the two components of the decomposition. Thus the HHD provides a two-

dimensional characterization of competitive systems rather than a one-dimensional

characterization. From this perspective, standard intransitivity measures evaluate of

the relative, not absolute, sizes of the components. By using the HHD, we can study

cyclic competition separate from transitive competition, rather than as the opposite

end of the transitive-intransitive spectrum. This separation allows for a more nuanced
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analysis. Following this line of thought we propose a graphical approach. Let

the size of each component be represented by two perpendicular axes. Then any

tournament can be represented as a point in the positive quadrant of a plane. We

will use this plane to graphically represent each tournament studied. We will then

show that tournaments drawn from the same system typically cluster, and that the

clusters corresponding to different systems are distinct, even if all of the systems are

transitive. This is strong evidence that the HHD successfully characterizes properties

of tournaments that are shared within a system but differ between systems. This is

illustrated in Figure 5.1.

2. Unlike existing measures the Hodge measure is continuous in the win probabilities.

To clarify the significance of this point consider two example systems. In the first

system it is observed that A beat B 95 out of 100 games, and B beat C 95 out

of 100 games. In the second system it is observed that A beat B 55 out of 100

games and B beat C 55 out of 100 games. How often do we expect A to beat C in

the two systems? Assuming transitivity, we expect A to beat C in both examples.

However, we might also reasonably expect that A would beat C more often in the

first example than in the second example. This distinction reflects a stronger notion

of transitivity. The former conclusion is based on the logic that observing that

A usually beat B, and B usually beat C, implies A usually beats C. The latter

conclusion is based on the logic that seeing the frequency with which A beat B,

and the frequency with which B beat C, implies the frequency with which A beats

C. The latter conclusion reflects stronger assumptions about the structure of the

win probabilities. The former conclusion only depends on whether win probabilities

are greater than or less than a half, while the latter depends on the values of the

win probabilities. The Hodge measure reflects deviations from this stronger set of
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assumptions, namely, that there exists an Elo/Bradley-Terry rating of the competitors

which predicts the win probabilities. Thus, if it were observed that A actually

lost to C 40 out of 100 games the Hodge measure would return a larger value

in the former case than the latter. Even if A beat C 51 out of 100 games, the

Hodge measure would not be zero, despite the fact that the observed outcomes are

transitive. In both cases we would expect A to beat C at least more than 55 out

of 100 games, so the Hodge measure would be nonzero since C won surprisingly

often. This latter expectation, that pAC > max{pAB, pBA} if pAB, pBC > 1/2

is sometimes refered to as strong transitivity [180, 164]. Figure 5.2 illustrates the

three different transitivity assumptions. Since many, if not most, observed empirical

systems are plausibly transitive [98, 112, 176], it is useful to have a measure which

can detect violations of a stronger hypothesis, and thereby detect a latent cyclic

component. The fact that the Hodge measure is continuous also makes the Hodge

measure less prone to sampling error when observed event counts are near 50-50. If

A beat C 51 out of 100 games reversing only two outcomes between A and C would

change the system from transitive to intransitive, completely reversing the system’s

classification. Thus the classification into transitive and intransitive is sensitive to

small sampling errors when win counts are near a half. In contrast, the Hodge

measure would barely change when the two outcomes are reversed. Because the

Hodge measure is continuous in the win probabilities small changes in sampled

outcomes never lead to disproportionately large changes in conclusions.

The measures produced by the HHD can also be related to statistical properties of

the tournament. In Chapter 4 we demonstrated that, if competition is modelled using

a trait-performance model, then the expected sizes of the components squared can be

computed explicitly from the dimensions of the network and some simple statistics. In
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Figure 5.2: The left panel provides four different matrices containing win probabilities,
where the ij entry is the probability i beats j. The first is intransitive because of the cycle
1 > 2 > 3 > 4 > 1. In general, if there is no way to reorder the indices such that all
entries above the diagonal are greater than 0.5 then the system is intransitive. The next is
transitive, because it can be ordered so that all entries above the diagonal are greater than
0.5, however it is not strongly transitive. To be strongly transitive the entries across each
row must be increasing as read from right to left, the entries along each column must be
decreasing as read top to bottom. This is violated by the entry in the top right corner. The
next example is strongly transitive, but not perfectly transitive, since the win probabilities
do not match an Elo type predictive rating for any ratings. The right hand panel shows
the regions corresponding to each class of tournament for a system with three competitors.
Each axis represents the log-odds. The octants bounded in red are cyclic. Any set of log-
odds not contained in the red octants are transitive. The purple shaded region is the space
of log-odds that are strongly transitive, and the blue shaded subspace is the space of log-
odds that are perfectly transitive. Note that the each stronger notion of transitivity is nested
inside of each weaker notion.

a trait-performance model it is assumed that the probability that one competitor beats

another can be expressed as a function of the traits of the two competitors, and that all

competitors’ traits are drawn i.i.d. from a trait distribution that models the demographics of

the competitor pool. Then the ratio of the expected size of the cyclic component (squared)

to the expected size of the edge flow (squared) only depends on the density of the network,
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and the correlation, ρ, in the log-odds that A beats B and A beats C. The denser the

network the larger the ratio, and the larger ρ the smaller the ratio. Therefore, increasing

the correlation in the performance of A against B with A against C promotes transitive

competition, while decreasing the correlation promotes cyclic competition.

5.4 Estimation Methods, Uncertainty Quantification, and

Hypothesis Testing

5.4.1 Bayesian Methods

Point Estimation

In practice, the win probabilities are rarely known, so the log-odds, f , must be estimated

from data. Suppose that the outcomes of a series of competition events are recorded. Let

n ∈ ZE record the number of events observed on each edge, not including ties. Let w ∈ ZE

be the number of wins observed on each edge, where wk is the number of times i(k) beat

j(k). Then our objective is to estimate f given n and w. The following section summarizes

the key results. For details see Appendix A

To help constrain the estimates we assume that the win probabilities are distributed

according to a symmetric beta distribution with parameters α, β = γ > 0. The beta

distribution is the conjugate prior for this estimation problem and is widely used to estimate

binomial parameters [164, 181, 182, 183]. If γ = 1 the prior is uniform, if γ < 1 then

the prior is large for win probabilities far from 1/2, and if γ > 1 then the prior is large

for probabilities near 1/2. Introducing the prior with parameter γ is equivalent to not

introducing a prior and adding a fictitious γ − 1 wins and γ − 1 losses to each edge. The

prior parameter can be chosen according to existing standards [181, 182, 183], or can be fit

275



for. Details on maximum likelihood estimation of γ are provided in the appendix. When

available, the prior parameter γ should be fit to win-loss data from a tournament that is

not the tournament of interest, but is expected to have the same underlying statistics. For

example, if the tournament of interest is a particular baseball season, then past baseball

seasons could be used to fit for γ.

Under these assumptions the estimation problem is equivalent to logistic regression,

where the outcomes are either a win or a loss, and the predictor variable is the indicator

vector ek for which pair of competitors are competing.

Given n,w, γ the win probabilities Pk are beta distributed with Pk ∼ Beta(wk+γ, nk−

wk + γ). The conditional expectation for Pk given nk, wk, γ is E[Pk|nk, wk, γ] = (wk +

γ)/(nk + 2γ). This is the win frequency of j(k) against i(k) if γ wins and losses are added

to the record.

Then, the log-odds that j(k) beats i(k), Fk, has posterior proportional to logistic(f)wk+γ

times logistic(−f)nk−wk+γ , where logistic(f) = (1 + exp(−f)) is the inverse of the logit

function. This distribution is unimodal, and its negative log is convex. The mode, or mean,

of this distribution can be used as point estimators for the log-odds. The mode and mean

are given by:

fMAP(nk, wk, γ) = logit(E[P |nk, wk, γ]) = ln

Å
wk + γ

nk + wk + γ

ã
fexp(nk, wk, γ) = E[Fk|nk, wk, γ] = ψ(wk + γ)− ψ(nk − wk + γ)

=

wk∑
w=0

1

w + γ
−

nk−wk∑
l=0

1

l + γ
.

(5.4)

where ψ(x) is the digamma function. These two estimators are asymptotically equivalent,

and fexp(nk, wk, γ) converges to fMAP(nk, wk, γ) with discrepancy order min{wk, nk−wk}.

The conditional expectation, fexp(nk, wk, γ), can be easily updated after each observed
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event. Suppose wk wins have been observed and nk − wk losses have been observed. If,

on the next event, an additional win is observed then add 1/(wk + γ) to the conditional

expectation. If a loss is observed subtract 1/(nk − wk + γ) from the expectation. This

updating scheme is self-correcting since surprising events lead to larger updates than events

that are commonly observed.

The tails of the posterior distribution of Fk decay exponentially. As f → ∞ the

posterior decays with rate equal to the number of observed losses plus the number of

fictitious losses, nk − wk + γ. Losses are evidence that Fk should be negative, thus

the posterior distribution for Fk is constrained above by observing losses. Similarly, as

f → −∞ the posterior decays with rate equal to the number of observed wins plus the

number of fictitious losses wk + γ. Wins are evidence that Fk should be positive, thus

the posterior distribution for Fk is controlled below by observing wins. It follows that the

distribution is skewed positive if more wins are observed than losses, and skewed negative

if more losses are observed than wins. As a consequence the MAP estimator is generally

more conservative than the conditional expectation.

The variance in the posterior is given by ψ(1)(wk + γ) + ψ(1)(nk −wk + γ) where ψ(1)

is the trigamma function. The trigamma function is approximately one over its argument,

thus the variance in the posterior is approximated by 1/(wk + γ) + 1/(nk − wk + γ) +

O(min(wk, nk − wK)−2). It follows that the variance is only small if both the observed

number of wins and losses is large. That said, because the tails decay exponentially at

different rates the tail behavior of the posterior distribution is not well approximated by a

Gaussian distribution, and the distribution may be highly skewed. For example, if ten wins

and no losses are observed then the posterior will have a large variance since the distribution

has a slowly decaying positive tail. Nevertheless the distribution has a rapidly decaying tail

for f < fMAP, so we can be confident that F is not much smaller than fMAP, even if we
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cannot be confident that F is not much larger than fMAP. In order to answer some questions

it may be enough to know that one of the tails of the posterior decays quickly. In that case

the variance in the posterior can provide a misleading representation of the uncertainty in

the posterior if used in isolation.

These observations about the posterior distribution can be used to introduce sample

size requirements. If we wish to estimate the log-odds to within a desired variance then

it is enough to check whether the variance in the posterior is small enough on each edge.

This effectively requires min{wk + γ, nk − wk + γ} to be larger than a threshold fixed by

the desired maximum variance. Alternatively, if we only need to estimate the sign of the

log-odds robustly then it is natural to put a lower bound on the distance from fMAP to zero

relative to the rate of decay of the inward tail, max{wk + γ, nk − wk + γ}. The desired

bounds can be set relative to the size of the expected signal (MAP estimator) when sampled

from the prior (see Appendix A). This technique could be used to choose the number of

samples in an experimental setting where the sample size can be controlled, and should be

fixed before the outcomes are observed.

To determine the accuracy and precision of these estimators suppose that the true

log-odds, f , are known. Then n outcomes are observed, of which W are wins. Then

either fMAP(n,W, γ) is computed or fexp(n,W, γ) is computed. Now the point estima-

tors are random variables whose distribution depends on the true log-odds, number of

samples observed, and prior parameter γ. The asymptotic accuracy of the estimator can

be computed by evaluating the expected error in the estimator for large n. Similarly, the

asymptotic precision of the estimator can be computed by evaluating the standard deviation

in the estimator for large n. The expected error in the MAP estimator and conditional

expectation estimator are both order n−1. This bias arises from the prior, which encourages

conservative estimates of the log-odds, and the curvature of the logit function, which
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encourages overestimates of the log-odds. For γ = 1/2 the MAP estimator is unbiased

to order n−2 and for γ = 1 the conditional expectation is unbiased to order n−2. The prior

parameter, γ, is greater than one for most of the case studies, so the point estimators are

usually expected to be conservative, with biases order n−1. The standard deviation in the

estimators are both order n−1/2. Thus both estimators are asymptotically unbiased, and

for large n the bias in the estimators is smaller than the standard deviation. It follows that

most of the error in the estimators is from uncertainty in W/n given a finite sampling size,

not the bias in the estimators. An analysis of the asymptotic accuracy and precision of the

estimators is provided in Appendix A.

The components of the HHD (rankings, transitive component, cyclic component) are

all linear functions of the edge flow (see Equation (5.2)). It follows that the expected value

of the components of the HHD are simply given by applying the HHD to fexp(n,W, γ).

Then an estimated ranking is given by sorting the competitors according to their estimated

rating. The variance in the components of the HHD can be computed directly from the

variance in the posterior for each component as follows. If X is a random variable with

covariance V and Y = AX for some matrix A then the variance in Y is AᵀVA. Since the

variance V[F |n,W, γ] is known, the variance in the posterior distribution for the rankings,

transitive flow, and cyclic flow can all be computed analytically.

Estimators for the measures can be introduced by evaluating the measures on the esti-

mated flow. By evaluating the measures on the same estimated flow used to estimate the

HHD components we maintain consistency across the analysis. An alternative option is

to sample from the posterior distribution of flows, evaluate the measures for each sampled

flows, and then form an empirical approximation to the posterior distribution for each mea-

sure. Sampling methods are discussed in Section 5.4.1. Given an empirical approximation

to the posterior distribution of each measure it is easy to calculate the expected value and
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uncertainty in the measure.

Both of these approaches to estimating the measures are biased. Let PS be an orthogo-

nal projector onto a subspace S. Then if F is a random edge flow with covariance V, then

the expected value of ||PSF ||2 is ||PSE[F ]||2+trace(PSV) (see Section 4.6.2). Since E[F ]

typically converges to the true value of f in the limit of large sample size the principal

source of error in this approximation is the second component, trace(PSV). This term is

the contribution to the expected size of the measure (squared) due to uncertainty in F . In

general, the more uncertainty there is in F , or the larger the dimension of S, the larger this

term, and the larger the bias. The measures are defined by setting S to either the range of

the gradient, or the null space of its transpose. These spaces have dimension equal to V −1

andE−(V −1). The latter number is the cyclomatic number, which is the dimension of the

cycle space of the network. If the graph is dense then V − 1 < E/2, so the cyclic subspace

is higher dimensional than the transitive subspace. Therefore, not only are both measures

biased by uncertainty in F , the cyclic measure is typically more biased than the transitive

measure. Thus it is easy to overestimate how intransitive a network is if the uncertainty in

F is moderately large, and the difference in the dimensionality of the transitive and cyclic

subspaces is not accounted for.

Here we advocate for estimating the measures by applying them directly to the esti-

mated flow, not by approximating the expected value of the measures over their posterior.

We advocate for this approach since it effectively halves the bias due to uncertainty (see

Appendix A).

Let f denote the true, but unknown, value of the log-odds. Then a sample of W wins is

observed out of n games. The estimators are functions of W that return a “best" estimate

of f given the observed win record. If the measure is evaluated on this estimator for

f then the only source of uncertainty is the uncertainty in W . Alternatively, given the
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observed win record it is possible to compute the posterior distribution of F , and therefore,

to approximate the posterior distribution for the measures. Averaging over this posterior

distribution is equivalent to computing the expected value of the measures when evaluated

on random edge flow F , where F is drawn from the posterior for the log-odds. The random

edge flow F the same expected value as the point estimator fexp(n,W, γ). However, by the

law of total variance, the variance in F is equal to the variance in fexp(n,W, γ) plus the

expected value of the variance in the posterior when W is drawn randomly. Therefore the

variance in F is strictly larger than the variance in the point estimator fexp(n,W, γ). In the

limit of a large sample size the expected variance in the posterior converges to the variance

in the expected F , thus the variance in F converges to twice the variance in the point

estimators. Approximating the measure using its posterior effectively doubles the bias due

to uncertainty.

The asymptotic equivalence of the variance in fexp and the expected variance in the

posterior means that we can estimate the size of the bias introduced to the measures due

to uncertainty. Then it is possible to compute what percent of the estimated measure is

expected to have come from uncertainty. This percent can be used as a benchmark for

whether or not the estimated value is reliable.

In total the estimation procedure consists of the following steps. First, estimate the

log-odds edge flow using Equation (5.4). Next, apply the HHD to the estimated flow and

evaluate the measures on the estimated flow. Then, compute the variance in the posterior

distribution for the flow on each edge. Using the variance in the posterior for the flow, com-

pute the variance in the estimated components and the percent of the estimated measures

that is expected to have come from uncertainty. Finally, compare the variances in each

estimated component and expected biases to desired precision and accuracy benchmarks.
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Sampling and Interval Estimation

Point estimation is only reliable if enough events have been observed on each edge so that

the variance in the posterior distribution for the flow is small. The variance in the posterior

for the flow can be used to compute the variance in the ratings, HHD components, and to

approximate the uncertainty in the measures. This approach is limited in that it does not

provide an uncertainty estimate for the rankings, nor does it provide confidence intervals

on any of the estimated quantities. Credible intervals are of particular interest since the

posterior for the flow is often highly skewed.

Sampling can be used to quantify the uncertainty in the estimated flow, HHD compo-

nents, rankings, ratings, and measures. Sampling from the posterior is straightforward, as

the win probabilities given observed win records are all beta distributed. To sample, draw

Pk ∼ Beta(wk + γ, nk − wk + γ), and set Fk = logit(Pk). Then evaluate the HHD on the

sampled flow, rank the competitors, and compute the value of the measures.

Sampling is particularly useful for quantifying the uncertainty in the rankings. The

Spearman and Kendall rank correlation of the sampled rankings provide measures of how

consistent the competitor ranking is across the posterior for the ratings.

Samples can also be used to approximate credible intervals for any of the desired

quantities. All reported credible intervals are given by finding the highest posterior density

interval (HPDI) [184] for a histogram generated by the samples. Thus the point estimators

can be complemented by interval estimation.

Sampling can also be used to estimate the posterior probability that the tournament is

transitive, and to estimate the posterior probability that the tournament is strongly transitive.

Once a set of win probabilities have been sampled we can easily test for transitivity. If the

tournament is complete then the Landau linearity index h (see Section 4.4) can be computed

analytically from the variance in the number of competitors each competitor is expected to
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beat (see 4.4.2) 3. If h = 1 then the tournament is transitive. Alternatively, if the network

is not complete then we can search for a ranking of the competitor’s that is consistent with

the sampled win probabilities. If such a ranking can be found then the network is transitive.

To check whether the network is transitive we use an iterative method to gradually build

a nominal ranking. At each step we update a nominal list of all individuals we expect

to be lower and higher ranked than each other competitor based on the assumption the

network is transitive. These lists are expanded one edge at a time until we have either found

an inconsistency, or checked every edge. Individuals are added to each list based on the

following method. Consider edge k. If pi(k)j(k) > 1/2 then i(k) must have a lower rating

than j(k). Therefore j(k) is added to the list of individuals i(k) dominates. Moreover,

since we assume the network is transitive, all individuals dominated by j(k) are added to

the list of individuals dominated by i(k), and all individuals who dominate i(k). If at some

point this process produces an inconsistency i(k) dominates j(k) and j(k) dominates i(k)

then the network is not transitive. The fraction of sampled tournaments that are transitive

approximates the posterior probability that the true tournament is transitive.

If the sampled tournament is transitive then we also check if it is strongly transitive.

If the sampled tournament is transitive then we can organize the competitors in a rank

order. This ranking is produced implicitly by our transitivity check. Once in rank order, a

tournament is strongly transitive if the matrix of win probabilities is increasing across any

row (read from left to right), and decreasing down any column (read top to bottom). This

can be easily checked. The fraction of sampled tournaments that are strongly transitive

approximates the posterior probability that the true tournament is strongly transitive.

3Incidentally, by computing h for each sample we compute an approximation to the posterior distribution
of the linearity index.
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Limitations

All of the methods described thus far have relied on a Bayesian approach to the estimation

problem. The Bayesian approach requires a prior distribution over the space of possible

models (edge flows). Without a prior the posterior distribution is not well defined. The less

data is observed the more the posterior resembles the prior, and the more the associated es-

timates resemble their expectation under the prior. Therefore, when only a small number of

events is observed, the results of the Bayesian approach depend heavily on the information

provided by the prior.

Throughout we have assumed that the win probabilities are all sampled i.i.d. from a

symmetric beta distribution with parameter γ that is fit to past events. The beta distribution

was chosen since it is the conjugate prior to the binomial. We required that the prior is

symmetric to ensure that the win probabilities are not biased by the choice of (arbitrary)

edge orientations. The win probabilities were assumed to be drawn i.i.d. so that γ could

be robustly estimated from past events, or from the tournament as a whole, and so that

the prior captures a basic model for the type of competition, not a model for competition

between a particular pair of competitors.

However, assuming independence of the win probabilities on the edges biases the

estimators for the measures since the space of perfectly cyclic tournaments is higher di-

mensional than the space of perfectly transitive tournaments. If the win probabilities are

sampled from the prior then, using Equation (4.37) , the expected value of the squared

measures are 2(V − 1)ψ(1)(γ) and 2(E − V + 1)ψ(1)(γ). Therefore, when the network

is dense, and the win probabilities are sampled from the prior, the resulting tournament is

typically more cyclic than it is transitive. Hence, when there is limited data the Bayesian

approach tends to return cyclic estimates. This bias is not an error, since under the chosen

prior most models are more cyclic than transitive. Therefore, when there is uncertainty
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in which model could have generated the observed data it is natural to give more cyclic

answers as there most of the credible models are usually more cyclic than transitive.

This sort of bias could be avoided if a different prior was used to model the win

probabilities. If the win probabilities are not assumed to be independent of each other

then some correlation structure must be assumed on the win probabilities. The choice of

correlation structure changes the expected sizes of each component when sampled from the

prior, and thus the posterior (see Section 4.6). It follows that, unless a particular correlation

structure is known ahead of time, and is a natural model for the type of competition

observed, picking a correlation structure a priori also amounts to biasing our prior estimate

of the sizes of the components. Since our goal is to compare the sizes of the components

across diverse tournaments we cannot assume a correlation structure a priori without also

implicitly making assumptions about the sizes of the components.

These biases are the principal challenge when using the Bayesian approach. The un-

certainty in the edge flow is only small if enough wins and losses are observed between

each pair of competitors. Otherwise the rare events lead to a slowly decaying tail. Then

this uncertainty biases the estimated measures, but does not bias them equally, leading

to a systematic tendency to overestimate the cyclic component relative to the transitive

component.

As it is unusual to find data sets with many wins and losses between every pair of

competitors it is important to complement the Bayesian approach with alternative statistical

approaches. In the next section a set of frequentist approaches are introduced that aim to

answer different but related questions. Instead of attempting to estimate the true values of

the measures, which requires a large amount of data, these approaches propose and test

hypotheses about the measures that require less data to test.

285



5.4.2 Frequentist Methods

An alternative approach to Bayesian estimation is to use a frequentist approach to test

hypotheses regarding the sizes of the components. A hypothesis testing approach allows us

to ask and answer different questions that require less data.

For example, suppose we observe A beat B ten out of ten games, B beat C ten out

of ten games, and C beat A ten out of ten games. Then, since we have only observed

wins on each edge the variance in the posterior for the edge flow is large, and the upper

tails of the distribution decay slowly. This means it is not possible to provide a confident

estimate of the value of the log-odds on each edge. Were the win probabilities 90 percent

(log-odds 2.19), 99 percent (log-odds 4.60), or 99.9 percent (log-odds 6.91)? Moreover,

since we cannot estimate the value of the log-odds we cannot estimate the size of the cyclic

component. That said, we should be able to put a lower bound on the log-odds confidently,

since the lower tail of the posterior is decaying quickly. These lower bounds should make

clear that F is positive on each edge, thus competition is intransitive, with cyclic component

much larger than the transitive component. So, even if we cannot robustly estimate the sizes

of the components, we may be able to bound them.

This observation motivates the following two sections. First we develop tools to test

the hypotheses:

1. Ht: The tournament is perfectly transitive.

2. Hc: The network is perfectly cyclic.

Then we extend these tools to give estimated lower bounds on the sizes of the components.
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Hypothesis Testing

If f is a particular log-odds edge flow, then the log-likelihood of having observed w wins

given n games can be computed analytically. Similarly, the maximum log-likelihood over

all log-odds edge flows is given by setting the win probabilities pk to the observed win

frequency wk/nk, and then computing the probability of sampling Wk = wk wins. The

corresponding log-odds, fk = logit(wk/nk), is the MLE edge flow. The corresponding

log-likelihoods are given below:

ln(L(f |w, n)) =
E∑
k=1

ln

Ç
nk

wk

å
− wk ln(1 + exp(−fk))− (nk − wk) ln(1 + exp(fk)).

ln(L(fMLE|w, n)) =
E∑
k=1

ln

Ç
nk

wk

å
+ wk ln

Å
wk
nk

ã
+ (nk − wk) ln

Å
nk − wk
nk

ã
(5.5)

Therefore the log-likelihood ratio is:

λ(f |w, n) = −2(ln(L(f |w, n))− ln(L(fMLE|w, n)))

= 2
E∑
k=1

nkDKL (wk/nk||logistic(fk))
(5.6)

where DKL(p||q) is the KL divergence [185] between the distributions p, 1−p and q, 1−q.

Therefore the difference in the log-likelihoods is a weighted sum of the KL divergence

between the observed win frequencies and the predicted win frequencies given model f .

Edges with more events are weighted more heavily in the sum. Replacing the likelihood

with the posterior in any of these expression simply requires adding γ to wk and 2γ to nk.

The test statistic λ(f |w, n) is nonnegative, is large when there is a large discrepancy

between the data and the proposed model f , and is asymptotically χ2 distributed with E
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degrees of freedom [186]. The likelihood ratio is chosen since it is the standard test statistic

for logistic regression [187, 188]. The hypothesis F = f is rejected if the test statistic

λ(f |w, n) is too large.

The lower boundary for rejection can be determined by computing the probability of

sampling a win record W given win probabilities p = logit(f), such that λ(f |W,n) ≥

λ(f |w, n). To approximate the probability of sampling a win record W with a larger test

statistic we repeatedly sampleWk from the binomial distribution with nk events and success

probability logit(fk). For each sampled win record we compute the test statistic λ(f |W,n).

Then we compute the fraction of sampled win records which have a larger test statistic than

λ(f |w, n). If this fraction is less than a significance level α then the model is rejected. The

number of samples drawn should be chosen based on the desired significance level. If the

number of samples is chosen so that the standard deviation in the fraction of samples with

larger test statistic is at least k times smaller than α then on the order of k2/α samples

should be drawn. We use α = 0.05 throughout so the probability of false rejection is five

percent. A smaller α could be chosen when more data is available.

Other test statistics can be used to evaluate the plausibility of the model f given the

data. One natural choice is the Akaike Information Criterion (AIC) difference, between

the proposed model, f , and the maximum likelihood model. This is equal to the log-

likelihood difference λ minus 2E [189]. Subtracting off 2E accounts for the fact that the

MLE estimate has E degrees of freedom that can be used to maximize the log-likelihood.

The AIC is typically positive when the proposed model f is underfit, and negative when it

is overfit. Using the AIC as a test statistic gives the same results as using the log-likelihood

ratio since the two statistics only differ by a constant that depends on the hypothesis.

Another alternative is to use the log-likelihood of f itself as the test-statistic. This

approach is appealing since it is equivalent to using the likelihood of the sample itself as
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the test-statistic, and is thus equivalent to the standard p-test.

A final alternative is to start by computing a p-value for each edge. This is straightfor-

ward since the number of wins on each edge is binomially distributed given f and n. Then

it is possible to compute the probability of sampling a number of wins that is equally or less

likely than the actual number of wins observed on the edge. Performing this calculation

produces a p-value for each edge. If f is the true log-odds then each of these p-values

are independent samples from a uniform distribution. Thus the set of p-values should

be distributed evenly between zero and one. To test whether the set of p-values could

plausibly be E independent samples from a uniform distribution we use the Kolmogorov-

Smirnov test [190, 191, 192]. The Kolmogorov-Smirnov test uses the supremum of the

absolute difference between the empirical cdf corresponding to the observed p-values, and

the cdf of the uniform distribution, as a test statistic. The set of p-values can be rejected

if this distance is too large. The lower boundary for rejection is determined by finding the

probability of sampling E independent uniform random variables whose empirical cdf has

a larger test statistic than the set of p-values.

This last test will reject models that are either underfit or overfit, as an excess of overly

small p-values or overly large p-values will lead to rejection. In general we only want to

reject underfit models, but want to be aware if the proposed model appears to be overfit. To

this end, a one-sided Kolmogorov-Smirnoff test can be used instead. In the one sided test

the test statistic is the supremum of the raw difference, not the absolute difference, between

the empirical cdf and the cdf of the uniform distribution. This test statistic is only large

if there are too many small p-values. The model is rejected if the one-sided test statistic

is implausibly large. An advantage of this test is that we can identify which edges lead to

rejection by finding the edges with the smallest p-values. Another advantage of this test

is that the infimum of the raw difference in the empirical cdf and the cdf of the uniform
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distribution can be computed, and used as an indicator of overfitting. If the infimum is

excessively large then the proposed model is an implausibly good fit to the data, so is likely

overfit. As usual, what is “too large" is defined relative to the cdf of the test statistic when

sampled from the uniform distribution.

In this chapter we will use the log-likelihood ratio as our test statistic in order to decide

whether to accept or reject a model. However, the other test statistics will be computed to

help evaluate the plausibility of the model given the data, whether it is over or under fit,

and which edges are worst and best fit by the model.

The methods described above can be used to accept or reject a particular edge flow f .

Our objective is to extend these tests to the composite hypotheses Ht and Hc. Both Ht and

Hc assume that the true f lies in a subspace of RE . The transitive hypothesis Ht assumes

that f ∈ range(G). The cyclic hypothesis assumes that f ∈ null(Gᵀ). To test Ht and Hc

we apply the log-likelihood test to the maximum likelihood estimate f constrained to the

appropriate subspace [193].

To find the maximum likelihood estimate for f constrained to a subspace we use a nu-

merical optimizer to minimize the negative log-likelihood. The negative log-likelihood is a

convex function, so minimizing the log-likelihood over a subspace is a convex optimization

problem. Note that the constrained MAP estimator is given by minimizing the same cost

function with γ added to the win record and 2γ to the event count on each edge. Let S

be a subspace. Then a good initial guess for the MLE estimate of f constrained by the

subspace is given by minimizing a quadratic approximation to the negative log-likelihood.

The quadratic approximation to the negative log-likelihood about fMLE is:

− ln(L(f |w, n)) ' − ln(L(fMLE|w, n)) +
1

2

E∑
k=1

wk(nk − wk)
nk

(f − fMLE)2
k (5.7)
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Thus an initial guess at the MLE edge-flow constrained to a subspace S can be given by

solving a least-squares problem on the subspace. For example, suppose S is the perfectly

transitive subspace, range(G). Then an initial guess at the MLE edge-flow constrained to

range(G) is given by solving for the ratings r which minimizes
∑E

k=1
wk(nk−wk)

nk
((rj(k) −

ri(k))−logit(wk/nk))2, then setting f = Gr. Note that this approximation to the MLE edge

flow is equivalent to a log-least squares rating where the the squared discrepancy on each

edge is weighted by wk(nk − wk)/nk instead of the standard weighting, nk. Least squares

ratings are widely used, for examples see [96, 128, 129, 126, 127, 123, 130, 131, 132].

Therefore, for the right choice of weights and edge-flow, standard least squares approaches

can be considered approximations to the MLE ratings.

It follows that, when fMLE is close to the perfectly transitive subspace then the quadratic

approximation to the MLE ratings only differ from the Hodge rating (see equation 5.3) by

the weighting on each edge. The approximate MLE ratings weight each edge by the asymp-

totic approximation to one over the variance in the posterior when using a uniform prior.

Therefore the quadratic function minimized is equivalent to the Wald test statistic [187].

Under the quadratic approximation to the log-likelihood, the test statistic λ converges to

the Wald test statistic, and minimizing negative log-likelihood amounts to minimizing the

Wald statistic.

The Hodge ratings do not weight the discrepancy on each edge by the variance in

the posterior on each edge since the Hodge rating system does not assume that the true

tournament is perfectly transitive. Using the Hodge approach discrepancies in Gr and the

edge-flow are assumed to come from the cyclic component, not sampling error, so are not

re-weighted by a variance.

So, to find the MLE estimators for the edge-flow constrained to a subspace we first solve

for fMLE = logit(w/n), then minimize the quadratic approximation to the log-likelihood

291



restricted to the subspace. This is a least squares problem so can be solved efficiently. Then

the least squares approximant is used as an initial guess at the constrained MLE estimate

and a numerical optimizer is used to find a solve for the constrained MLE estimate.

Once the constrained MLE estimate is found any of the test statistics can be evaluated

on the constrained estimate. Note that the when using the AIC for a composite hypothesis

we subtract E − |S| from λ where |S| is the dimension of the subspace S. Therefore, for

the transitive hypothesis we subtract the dimension of the cycle space, E − (V − 1), and

for the cyclic hypothesis we subtract the dimension of the perfectly transitive subspace, V .

Similarly, when comparing λ to its asymptotic χ2 distribution, the χ2 distribution should

have degrees of freedom equal to to the dimension of the cycle space and transitive space

respectively. Then the hypothesis f ∈ S is rejected if the test statistic is too large, where

the lower bound for rejection is fixed by the chosen significance level.

Note that this hypothesis testing framework is equivalent to the likelihood-ratio test

widely used in logistic regression. In fact, if we let the predictor variable for a given

competition event be i(k) and j(k), then the MLE ratings under the perfectly transitive hy-

pothesis are equivalent to the regression coefficients in a logistic regression of the observed

win record against the predictor.

Bounds on Measures

The hypothesis testing framework developed above can be extended to find bounds on

the sizes of the components. Note that the primary advantage of the hypothesis testing

approach is that a hypothesis is accepted if the maximum likelihood estimate constrained

by the hypothesis could have credibly generated the observed data. Even if most credible

models have a larger cyclic part than transitive part, if a model can be found with a small

cyclic part that is accepted under the hypothesis test, then we cannot reject the hypothesis
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that the cyclic part is at least that small. Thus, by using a hypothesis testing approach, biases

associated with the differing dimension of the perfectly cyclic and transitive subspaces

can be avoided. The Bayesian point and interval estimators depend on how most credible

models behave, rather than if there is at least one credible model with a given behavior.

Let Ht≤T , Ht=T and Ht≥T correspond to the hypotheses that ||ft||2≤ T, ||ft||2= T and

||ft||2≥ T respectively. LetHc≤C , Hc=C andHc≥C correspond to the equivalent hypotheses

on ||fc||2. These hypotheses can be tested in almost exactly the same manner as described

in the previous section. The regions defined by setting an upper bound on one of the

components are convex regions, while the regions defined by putting a lower bound on

the components are the union of two convex regions. Lastly, setting one of the measures

equal to a fixed value specifes an affine subspace in RE , which is a convex set. Therefore

solving for the maximum likelihood estimate constrained by putting a bound on the size of

a component is a convex optimization problem.

Once the maximum likelihood estimate has been found, subject to the appropriate

constraint, the hypothesis is either accepted or rejected by evaluating the p-value associated

with the chosen test statistics. A bisection search can be used to find the value for the bound

which separates hypotheses that are accepted and that are rejected.

For example, suppose we wanted to find the smallest C such that the hypothesis Hc≤C

is accepted. Start by finding an upper C = b such that the hypothesis is accepted, and

a lower C = a such that the hypothesis is rejected. Then set C = (b − a)/2, find the

maximum likelihood estimate for f constrained to ||fc||2≤ C, evaluate the test-statistic

on the estimate, and the p-value of that test statistic. If the p-value is above the desired

significance accept the hypothesis and let b = C. Otherwise, reject the hypothesis and let

a = C. This process can be accelerated at convergence by using a secant search instead of

a bisection.
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Using this technique we can find the smallest upper bound on the cyclic part that is

credible, and the largest lower bound that is credible. Similarly we can find the smallest

upper bound on the transitive part, and largest lower bound that is credible.

5.5 Elections

5.5.1 Motivation

Elections are an important example of competitive systems. In an election the votes cast,

or opinions formed, by each voter may be interpreted as the outcome of a competitive

event between the candidates or parties. Social choice theorists have repeatedly raised

warnings about the possibility of voting paradoxes in which the “will of the majority" is

ambiguous or ill-defined [194, 195, 98]. While some of these paradoxes may be of little

importance to real elections, others have impacted observed election results (cf. [196]).

For example, during the 2016 Republican primary repeated polls showed that Donald

Trump held a plurality of the primary voters, but would have lost a head-to-head election

against either Ted Cruz or Marco Rubio [197]. This is an example of the Borda paradox

[98, 197], in which a candidate who would lose in a head-to-head election against some

opponents beats those opponents with a plurality if the opponents split the same portion of

the electorate. Concern about voting paradoxes is largely attributed to Arrow [194], who

showed that no ranked voting system can simultaneously satisfy three fairness criteria.

Arrow’s impossibility theorem is widely interpreted as showing that there is no universally

fair method for picking a winner in an election, and is closely related to the Gibbard-

Satterthwaite theorem [198], which demonstrates that there is no electoral system which

is not susceptible to tactical voting [199, 200]. These paradoxes undermine the ideal

294



that election outcomes should reflect majority opinion [196]. It is important to note that

Arrow’s theorem does not imply that all election systems will fail to fairly pick a winner,

only that for all election systems there exist some situations in which those systems fail.

Election systems fail Arrow’s fairness criteria when aggregate voter opinions involving the

top candidates are cyclic [176]. This situation is an example of Condorcet’s paradox.

Condorcet’s paradox occurs when there is no Condorcet winner - a candidate who

would defeat any other candidate in a head-to-head election [98]. If there is no Condorcet

winner, then for any winner there is an opponent that a majority of the electorate prefers.

This paradox arises when individual voter preferences lead to cyclic aggregate preferences

among the leading candidates [98]. Consider an election among three candidates (A, B,

and C) with three voters. If the first voter prefers A to B to C, the second prefers B to

C to A, and the third C to A to B, then A would win a head-to-head election against B,

B would win a head-to-head election against C, and C would win a head-to-head election

against A [196]. Voter cycles have been observed in a number historical case studies.

These include: voting in the House of Representatives and Senate on the annexation of

Texas [168] and the subsequent status (free or slave) of land gained after the Mexican-

American war [98, 169], voting on revenue bills in the House of Representatives in 1932

[167], voting in the Canadian parliament on abortion reform in 1988 [166], and public

opinion on intervention in Kuwait preceding the Gulf War [165]. In each of the legislative

examples the presence of a voting cycle meant that the legislative outcomes were largely

dictated by the voting agenda, often yielding significant influence to those with the power

to set the agenda [168], or resulting in a gridlock which preserved the status quo [166]. An

extensive review of similar case studies is provided by [98].

Despite these examples the broader empirical relevance of Condorcet’s paradox is con-

troversial [196, 172, 170, 176]. The relevance of case-studies is contested as they often
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rely on reconstructed voter preferences (cf. [169, 178]) that may be debated [201], and, at

best, provide anecdotal evidence of the paradox [170]. Consequently, a number of authors

have attempted to evaluate the frequency of voting cycles among large electorates using

empirical preference data [196, 170, 175, 202, 176]. Combined, these studies indicate that

Condorcet’s paradox rarely occurs in large electorates, with most studies finding few if any

cycles. Van Deemen [202] and Gehrlein [173] tabulate the outcome of every empirical

search for Condorcet’s paradox. They find that roughly ten percent of the studied elections

(25 out of 265) exhibit the paradox [176], and that the paradox occurs more frequently in

small electorates than large electorates.

This observation is in apparently stark contrast to axiomatic social choice theory, which

emphasizes the “impossibility" of aggregating voter opinion. In particular, classical cal-

culations and in-silico experiments indicate that either the more candidates, or the more

voters, the higher the chance of cycles [203]. Since cycles are rarely observed in large

elections the theory been criticized for overstating the prevalence of cycles [204, 171].

That said, there is extensive theory to explain why and when cycles are not expected to

occur. Under certain domain restrictions on voter preferences it is possible to guarantee

that aggregate voter preferences are transitive [195, 205]. For example, if the choices in an

election can be arranged on a single axis, and all voter preferences are single peaked then

the aggregate preferences are necessarily transitive and the Condorcet winner is the favorite

of the median voter [195]. These domain restrictions are frequently violated in empirical

studies so do not constitute a plausible explanation for the infrequency of cycles [172, 171].

An alternate body of theory considers the probability of observing cycles under spec-

ified assumptions about the distribution of voter preferences. These assumptions define

a “culture". The classic observation that the probability of cycles increases with addi-

tional voters is based on assuming an impartial culture in which all voter preferences are
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equally likely. In an impartial culture voter preferences are highly heterogeneous, which

makes aggregation difficult. Under more realistic assumptions, voter preferences are more

homogeneous and mutually correlated, which makes aggregation easier and reduces the

chance of observing cycles [204]. Thus the primary distinction between existing theory

and observed elections is mainly a matter of emphasis. Theory emphasizes the possibility

of worst case scenarios. Empirical studies show that, while cycles can, and do, appear in

influential elections (cf. [177]), they do so infrequently, especially in large electorates. The

rarity of cycles in large elections does not necessarily violate theory, rather it reflects the

distinction between in-silico voters and real voters. What is needed to advance the theory

is an understanding of the distribution of voter preferences in real elections [204, 206], and

a measure of heterogeneity in voter opinion which can be related to an expected prevalence

of cycles.

The HHD is a natural analytic framework for answering the questions raised by this

discussion. First, cycles play an essential role in social choice theory, and have been the

subject of protracted debate, so a decomposition which isolates cyclic preferences could

be useful. Second, most real elections are transitive, which begs the question, are most

real elections transitive because aggregate voter opinion is described by a predictive rating

system, or simply because any cyclic component of voter preferences is small relative to

the transitive part? Demonstrating the former would indicate that voter preferences satisfy

surprisingly strong assumptions. Demonstrating the latter would show that aggregate voter

opinion is mostly described by a predictive rating, but variation in voter opinions leads to a

latent cyclic component that is usually hidden by a larger transitive component. Detecting

and characterizing the size of this component would quantify how close aggregate voter

opinions are to perfect transitivity, and how large the intransitive inconsistencies in voter

opinion are. The larger the cyclic component the more likely intransitivity, and, as a
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consequence, voting paradoxes. Moreover, in Chapter 4 we demonstrated that, the expected

size of the cyclic and transitive components are related to the correlation in the log-odds

that competitor A beats B with the log-odds that competitor A beats C. This correlation

is a measure of how consistent voter preferences are, so could be used as a metric for the

homogeneity of opinion in an electorate. Therefore we apply the HHD to election data

in order to: 1. identify any cyclic preferences in voter opinion, 2. quantify and compare

the sizes of the cyclic and transitive parts, 3. relate the size of the cyclic component to

statistical assumptions about the electorate, 4. test the hypothesis that aggregate voter

opinion is perfectly transitive and any observed cyclic part is a result of sampling error.

5.5.2 Data

In this chapter we consider data drawn from three different election systems. The examples

considered are: eight Danish parliamentary elections ranging from 1973 to 2005, four

Dutch parliamentary elections ranging from 1982 to 1994, and 12 American presidential

elections ranging from 1968 to 2020. The Danish examples are based on work by Kurrild-

Klitgaard [196] and the Dutch examples are based on work by van Deemen [202]. The

American examples are inspired by two studies [207, 208] which examined the 1968,

1972, 1976, 1980, and 1992 elections. We go beyond these examples to consider modern

Presidential elections. All data on the American presidential elections was drawn from the

American National Election Study (ANES). All of the data sets used involved over 1000

poll respondents.

A standard challenge when searching for cycles in voting preferences is a lack of

appropriate polling. To test for Condorcet’s paradox, or intransitivity in general, the in-

vestigator must be able to predict the outcome of a head-to-head election between any pair

of candidates. This requires asking poll respondents to either rank or rate the candidates
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[197]. This sort of polling is rarely performed [172, 196]. For example, in the 2016

Republican primary only five major published polls provided head-to-head comparisons

between the candidates, and only two provided head-to-head comparisons between more

than the leading candidate and runner-ups [197]. While rare, workable polling data exists

for certain elections. A number of national election surveys ask poll respondents to rate

candidates, or parties, and those ratings can be used to estimate the preference order of each

poll respondent (cf. [196]). For example, since 1968 the ANES has asked poll respondents

to rate important political figures from 0 to 100 on a “feeling thermometer". ANES data

is easily accessible and has been used in other social choice studies [207, 208, 204]. We

assume that if a respondent rated candidate A over B (with a sufficient margin) that the

respondent preferred A to B. This technique is widely used in social choice literature,

particularly in empirical studies of large electorates.

In our study of Dutch and Danish elections we use the published preference matrices

in [202] and [196]. Depending on the year these elections involve nine to thirteen parties,

and average over a thousand responses per pair. Danish and Dutch parliamentary elections

are particularly interesting election systems as both involve many parties, which fracture

the electorate, thereby introducing more possibilities for inconsistency in aggregated voter

preferences. In our study of American elections we use the published preference matrices

provided by [207] and [208] (1968, 1972, 1976, 1980, 1984, 1992), and use ANES data

to form preference matrices for elections in 1988, 1996, 2000, 2008, 2016, and 2019. We

also use the ANES data to validate our procedure for building preference matrices from

thermometer polling against the preference matrices published in [207] and [208]. These

preference matrices typically involve the two major party candidates, any major third party

candidates, and important challengers to either of the major party candidates. The ANES

data includes polls performed both before and after the election, so for elections studied
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using ANES data we consider voter opinion before and after the election. The ANES

data also includes pilot studies run before the primaries are complete. We use data from

the ANES pilots in 2016 and 2019 to study competition among the primary candidates

in the Republican party in 2016, and Democratic party in 2019. Combining these polls

can give different snapshots of the a single election. For example, in 2016 we consider the

public opinion regarding the major candidates in the Republican party, public opinion about

Donald Trump, Hillary Clinton, and Bernie Sanders preceding the election, and public

opinion regarding Donald Trump, Hillary Clinton, Jill Stein, and Gary Johnson before and

after the election. As in the European examples these data sets contain, on average, over a

thousand responses per pair of candidates.

In order to treat the poll results using the HHD we need to define what is meant

by a competition event. Here we define a competition event between candidates A and

B to be the opinion of a single, randomly chosen, voter regarding A and B, and say

that A beats B if the randomly chosen voter prefers A to B. We assume that, for the

population sampled, there is some probability that a randomly chosen voter will prefer A

to B, so that the actual number of voters sampled who preferred A to B is a realization of

a binomial random variable with unknown win probability. An alternative approach would

be to consider the election as a competition event, rather than the opinion of a randomly

chosen individual, however this would require modelling head-to-head elections which do

not take place in most of the systems considered. Election rules are often idiosyncratic,

as in American presidential elections, so modelling competition at the level of the election

may not accurately reflect the underlying opinions of the electorate, and would require

methods tailored to each system separately.
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5.5.3 Results

Transitivity and Hypothesis Testing

All examples studied were transitive. That is, for every example there existed a ranking of

the candidates such that, ifA ranked higher thanB, then more poll respondents preferredA

toB in a head-to-head comparison. Therefore Condorcet’s paradox was not observed in the

aggregate voter preferences in any of the 24 elections considered. Moreover, the posterior

probability that each example was drawn from a set of underlying win probabilities that

were transitive was greater than 0.775 (2019 pilot study) for all elections, and averaged

0.94, 0.94, and 0.98 for the Danish, Dutch, and American elections respectively. This mo-

tivates testing the stronger hypothesis that aggregate voter opinion was not only transitive,

but perfectly transitive, in each of the 24 elections. If we can reject the hypothesis that

aggregate voter opinion is perfectly transitive then there exists latent cyclic structure in

the electorate’s preferences. The larger this component the less accurately the electorate’s

preferences can be predicted by assigning a rating (popularity) to each candidate/party.

This reflects heterogeneity in preference across individuals, thus the potential for voting

paradoxes in future elections.

The perfectly transitive hypothesis Ht is rejected with high confidence in all 4 Dutch

elections and all 8 Danish elections. The perfectly transitive hypothesis is rejected in

approximately half of the American elections, often with much less confidence than in the

Dutch or Danish elections. A summary of the test statistics is provided in Table 5.1. Note

that for all Danish and Dutch elections the difference in AIC between the MLE model and

the MLE model under the perfectly transitive hypothesis is positive and large (order 102).

This indicates that the MLE model under the transitive hypothesis is much less likely than

the MLE model, and that it is unlikely that the difference in likelihood is accounted for by
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overfitting of the unconstrained MLE model. The sample p-values (probability that, if the

MLE estimate win probabilities given the perfectly transitive hypothesis were the true win

probabilities, we would sample a win record more or equally as unlikely as the actual win

record) for all of the Danish and Dutch elections are less than 10−3. In contrast, for most of

the American elections the AIC difference is small, and occasionally is negative, indicating

that the unconstrained MLE model might be overfit. Similarly, the sample p-values are

relatively large, indicating that the perfectly transitive hypothesis is more plausible for the

American elections. The hypothesis is accepted in 1968, 1984, 1988, 1992, 2000, and

2016, and is rejected in 1972, 1976, 1980, 1996, and 2008. Notice that the years with a

large sample p-value match the years with a small AIC difference and small log likelihood

ratio. Also note that in 1984 and 2000 the hypothesis is accepted with a marginal sample

p-value, and in 1976, 1980, and 2008 the hypothesis is rejected with relatively large sample

p-values. The results provided in the table are only for post election polls.

Therefore, the Danish and Dutch examples clearly are not perfectly transitive, while

American elections are close to perfectly transitive, and may be perfectly transitive in

certain years. It is possible that American elections are close to, but not perfectly transitive,

and the sample size of the polls was not large enough to reject the hypothesis. Alternatively

it is possible that voter preferences were perfectly transitive in some years, and not others.

Pre-election polling results are not reported here, but have similarly mixed results, often

matching the results in the corresponding post election poll. In 1980 the pre-election poll

results are noticeably different than the post election poll results. Early in the election

Carter was favored over Reagan by a small margin [207], and the perfectly transitive

hypothesis is accepted with sample p-value 0.35. For the 1968, 1980, and 1992 election

Abramson [207] provides additional preference matrices that include preferences of only

respondents who planned on voting, and validated voters. When controlling for voting
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intention the test statistics change (pre-election 1980 sample p-values are 0.35, 0.28, 0.19

for all respondents, respondents who planned on voting, and voters respectively) but not

enough to change the conclusions of the hypothesis test. Pilot study and pre-election

data was also considered for the 2000, 2016, and 2020 elections. The 2000 pre-election

survey considered Al Gore, George Bush, Ralph Nader, John McCain, and Bill Bradley,

the 2016 pilot considered Jeb Bush, Donald Trump, Ben Carson, Marco Rubio, Ted Cruz,

Carly Fiorina, Hillary Clinton, and Bernie Sanders, and the 2019 pilot considered Donald

Trump, Joe Biden, Bernie Sanders, Elizabeth Warren, Pete Buttigieg, and Kamala Harris.

We reject the perfectly transitive hypothesis with sample p-value 0.004 for the 2000 pre-

election survey. We accept the perfectly transitive hypothesis with sample p-value 0.876

for the 2016 Republican primary, but reject the perfectly transitive hypothesis with sample

p-value less than 10−3 for the 2016 pilot if Sanders and Clinton are considered. Similarly,

we accept the perfectly transitive hypothesis for the 2019 Democratic primary with sample

p-value 0.577, but reject the perfectly transitive hypothesis with sample p-value less than

10−3 if Donald Trump is included in the preference matrices. So, despite the relatively

large number of candidates in the 2016 Republican primary, and 2020 Democratic primary,

aggregate voter opinion between the primary candidates was plausibly perfectly transitive,

but voter opinion across parties is not perfectly transitive. This indicates that what makes

a candidate popular within a party differs from what makes a candidate popular when

competing against candidates from other parties, perhaps because voter opinion within a

party is more homogeneous than voter opinion across parties, or because voter preference

regarding similar candidates depend on different criteria than voter preference regarding

disparate candidates.

Taken together these results suggest that voter preferences are close to perfectly transi-

tive in most American presidential elections, are closer in primaries, and that how close

304



Figure 5.3: Comparison of observed win frequencies per edge (fraction of poll respondents
who prefer A to B) against predicted win frequencies under the MLE model (blue circles),
MLE model satisfying Ht (gold diamonds), and MLE model satisfying Hc (red squares).
The left panel represents the 2005 Danish election and the right panel represents the 2016
Republican primary. The left panel is representative of the 12 Danish and Dutch elections,
while the right panel is representative of the American elections which are plausibly
perfectly transitive. Each scatter point represents an individual edge (pair of competitors),
and the vertical distance of the scatter point from the black diagonal is the discrepancy
between the predicted win frequency (under the model) to the observed win frequency.

voter preference is to perfectly transitive depends principally on which candidates are

considered, not whether the poll respondents are restricted by voting behavior. They also

indicate that the plausibility of the perfectly transitive hypothesis does not change signifi-

cantly between pre and post election surveys except in elections for which a candidate’s

popularity changed dramatically over the course of the election (Carter and Reagan in

1980).

In contrast, for all of the elections studied we reject the hypothesis that the election is

perfectly cyclic with high confidence (sample p-value less than 10−3). In every election

considered the perfectly cyclic hypothesis has notably large test statistics, and a small

sample p-value. Figure 5.3 compares the observed win frequencies on each edge (fraction
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of poll respondents who prefer A to B) to the predicted win frequencies using the MLE

model, MLE model under the perfectly transitive hypothesis, and MLE model under the

perfectly cyclic hypothesis. The left panel is for the 2005 Danish parliamentary election,

and the right panel is for the 2016 Republican primary. These two examples are chosen

as the left panel is representative of the Danish and Dutch elections, while the right panel

is representative of the American elections that are plausibly perfectly transitive. Blue

circles are the MLE model, gold diamonds represent the MLE model under the perfectly

transitive hypothesis, and red squares represent the MLE model under the perfectly cyclic

hypothesis. Note the marked disparity between the observed win frequencies and the win

frequencies predicted using the MLE model with the perfectly cyclic hypothesis. Note that

in both panels the MLE model under the perfectly transitive hypothesis gives a good, but not

perfect match to the data. The distance from the black diagonal is the discrepancy between

the data and the model. Note that this discrepancy is much more pronounced in the Danish

election example than in the Republican primary. In the former case the discrepancy is too

large to be plausibly explained by sampling error, while in the latter case the discrepancies

are small, and could be the result of sampling error.

The fact that all of the elections are transitive, yet few are plausibly perfectly transitive,

and in all cases the perfectly transitive hypothesis outperforms the perfectly cyclic hypoth-

esis suggests that the elections likely have a small, but nonzero, cyclic component. The

cyclic component accounts for the discrepancies between the predicted “win frequencies"

(fraction of respondents who preferred A to B) given the MLE model under the perfectly

transitive hypothesis and the observed win frequencies that cannot be plausibly explained

as sampling error. Since we expect the cyclic component to account for the discrep-

ancies between the observed win frequencies, and the predicted win frequencies under

the perfectly transitive hypothesis, we identify the edges (pairs of competitors) for which
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the observed preferences are the least likely given the preferences predicted by the MLE

estimate under the perfectly transitive hypothesis. For each edge we compute a two-sided

p-value (probability on the given edge of sampling preferences more or equally unlikely as

the actual preferences had the MLE model under the perfectly transitive hypothesis been

the truth), and rank the edges in increasing order. Next, to estimate the cyclic component

and transitive component of the aggregate preferences we apply the HHD to the estimated

log-odds that a randomly sampled voter would have preferred candidate A to candidate B

across all pairs of candidates. As an example, Figure 5.4 shows the predicted win frequency

and observed win frequency for the ten pairs of parties with the smallest p-values for the

Danish parliamentary election of 1973.

The HHD: Ratings

To estimate the cyclic component and transitive component of the aggregate preferences,

we apply the HHD to the estimated log-odds that a randomly sampled voter would have

preferred candidate A to candidate B across all pairs of candidates. This produces a rating

and ranking of the candidates/parties in the election, and a pair of edge flows, one which is

perfectly transitive and one which is perfectly cyclic.

In general, the rankings produced by applying the HHD to the estimated edge flow

matched the outcomes of the elections. Out of all 28 preference matrices considered for the

12 American Presidential elections the candidate ranked first using the estimated ratings

matched the winner of the election in all but 6 cases (1980 pre-election, 2000 pre-election,

and all four preference matrices considered for 2016). Moreover, in all but 4 cases (2008, all

three preference matrices considered in 2016 that involve the general election) the top two

candidates were the Republican and Democratic nominees. When the HHD is applied to

the pre-election 1980 preference data (not accounting for voting intention) Carter is ranked
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Figure 5.4: Comparison of observed win frequencies (yellow bars) against predicted win
frequencies under MLE model satisfying Ht (blue bars) for the ten edges with the largest
discrepancy between prediction and observation. The error bars represent the range of
observed win frequencies that could have plausibly been observed had the blue bars
represented the actual win probabilities. The inner pair of error bars represent the 50
percent confidence interval, and the outer pair represent the 95 percent confidence interval,
on the sampled win frequency had the perfectly transitive model been the truth. Notice
that the observed win frequencies fall outside the 95 percent confidence interval on all ten
edges.

ahead of Reagan. This matches the trajectory of the election as described by [207]. Carter

held a slight polling advantage at the start of the election, but rapidly lost popularity over

the course of the election, culminating in his defeat in November. In the 2000 pre-election

survey John McCain is ranked first, followed by Al Gore, and then George H.W. Bush.

John McCain won the second most delegates in the 2000 primary, and ran as a moderate

candidate. Thus it is not be surprising that he was preferred by a set of poll respondents

who included both Republicans and Democrats. The 2000 post-election survey ranks Bush

ahead of Gore ahead of Nader. Moreover, the estimated ratings using both the pre and post

election surveys are remarkably close. Before the election the estimated ratings for Bush

and Gore are 0.003± 0.01 and 0.068± 0.01, and after the election the estimated ratings are
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0.076 ± 0.01 and 0.066 ± 0.01. This leads to considerable uncertainty in the posterior

distribution for the rank ordering of Bush and Gore. Once McCain is removed from

consideration the Spearman and Kendall rank correlation coefficients for the 2000 election

are only 0.70 and 0.78, the smallest seen across all 28 elections considered excluding 2016.

This uncertainty reflects the historically close outcome of the 2000 election.

The 2016 election is particularly notable in how starkly the estimated rankings differ

from the election results. Remarkably, Donald Trump is the lowest rated candidate using

the estimated edge flow no matter the data source (pilot, pre, or post election data), and

no matter the combination of candidates considered (Republican primary candidates, Re-

publican primary candidates plus Hillary Clinton and Bernie Sanders, or general election

candidates Hillary Clinton, Donald Trump, Gary Johnson, and Jill Stein). In all cases

Trump is the Condorcet loser - a candidate who would lose a majority head-to-head election

against any other candidate - in both the Republican primary, and the general election

surveys. This confirms polling results reported in [197], in which it was argued that Trump

would have lost a head-to-head election against Marco Rubio or Ted Cruz, despite winning

a plurality of the vote. As for McCain, it should be noted that the polling respondents

include members of both parties, so the primary results reflect national opinions of the

Republican candidates rather than Republican opinion. Therefore it is possible that Trump

is ranked last among the Republican primary candidates due to his unpopularity among

Democrats. It should also be noted that the Spearman and Kendall rank correlations are

very small in this case (0.27 and 0.22 respectively), indicating that there is considerable

uncertainty in this rank order. Notably the Condorcet winner, and highest ranked candidate,

when considering all candidates included in the pilot study is Bernie Sanders, followed

by Marco Rubio. Hillary Clinton is ranked fourth in the pilot study. The pre and post

election surveys only considered the two major party nominees, along with major third
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party candidates Jill Stein and Gary Johnson. In both pre and post election surveys Gary

Johnson is the Condorcet winner and highest ranked candidate, followed by Jill Stein, then

Hillary Clinton, then Donald Trump. Of all 12 American elections considered 2016 is

the only year in which a third party candidate is ranked first, and is the only year in which

third party candidates are not the lowest ranked of all candidates (Wallace, Anderson, Perot

and Nader all clearly rank behind the major party candidates). The only other election in

which the Democratic and Republican nominees are not ranked first and second is 2008,

because Hillary Clinton is ranked ahead of John McCain. In both pre and post election

surveys the Kendall and Spearman rank correlations are relatively large (0.92, 0.94, 0.95,

and 0.97) so the reversal in rank order cannot be attributed to uncertainty in the posterior

distribution of rank orderings. This highlights the historic unpopularity [209] of both major

party candidates in 2016.

Therefore, while the estimated rank orders using the HHD do not match the election

outcomes in all 12 elections, the elections in which the rank ordering does not match

the election outcomes are elections in which some of the candidates’ popularity changed

significantly over the course of the election (1980), were historically close (2000), or for

which both major party candidates were historically unpopular (2016).

A more detailed comparison can be made for the Danish elections, since seats in the

Danish parliament are distributed according to a proportional representation (PR) system.

The parties can then be ranked according to the number of seats they win in the election, and

the rank order using PR can be compared to the ranking predicted by the HHD. Moreover,

since all eight Danish elections were transitive, the parties can be ranked unambiguously

using pairwise majority relations (MR). The ranked parties and ratings are provided in

Table 5.2. Orderings according to MR and PR are reproduced from [196]. Due to the

large sample size the standard deviation in the ratings is small ±0.01, and, as a result, the
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rankings can be predicted confidently (average Kendall and Spearman rank correlations

of 0.92 and 0.93 respectively). Note that the rankings associated with the HHD closely

match the rankings given by MR. MR is equivalent to the HHD if the network is perfectly

transitive, or all of the win probabilities are rounded to zero or one. Discrepancies in the

rank order between MR and HHD are accounted for by the cyclic component of the HHD.

Note that the range of ratings assigned to the most and least popular parties remained fairly

consistent across the elections, with occasional outlying minority and majority parties. This

consistency indicates that the distribution of popularity among parties remained reasonably

consistent across the eight elections.

Even though each election was transitive, the outcome using PR was different from the

outcome using MR in all elections [196]. A few minority parties consistently performed

better using PR than they would have using MR or as predicted using the Hodge ratings.

In particular, the Socialist People’s Party, Communist party, and the Socialist Unity List

party frequently won more seats than parties they would have lost to in a head-to-head

election [196]. In 1973, 1975, and 1977 the Communist party would have lost a head-to-

head election against any other party in the election, but won more seats than 2, 3, and

4, other parties respectively. Even more strikingly, in 1973 the Progress party was ranked

9th, and 8th using the Hodge ratings, or MR, but won the second most seats, displacing 6

other parties. The Justice party, on the other hand, consistently underperformed. In 1975

the Justice party would have ranked 6th out of 11 parties using the Hodge ratings, or 7th

out of 11 using MR, but came in last in the election winning zero seats and losing to 4

parties it would have beat in a head-to-head election [196]. The general success of ‘fringe’

parties in Denmark’s elections [196] (see the Socialist People’s Party, Communist Party,

Socialist Unity List party, Progress Party, and Danish People’s party in Table 5.2) leaves

open the possibility that there is a considerable cyclic component in the Danish electorate’s
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aggregate preferences. Since each election was transitive we expect this component to be

smaller than the transitive component. We also expect the cyclic component to be largest

on edges associated with minority parties.

The HHD: Measures and Characterization

For each election we estimated the sizes of the transitive and cyclic components. First,

the sizes of the components in the estimated flow were computed. Then the posterior

distribution for each measure was approximated by sampling, and a credible interval for

the size of each component was estimated. The standard deviation in the posterior was also

computed. To conclude, the largest lower bound, and smallest upper bound, on the size

of each component such that the MLE estimate satisfying the bound passed the hypothesis

test were computed. The sizes of the transitive and cyclic component for all eight Danish

elections are reported in Table 5.3.

Despite changes in which parties participated in the elections, the number of parties in

the elections, and over thirty years between the first and last election studied, the sizes of the

transitive and cyclic components remain remarkably consistent across all eight elections.

The transitive component remained between 0.53 and 0.57 with only two exceptions, and

the cyclic component remained between 0.14 and 0.18 in all eight years. The estimated

proportion of competition that is cyclic remained consistent across all eight Danish elec-

tions. The estimated relative sizes of the cyclic component are 0.27, 0.31, 0.25, 0.29, 0.27,

0.22, 0.30, and 0.24, all with standard deviation 0.01. This suggests that Danish elections,

at least from 1970 - 2005, are characterized by a latent cyclic component that is about a

quarter the size of the transitive component.

Like the Danish elections, all four Dutch elections have transitive and cyclic compo-

nents with consistent sizes, and the standard deviation in the posterior is relatively small.
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Figure 5.5: Estimated transitive and cyclic components normalized by
√
E for the eight

Danish elections (blue diamonds), four Dutch elections (purple circles), and twelve
American elections (red squares). Error bars denote the credible interval for each measure.
Note that the American elections (with the exception of 1968) cluster in the bottom left
hand corner near the origin, the Danish elections cluster in the center of the figure, and the
Dutch elections on the right.

Note that the cyclic component in the Dutch elections is the same size as the cyclic com-

ponent in the Danish elections, but the transitive component in the Dutch elections is

consistently larger than in the Danish elections.

Results comparing the Danish, Dutch, and American elections are shown in Figure 5.5.

Note the clear clustering of each election system. The twelve American elections, shown in

red, cluster in the bottom left hand corner near the origin, the eight Danish elections cluster

in the center of the figure, and the four Dutch elections cluster on the far right. Using k-

means clustering with 3 clusters only one example is misclassified (the outlying American

example is classified as Dutch) resulting in a Rand index of 0.9289. From the scatter it is

clear that the Danish and Dutch elections both usually have approximately the same cyclic

component, but the Dutch elections consistently have a larger transitive component, and

both have larger cyclic components than the American elections. The Danish and Dutch

elections considered are both parliamentary elections among approximately ten parties,

whereas the American elections are presidential elections among three to five candidates,
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typically dominated by the pair of major party nominees. It is not surprising that in

elections with more choices that voter opinion may be more heterogeneous, and as a

result more cyclic (less well described by assigning a single rating to each party). These

conclusions match the observation in [204] that political opinion in American presidential

elections was more homogeneous than in other European examples (French and German).

The three systems are clearly separated in the size of their transitive component. The

American presidential elections typically see a transitive component with size about 0.2,

after normalizing by the number of edges in the network. The Danish elections typically

have a transitive component of size 0.55, and the Dutch elections typically have a transitive

component of size 0.9. Moreover, most of the spread within the American elections, and

Danish elections, is along the transitive axis. The American election closest to the origin

is 2016, and the outlying American election with transitive component near 0.6 is the 1968

election. The large transitive component in 1968 is a result of George Wallace’s third party

campaign against Nixon and Humphrey. Both Nixon and Humphrey have comparable

ratings (0.30 ± 0.016, 0.18 ± 0.015 respectively) while Wallace has a significantly lower

rating (−0.47± 0.017).4

The clear separation between the Danish, Dutch, and American elections in the size of

their transitive component is reflected in the overall size of the estimated edge flows. In

general, the larger in magnitude the log-odds edge flow, the farther the preference margins

are from fifty percent. Therefore, the fact that the transitive component is larger in Dutch

elections than Danish elections, and Danish elections than American elections, means that

the average preference margins were larger in the Dutch elections than the Danish elections

4George Wallace was Governor of Alabama and ran on a pro-segregationist ticket. Wallace won multiple
states in the Deep South, with the objective of preventing either Humphrey or Nixon from winning a majority
in the electoral college, forcing a brokered convention [207]. While popular in the Deep South, and among
blue-collar union workers, Wallace only won 13.5 percent of the popular vote, and only 8 percent in the
North.
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than the American elections.

The difference in preference margins is reflected in the best fit prior parameter to each

system. For the American elections the best fit prior parameter is γ = 5.67, for the Danish

elections the best fit prior parameter is, on average, 1.85, and for the Dutch elections is 0.97.

Increasing the prior parameter, γ, decreases the probability of observing large win proba-

bilities (large preference margins). If γ = 1 then all win probabilities (preference margins)

are equally likely, while if γ is large win probabilities near one-half are more likely than

win probabilities near zero or one. This difference in γ means that American presidential

elections split voter preferences close to evenly, while Danish and Dutch elections do not.

Thus the Danish and Dutch systems are better at maintaining minority parties which are

only preferred by a small portion of the electorate. In and of itself this is not a surprise

as both the Danish and Dutch elections considered are parliamentary, use proportional

representation, and involve far more major parties than the American elections. These

results underscore that the two-party nature of American politics prevents minority parties

or candidates from competing successfully, and that the two major parties maintain support

from close to half the electorate. Therefore the distinct separation of the three systems

in their transitive components is a clear demonstration of how structural features of the

different election systems is captured by the HHD.

A common feature of all the elections considered is that the transitive component is

notably larger than the cyclic component. Therefore, while aggregate voter opinion cannot

be adequately explained by an Elo type rating in all but a few of the American elections,

most of the structure of the voter preferences can be described by rating the competitors.

As discussed above, most of the variation in preferences between systems is also associated

with the transitive component. This result supports our expectation that the elections would

be mostly transitive, with a smaller, but nonzero, cyclic component.
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In general we expect that the size of the cyclic component will be small relative to

transitive component if the relative intransitivity (ratio of cyclic component to the overall

edge flow) is small. The expected size of the the relative intransitivity is related to the

correlation, ρ, in the log-odds that a randomly chosen voter prefers A to B, with the log-

odds that another randomly chosen voter prefers A to C. The larger this correlation the

more homogeneous voter opinion regarding candidate ranks. This correlation is 1/2 at its

largest, and 0 at its smallest, provided the trait-performance assumptions (see Section 4.6.2)

hold. If the correlation is 1/2 then competition is necessarily perfectly transitive. Therefore

the correlation ρ is a statistical feature of the distribution of voter opinion, i.e. the culture,

that is directly related to the expected sizes of the cyclic and transitive components.

We estimated ρ for each election using both point estimation, and sampling. The esti-

mated correlation coefficient remains consistent across all eight Danish elections, ranging

from 0.440 in 2001 to 0.471 in 1998. In addition, the predicted relative intransitivity using

the correlation coefficient matched the estimated relative intransitivity for all eight elec-

tions. The correlation coefficient also remained consistent across the four Dutch elections,

ranging from 0.477 in 1994 to 0.487 in 1989. Just as in the Danish examples the predicted

size of the relative intransitivity using the correlation coefficient matched the actual size

in all four elections. The fact that the Dutch elections have a larger correlation coefficient

(coefficient close to 1/2) corresponds to the observation that the Dutch elections have a

smaller cyclic component relative to their transitive component than the Danish elections,

so are relatively less cyclic. It follows that voter preferences was more homogeneous in

the Dutch elections than the Danish elections. The correlation coefficient ρ varies much

more in the American examples than the Dutch and Danish examples, ranging from 0.313

in 1980 to 0.499 in 1968.

Note that none of the observations made here would have been possible using a discrete
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transitivity measure, since all of the elections considered were transitive. Therefore, all of

the elections considered would be identical using a discrete measure.

The HHD: The Cyclic Component

Since most of the observed elections have a latent cyclic component it is natural to ask,

which edges have the largest cyclic component? The edges with the largest cyclic compo-

nent should correspond to the edges where the observed win frequencies are worst predicted

by the competitor ratings. If we rank the edges in order of largest cyclic component (in

magnitude), and compare that ranked order to the edges ranked by worst match to data using

the perfectly transitive hypothesis, we find that the edges with a large cyclic component are

the edges which are worst explained by the perfectly transitive hypothesis.

In the Danish elections the edges with the largest cyclic components consistently in-

volved at least one of the minority parties who outperformed their rank using MR or

the Hodge rating. For example, in all four elections between 1973 and 1979 the edge

with the largest estimated cyclic component connected the Socialist People’s Party and the

Communist party. The same pattern appears in 1998 and 2001, when the largest estimated

cyclic component appears on the edge between the Socialist People’s Party and the Socialist

Unity List party - the successor to the Communist Party. The same edge was the third most

cyclic in 1994. Other minority parties (Danish People’s Party, Progressive Party, Minority

Party) appear frequently in the ranked list of most cyclic edges. In addition, the size and

sign of the cyclic component on these edges remained consistent across the course of the

eight elections. The consistent recurrence of the same edges in the list of highly cyclic

edges, with approximately the same size component, suggests that these observed trends

are a systematic component of Danish politics. These latent intransitivities may explain

some of the differences observed in the election outcomes and the MR rankings.
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For the American examples, we focus on the pilot studies performed in 2016 and

2019. In both cases, if only candidates from a single party are considered (Republican

in 2016, Democrat in 2019), then the estimated cyclic component is small, and we accept

the hypothesis that voter opinion is perfectly transitive. However, if candidates from both

parties are considered (add Sanders and Clinton to the Republican candidates in 2016, or

Trump to the Democrats in 2019), then the estimated cyclic component is about twice as

large, and we reject the hypothesis that voter opinion is perfectly transitive. If Clinton and

Sanders are added to the Reuplican candidates considered in the 2016 pilot then the four

edges with the largest cyclic component all include at least Sanders and Clinton, and three

of the four involve one Democrat and one Republican. The edges are, in order, Sanders over

Trump, Sanders over Clinton, Clinton over Rubio, and Clinton over Carson. Similarly, if

Trump is added to the list of Democratic candidates considered in the 2019 pilot then the

two edges with the largest cyclic component both involve Trump (Harris over Trump, and

Biden over Trump). Thus, voter opinions regarding candidates within a party are more

transitive than voter opinions regarding candidates from both parties.

5.6 Social Hierarchies

5.6.1 Motivation

Many social animals engage in competition for dominance within social hierarchies. Ex-

amples include species from a wide range of taxa including primates, ungulates, birds,

fish, and social insects [210, 119, 211, 212, 213, 214, 215, 216, 217, 95, 118]. Success in

competition is associated with priority access to resources [218, 213, 219, 220], territori-

ality [221], and higher reproductive output [214] . For example, in a study of white-face
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capuchins, Muniz [214] found that alpha-males produced 62 to 72 percent of all offspring

within each group, and that most baby monkeys not sired by the alpha-male were born

to his daughters, who do not mate with their father. This degree of monopolization is

representative of a variety of primate species. As a consequence, success in competition

events within social hierarchies can play an important role in evolution, and traits associated

with success may be strongly selected for. The importance of success in these forms of

competition has lead to nearly a century of prolonged study of animal hierarchies, both

through empirical studies of wild and captive populations, and through behavioral ecology

theory [222, 219]

Interest in social hierarchies among animals is usually traced back to Schjelderup-

Ebbe [223] who coined the term “pecking-order" to describe the remarkably hierarchical

behavior of domestic fowl [218]. In a pair of landmark papers Landau [117, 224] in-

troduced a measure of linearity (transitivity), usually denoted h, to quantify the hierarchies

documented by Schjelderup-Ebbe, and discussed how these hierarchies may arise from trait

distributions and social factors. Landau famously concluded that the degree of hierarchy

observed in Schjelderup-Ebbe’s hens could not be plausibly explained by null-models

of trait distributions, and that other social factors must play a role in establishing and

maintaining hierarchies. This narrative is the blue-print for nearly a century of similar

studies in different species. Typically a group of individuals (either wild or captive) is

monitored, outcomes of competitive or agonistic interactions are recorded, a measure of

linearity (transitivity) is computed based on the recorded interactions, then the individuals

are ranked and ranks are correlated against possible traits that may confer success. The

degree of linearity is often correlated with features of the group studied (group size, density

of competitive network), and the impact of other social factors are considered [119, 221,

220, 118, 216, 225].
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Since Landau, quantitative measures of societal structure, in particular measures of

linearity/transitivity, have played an essential role in the study of animal societies. The

most widely used measure, h′, is a variant of Landua’s original measure proposed by de

Vries [143], which is, in turn, a variant of Kendall’s measure which is widely used in paired

comparison [97]. Kendall’s measure is based on a normalized count of the number of

cyclic triangles in a complete tournament. Kendall’s measure can be computed analytically

by computing the variance in the number of competitors each competitor usually beats.

Landau’s measure is a normalized version of this variance, and is equivalent to Kendall’s

measure when the number of competitors is odd, and slightly smaller when the number

of competitors is even [143, 95]. The difference in the two measures is associated with

their normalization constants. Landau’s measure is preferable when tied relationships are

possible, and de Vries modified measure, h′, is a variant of Landau’s measure that allows

for tied relationships, and incomplete tournaments where some pair of competitors either

cannot, or are never observed, to compete [143]. The variant is computed by averaging

the Landau measure over imputed data, where the dominance relation between pairs of

competitors who could compete but are not observed to have competed is chosen randomly,

uniformly, and independently. In [143] de Vries also proposed a randomization test, which

is almost universally used to evaluate the statistical significance of an observed degree of

linearity. All of these measures equal one if the observed system is transitive, and decrease

the more cycles are present in the system.

Empirical studies of social hierarchies among animals are limited by the difficulty of

gathering the necessary data [211]. Populations must be tracked, sometimes over large

areas, must be habituated to observation, many individuals must be identified and moni-

tored, and monitoring often must be sustained over long periods of time, in some cases

spanning multiple decades (cf. [214, 213]). The difficulty and cost of gathering enough
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data depends on the species and the scope of the study. Experimental populations are

easier to study, but experimental populations may not behave the same as wild populations

since access to resources is assumed to be an important factor influencing realized social

structures [213, 219, 225]. Moreover, experiments and are often limited to small animals

that can be easily kept in captivity (cf. [118]). In an experimental setting researchers

may be able to control which pairs of individuals compete, and how often they compete,

however care has to be taken to ensure that the animals are not injured by the competitive

encounters which may limit the number of repetitions that can be ethically performed

[174, 118]. In an observed population the schedule of competition events is set by the

animals themselves. As a result, the number of repeated interactions per pair usually

varies widely across pairs, with some pairs competing frequently, while other rarely if

ever compete. This imbalance in the data can be a challenge when using methods derived

for paired comparisons, where it is usually assumed that the number of repeated events

per pair can be controlled. Individuals may avoid competing with other individuals if they

expect to lose, or are at risk of injury during competition. Thus the number of repetitions

per pair is not independent of individual ranks within the hierarchies, with more frequent

interactions between individuals with similar rank [226, 215], and more interactions for

individuals with intermediate ranks [213].

Often there are some pairs, if not many pairs, of individuals who never compete during

the observation period as “even intense observational effort can never guarantee that most

dyads within the group will be observed in agonisitic encounters" [212]. This problem is

compounded by issues in choosing the number of individuals and length of time considered.

The more individuals considered the more pairs do not compete [211], and observation

periods should not be long enough that the structure of competition within the society

changes significantly. When there are pairs who do not compete the investigator must
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determine whether the pair could not compete, or could have competed but didn’t during

the observation period, since in the first case the “zero" is structural, and in the second

case it means the investigator is missing data. Multiple studies [211, 212, 95] have shown

that the standard measures of linearity, including h′, decrease the more pairs are missing,

and that the percent of pairs without observed encounters explains more of the variance in

measured linearity than any other feature of the groups considered. Shizuka demonstrated

that this trend is a result of the imputation procedure used to fill in missing data [95]. A

more general version of the missing data problem is that there are often pairs of competitors

who rarely compete. Often there are many pairs who only interacted a handful of times.

This can make estimation difficult as sample sizes are often small on many edges.

Last, but not least, the ways in which individuals compete vary. Pairs often engage in

a variety of agonistic interactions of varying severity, ranging from displays of aggression

and submissiveness to physical conflict [218, 211, 213, 118, 225]. Therefore, even if the

same pair of individuals competes multiple times they may not always compete in the same

way, nor are the outcomes of repeated interactions necessarily independent. There is strong

evidence to suggest that “winner" effects play a large role in animal societies, where the

winner of a previous contest is favored in future contests. The outcome of competition

between one pair may not even be independent of the outcome among another pair if the

animals observe the outcome of the other event, or if animals form alliances and coalitions

(cf. [214]). Thus the study of competition for dominance in social hierarchies among

animals is uniquely challenging, and often requires highly system specific knowledge.

Despite these difficulties, study after study have show high degrees of linearity in

different animal societies. This is often true despite strikingly low event counts. That

said, while the index of linearity is usually large, it is also frequently not equal to one

(cf. [213, 216]), indicating that at least some intransitive cycles are commonly observed
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in animal societies [174, 221]. For example, Yasukawa observed a cycle among dark-eyed

juncos in which individual B3 beat B4 in 22 out of 24 events, B4 beat B5 in 19 out of

23 events, but B5 beat B3 in 11 of 15 events [225]. Cycles like this may have arisen

due to sampling error, however statistical significance with respect to the possibility that

observed interactions do not reflect true dominance relations is largely missing from the

literature. Alternatively, cycles may arise for structural reasons. An example is documented

by Shoemaker who noted that male canaries typically dominant females, unless that female

is their mate, and that these cycles may be intensified by breeding [221]. Combined these

observations suggest that animal hierarchies are dominated by a transitive component, but

often contain some cycles which may be either structural or incidental.

The standard approach when computing linearity for social hierarchies is to start by

forming a dominance matrix [133, 143, 100]. The A,B entry of the dominance matrix

is one if A beat B more often than B beat A, one-half if A beat B as many times as B

beat A, and zero otherwise. Thus the standard approach discards any information about the

frequency with which one competitor beats another except, and only considers whether a

competitor wins a majority of the observed events. CompetitorA is said to dominateB ifA

wins the majority of events observed against B. This methodology is motivated by another

common trend observed in animal societies: observed win records are often extremely one-

sided, with a single competitor in each pair winning almost all, if not all, events observed

between the pair [174, 223]. This asymmetry is often true even when many events are

observed between the pair. For example, a long-term study of social hierarchies among

female mountain gorillas found that only 4 percent of all observed events were upsets

[216]. A quick survey of 176 published win records made available by [95] confirms that

most animal hierarchies are both strikingly linear, and strikingly asymmetrical.

The striking asymmetry of win records in animal competition events motivates the
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concept of dominance, a “pattern of repeated, agonistic interactions between two indi-

viduals, characterized by a consistent outcome in favour of the same dyad member and a

default yielding response of its opponent rather than escalation" [143, 218]. This sort of

yielding behavior is widely documented in social species (cf. [214]) and may even occur

spontaneously without an aggressive trigger. There are many reasons why a competitor

might yield to another, not the least if escalation is dangerous or costly and they are

unlikely to win [227, 225]. In this way the outcome of early events may determine the

outcome of many subsequent events. Alternatively conflicts may be resolved by irrelevant

but recognizable differences to avoid risky conflicts [227, 225].

A society is said to be despotic if dominance relations strongly predict competition

outcomes, and a dominant individual rarely loses a competition event. A society is egal-

itarian if the outcome of competition is not well predicted by dominance relations [212].

Societies are characterized as despotic or egalitarian based on measures of steepness. A

high steepness indicates win probabilities near zero or one, and a low steepness indicates

win probabilities near one half [228]. If a society is despotic then each observed compe-

tition outcome carries more information than if a society is egalitarian. This motivates the

standard approach in which an individual is considered dominant over another if they win

a majority of events between the two, and allows the dominant individual in a pair to be

identified even if only one event is observed. The fact that upsets do occur, even in highly

despotic societies, suggests that the outcome of competition should still be considered a

sample from a probabilistic event, however the usefulness of this perspective depends on

how despotic the society is. Obviously, the closer the win probabilities are to one half the

more information is discarded by rounding probabilities to zero, one half, or one. Moreover,

when an individual has only won one more event than an opponent it is clear that denoting

the individual as dominant may be prone to sampling errors. An important advantage
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of considering despotic societies with steep dominance hierarchies is that by reducing

win probabilities into a categorization of dominant and subordinant a dominance based

approach can avoid introducing statistical assumptions about the competition events that

may not be valid for animal competition [180, 228]. For example, the standard approach

used in pairwise comparison, and in our statistical framework, is to assume that the outcome

of distinct competitive events are independent, depend only on the pair of competitors

competing, and the win probabilities are fixed over the duration over the study period. Any

of these assumptions may be, and are, violated in some species [180, 228]. In this work

we limit our attention to egalitarian societies since they are a better fit to our statistical

assumptions. We will further limit our attention to systems with many interactions observed

per pair so that we have large enough sample sizes to draw conclusions with some statistical

significance. Of the 176 data sets considered in [95] these two criteria limit our attention

to ten studies on six different captive species.

While the data available, and underlying statistical assumptions regarding social hier-

archies in animal populations and politics are markedly different, some of the questions

asked are noticeably similar. Both fields have shown a sustained interest in measuring

the degree of linearity/transitivity present in a system, and in both fields there is strong

empirical support for the hypothesis that competition is primarily transitive. In both fields

not all systems studied are transitive, though the interpretation and implications of intransi-

tivities differ. Moreover, comparison between studies is difficult in both fields because

methodology differs [213, 170]. This problem is harder to resolve in animal societies

since competition in animal societies, and the structure of animal societies, varies widely

between, and sometimes within [213], species.

In both politics and animal societies issues of statistical significance of results are

important, and though the significance of measures of societal structure are commonly
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discussed in animal behavior, statistical significance is usually measured with respect to a

null model [133, 143, 180], and does not account for possible sampling error.5 In both fields

the observation that systems are predominantly, but not entirely, transitive has prompted

theory to explain why transitive structure appears so universal. Behavioral ecology theory

attempts to explain the patterns of societal structure observed in animal populations from

an evolutionary perspective [222, 219]. Other theory attempts to explain the prevalence of

transitivity by considering the role of traits in mediating competition outcomes [117], and

5The standard randomization test used to test the significance of an observed degree of linearity was
proposed by de Vries [143] as an improvement to the test proposed by Appleby [133]. Both tests are based
on a significance test proposed by Kendall [97]. In the randomization test a series of random dominance
matrices are sampled, the linearity index is computed for each sampled dominance matrix, and the fraction of
sampled matrices that are more linear than the data is recorded. For a large enough sample size this fraction
approximates the probability of sampling a dominance matrix that is at least as linear as the data from a null
distribution of dominance matrices. The null distribution used is a uniform distribution over all dominance
matrices. Thus the randomization test tests the significance of an observed degree of linearity relative to a
uniform distribution of dominance matrices. In this null model all dominance matrices are equally likely, so
the observed degree linearity is declared significant if it is more linear than a chosen fraction of dominance
matrices of the same size. Therefore a degree of linearity is determined significant when it is possible to
reject the null hypothesis that all dominance matrices are equally likely. Note that this is not the same as
confirming the hypothesis that the society is transitive, nor does it confirm a hypothesis that the society is
mostly transitive, with a limited degree of intransitivity. Instead it shows that the society has more transitive
structure than is plausible if all dominance relations were random and independent. This would be equivalent
to rejecting the impartial culture hypothesis in a political setting. Then the significance reported is not a
confirmation of transitivity, only a confirmation that the society is more linear than a purely random society.
This significance is only useful so far as we expect the uniform null model to be a plausible model for
competition, or as it restricts the space of possible competition structures. The fact that study after study
identifies significant linearity suggests that the uniform distribution is not a plausible model for competition
in most cases, just as the impartial culture model is not plausible in most political settings. Rejecting the
hypothesis that all dominance matrices are equally likely also fails to significantly limit the space of possible
dominance distributions since it is entirely possible to imagine other distributions of dominance matrices with
a higher average level of linearity without requiring that all of the dominance matrices are transitive. Thus
the standard significance measure is evaluated with respect to a distribution that is something of a straw-man.
If the desired hypothesis we wish to test is that the society is transitive, then without a statistical model for
competition events to explain any observed intransitivities there is no way to test for the significance of the
observed degree of linearity. Unless there is a statistical model that can be used to account for sampling error
the observed dominance matrix is treated as truth, so significance must always be computed with respect
to a null distribution of dominance matrices, not with respect to the possibility that there are errors in the
observed dominance matrix. As a consequence very few studies of animal societies attempt to distinguish
between incidental intransitivity and structural intransitivity. This is a significant limitation of the dominance
based approach in which win probabilities are replaced with dominance relationships. That said, these
limitations are inevitable if the complexity of the competition event prevents reasonable statistical modelling.
The reasons why statistical modelling of competition events can be difficult are discussed in [180].
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the possible influence of “winner" effects [224, 216].

Therefore we perform an analysis of competition between animals that parallels the

analysis we performed for the political examples. First we test the hypothesis that each

society is perfectly transitive, that is, that the win probabilities satisfy an Elo/Bradley-Terry

type predictive rating. This is motivated by the observation that most animal societies are

predominantly transitive, and follows similar efforts by [229]. Note that, unlike the tests for

significance of linearity, this hypothesis test accounts for possible sampling error. Next we

estimate the size of the cyclic component and transitive components using both point and

interval estimation. This analysis provides a pair of continuous measures of the absolute

strength of competition of both types, thus provides a complementary alternative to the

discrete indices of linearity which measure the relative strengths of the two components.

We expect that animal societies have a small cyclic component relative to their transitive

component. Since the HHD also produces ratings of the competitors we compute a “steep-

ness" measure. In particular we plot the estimated ratings in decreasing order and find the

slope of the closest linear fit. This follows the steepness measure proposed by [230]. In

addition we report the estimated parameter of the prior as measures of how egalitarian or

despotic competition is. To conclude we estimate the correlation coefficient ρ. If success

in competition is mediated by the traits of the competitors, and the traits are drawn i.i.d.

from a trait distribution, then the size of ρ controls the expected relative sizes of the cyclic

and transitive components (see Section 4.6).

Since most studies of animal hierarchies adopt a dominance approach it is important to

highlight that, following [231, 229, 232, 233], we assume that the outcome of competition

events are independent, depend only on the pair of competitors competing, and that the win

probabilities are fixed for the duration of the study. Other maximum likelihood ranking

methods used in social hierarchies have adopted these assumptions in order to test a range
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of transitivity hypotheses (see [180] for a review). In addition we assume that no win

probabilities equal one or zero.

5.6.2 Data

The examples analyzed in this paper were chosen from a collection of 176 data sets com-

piled by Shizuka in a meta-study of indices of linearity and imputation of missing data [95].

We consider 18 different data sets, from seven different studies, each on a different species.

The systems were selected since they are sufficiently egalitarian, and have large sample

sizes. They are all examples of studies on captive populations. When possible, examples

were also chosen that included repeated trials.

The examples considered are, in chronological order of study date, Masure: white king

pigeons and shell parakeets (2 trials each) [174, 234], Bennett: ring doves (3 trials) [235],

Shoemaker: canaries [221], Yasukawa: dark eyed juncos (6 trials) [225], Nelissen: cichlids

[215], Solberg: house sparrows (3 trials) [220]. Note that all but one of these examples

involve competition between small birds.

5.6.3 Results

Despotism vs. Egalitarianism: Fitting for γ

In order to apply the Bayesian estimation scheme we need to fit the prior parameter γ.

The size of the prior parameter controls how egalitarian or despotic we expect a system

to be since it controls the prior distribution of win probabilities. The larger γ the more

egalitarian a society. If γ = 1 then all win probabilities are equally likely (uniform prior),

if γ < 1 then the prior is u-shaped, and if γ > 1 then the prior is maximized at 1/2.

We fit for γ per species, so that the value of γ is based on all available data on the given
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Figure 5.6: Priors for the most despotic species (Juncos) and egalitarian species (Doves)
are shown, along with the distribution of observed win frequencies (histograms). The axis
on the bottom represents the range of possible prior parameters. The values of the prior
parameter for each species are marked. When γ = 1 the prior is uniform.

species. For example, we consider six different data sets published in [225] on dark eyed

juncos. The prior parameter is fit to all of the six data sets, then used for each data set

individually. Note that most of the studies considered single-sex populations separately,

and the structure of competition among males and females differs in some species. We

found that the estimated values of the prior parameter did not change significantly when

fit to individual sexes relative to the variation between species, so used one prior for both

sexes of a given species. This could easily be revised in future work. Estimates of γ

in decreasing order of egalitarianism (increasing order of despotism) are as follows: ring

doves 2.08, house sparrows 2.03, pigeons 1.33, canaries 1.27. parakeets 1.08, cichlids 0.40,

juncos 0.30. The prior distributions for the most despotic, and most egalitarian species are

shown in Figure 5.6. Note the marked difference in the shape of the prior distribution

for the most despotic and most egalitarian species considered. Other species fall on the
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continuum between these two examples. Parakeets, for example, have a nearly uniform

prior distribution.

Hypothesis Testing

As in Section 5.5.3, we tested the hypotheses that the societies were perfectly transitive

(win probabilities match an Elo type predictive rating), and perfectly cyclic. For most

of the examples considered both hypotheses are rejected with sample p-values less than

10−3. The exceptions are described here. An example from Bennett’s study of ring doves

[235] was close to plausibly perfectly cyclic with sample p-value of 0.049. This is a

marginal rejection at best, however this was the first of three examples from Bennett’s

study considered. The first example was a study of male ring doves taken over the course

of 24 days in the Summer. The remaining two examples were studies of female and male

ring doves in the winter with observation lasting 54 days. Consequently, event counts were

larger in both winter examples. In both cases the perfectly transitive hypothesis is rejected

with sample p-values less than 10−3. The estimated values of other parameters did not

change much between winter and summer for the male ring doves, therefore we reject the

hypothesis that ring dove societies are perfectly transitive with much higher confidence

than is implied by the outcome of the first study. This is representative of other marginal

cases (one of the two pigeon cases, two of the six junco cases). For example, one of the

six dark eyed junco data sets passed the perfectly transitive hypothesis test with sample

p-value 0.168, and another came close to passing the hypothesis test with sample p-value

0.041, while the remaining four tests are rejected with sample p-values less than 10−3.

Solberg’s study of house sparrows [220] is clear outlier in the hypothesis testing. The

first data set comes close to passing the perfectly transitive hypothesis test (sample p-

value 0.003), and passes the perfectly cyclic hypothesis (sample p-value 0.081). The
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second and third both pass the perfectly transitive hypothesis test (p-values 0.639 and

0.573 respectively), and the second also passes the perfectly cyclic test (p-value 0.914).

It is impossible for a system to be perfectly cyclic and perfectly transitive unless all the

win probabilities equal one-half. Therefore this indicates that the house sparrow examples

do not contain enough observed events to draw confident conclusions regarding the type

of competition observed (the second house sparrow example only averages 8.21 events per

pair of sparrows). These examples are included to show why uncertainty quantification

is important when estimating the sizes of the components, how we detect bias due to

uncertainty, and ultimately reject data sets with insufficient sample sizes.

The HHD: Measures and Characterization

Next we estimated the sizes of the transitive and cyclic components. Point estimates using

the conditional expected edge flows are reported in Table 5.4. Uncertainty in the point

estimate is reported (one standard deviation in posterior), along with credible intervals,

percent bias that could arise from sampling error, and the credible bounds. The credible

interval is derived by finding highest posterior density interval (HPDI) containing 95 per-

cent of the posterior probability. It does not necessarily contain the point estimate since

the point estimate is derived by applying the measure directly to the estimated flow, rather

than finding the posterior for the measure and then estimating the measure based on its

posterior. This is done to reduce the bias due to sampling error and uncertainty (see 5.4.1

and the supplement for discussion). The expected percent of the estimated measure squared

contributed by sampling error is reported for each measure. Note that the actual percent of

the measure contributed by noise is unknowable, so these percents are provided primarily to

give a gauge for how much the point estimator and credible interval might be influenced by

sampling error. When this percent is large then both the estimate and the credible interval
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may be significantly biased by sampling error and uncertainty in the posterior. These

biases motivate the credible bounds, which are based on hypothesis testing rather than

the posterior distribution. The credible bounds are, respectively, the smallest upper bound,

and largest lower bound, such that the region of edge flows defined by the bound passes the

hypothesis test. The region outside of the credible bounds would not pass the hypothesis

test and the value of the bounds are the smallest, and largest, that pass the hypothesis test.

The species in the table are ordered in approximately increasing order of uncertainty.

First, note that the uncertainty in the estimates is generally much larger for the animal

examples than for the political examples (see Table 5.3.) This reflects the differences

in sample sizes. The political examples each average over a thousand respondents per

pair of candidates, while the animal examples typically average 20 to 100 interactions per

pair. Certain examples buck this trend, for example, the second dove study averages 157.3

interactions per pair and the canary example averages 237.6 examples per pair. As a result

we can estimate the measures with the most certainty for these examples. In contrast, the

house sparrow examples average only 12.4, 8.2, and 22.1 interactions per pair, and, as a

consequence, do not allow for confident estimation.

Next, note that the transitive component can be estimated with systematically less bias

than the cyclic component even though the variance in the posterior for both components

is about the same. This is a result of the sizes of the cyclic and transitive subspaces. Since

the cyclic subspace is typically larger than the transitive subspace a larger fraction of the

uncertainty in the edge flow becomes uncertainty in the cyclic component. Moreover, since

the estimated transitive component is typically larger than the estimated cyclic component

the percent bias in the cyclic component is usually greater than the percent bias in the

transitive component (more uncertainty in a smaller quantity).

For some of the animal examples the possible biases are small and the point estimators
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are reliable. The canary example and second pair of dove examples all have percent biases

beneath 10 percent for both measures, and have reasonably tight credible intervals and

bounds that contain the point estimate. The first dove example has considerably more

uncertainty, but, as discussed before, this difference in uncertainty is a result of the shorter

observation period [235] used for the first dove example. Six more examples have moderate

biases in the cyclic component, and have credible intervals containing the point estimate

(the cichlid example, both pigeon examples, the first parakeet example, and the third and

fourth junco examples). Therefore, half of the examples have sufficiently large sample

sizes to ensure that either the point estimator or credible interval for the cyclic component

are, at least reasonably, reliable. When the expected bias due to uncertainty is large then the

credible bounds should be used instead of the credible interval. Note that we can often find

a credible lower bound on the size of the cyclic component, even if the possible bias in the

Bayesian estimator is large (see the last three junco examples). Since the bounds are based

on hypothesis testing, if the lower bound on the cyclic component is greater than zero then

the system will not pass the perfectly transitive hypothesis test. In contrast, if the bound

equals zero (see the first junco example and last two sparrow examples) then the system

could be perfectly transitive. When the bound is close to zero (see the first dove example,

first parakeet example, or second junco example) then the perfectly transitive hypothesis is

rejected, but without confidence (sample p-value close to the desired significance). Thus,

even if there is too much uncertainty in the posterior to use the Bayesian estimators reliably,

the bounds on the sizes of the components derived based on hypothesis testing are still

informative.

In some cases we cannot find an upper bound on the size of a component. This occurs

if there are many pairs of competitors for which a single competitor wins all observed

events thereby skewing the posterior (see Section 5.4.1). For all eleven examples for which
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we cannot find upper bounds on the sizes of the components at least ten percent of pairs

include a competitor who has never won against their opponent. Typically these are low

ranked competitors who are dominated by most of the other individuals.

For comparison, the largest lower bound on the cyclic component observed in all of the

political examples was 0.13, and the largest estimated cyclic component across the political

examples was 0.18. Eight of the eighteen animal examples have lower bound greater than

0.13, and seven have lower bound greater than 0.18. Therefore, despite the considerable

uncertainty in the animal examples, close to half of the animal societies are demonstrably

more cyclic than all of the political examples studied. Moreover, all three animal examples

with small biases in the point estimator, have estimated cyclic component larger than any

of the political examples, larger than the upper limit of the credible interval in any of the

political examples, and larger still than the credible upper bound on the cyclic component

in all but one of the forty political examples.

The size of the transitive component is also clearly larger in some of the animal exam-

ples than the political examples, and clearly smaller in others. In general, for the despotic

societies, the overall size of the estimated edge flow is large (see the cichlid and junco

examples), since the estimated win probabilities are often close to zero or one, and the

transitive component is correspondingly large. In an egalitarian society (see doves or

sparrows), the estimated edge flow is smaller since the estimated win probabilities are

closer to a half, and the transitive component is smaller than in the European examples.

Despite the potentially large biases in the estimated cyclic components, there is more

variance in the estimated transitive components than cyclic components across all eighteen

animal examples (see Figure 5.8). This mirrors the observation that most of the variance

between political systems, and within political systems, was observed in the size of the

transitive component not the size of the cyclic component. Thus more of the difference in
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Figure 5.7: Steepness for the eighteen animal examples. The left panel tabulates the
steepness for each example, along with the prior parameter γ, the credible interval for
the steepness coefficient, and the R2 value for the fit. The right panel plots the steepness
against the prior parameter, and shows that there is a weak positive correlation between the
prior parameter and the steepness.

the over-all size of the edge flow, and associated egalitarianism vs. despotism of a society, is

explained by differences in the size of the transitive component, not the cyclic component.

Steepness and Despotism

This observation suggests that despotic animal societies are despotic due to large differ-

ences in the ratings of individuals. Steepness measures [230] measure how strongly win

probabilities depend on differences in rank, and are generally computed by finding a best

fit line to a set of ratings ranked in decreasing order. We fit for steepness by ordering

the estimated Hodge ratings in decreasing order, then fitting for the slope of the best

fit regression line through the estimated ratings (conditional expectation). Least squares

regression is used with weights set to one over the variance in the posterior distribution

for each rating. Steepness values, along with confidence intervals and r-squared values

are reported in Figure 5.7, in order from most egalitarian to most despotic. The steepness

controls how the odds that one competitor beats another depends on the difference in their
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ranks. For every increase in rank the odds that the lower competitor beats the higher rank

competitor change by a factor of exp(steepness).

There is a weak positive correlation between the prior parameter γ and the steepness,

indicating that the more despotic a society the steeper the ratings. That said, the ratings

often do not fit well to a line. In some cases the high and low ratings form plateaus, with

a plateau of high rated competitors and a plateau of low rated competitors. In others the

competitors with intermediate rank all have similar ratings while the highest and lowest

rated competitors have outlying ratings. This structure would be expected if ratings are

distributed according to a bell-shaped distribution. Most commonly, the lowest rated com-

petitor is much lower rated than the rest of the competitors. Not all of the linear fits are

bad, for example the cichlid and canary examples both have ratings that fit well to a line.

However, in general it does not appear that ratings are necessarily linear in the rank order,

so rank difference is not a good predictor of performance of two competitors.

Cyclic Competition

Figure 5.8 compares the estimated sizes of the two components of the animal examples and

the political examples. Note the overall upward shift in the scatter points for the animal

examples. This reflects the larger estimated cyclic components, and while some of this

shift may be attributed to greater uncertainty, as demonstrated before, much of the shift

cannot be plausibly explained by bias due to uncertainty.

Unlike the political examples, which were all transitive, there are clear cycles in the

animal data sets. In the first parakeet data set (female parakeets) there is a clear cycle

between individuals labelled B, R, and 3. B beat R 16 out of 16 events, R beat 3 20 out of

26 events, and 3 beat B 21 out of 28 events. This triangle has the largest vorticity of any

of the triangles among the competitors with vorticity 1.08, and the edge from 3 to B is the
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Figure 5.8: The left hand panel compares the estimated sizes of the components for the
eighteen animal examples and twenty four political examples. The animal examples are
marked with maroon triangles. The right hand panel shows the nine of the eighteen animal
examples with moderate or small biases due to noise. The error bars denote the credible
intervals, and marker type and color denotes the species. Note that the more egalitarian
species (doves and pigeons) have smaller components, and the more despotic species
(juncos and cichlids) have larger components. Also note the strong positive skew in the
error bars. This reflects the skew in the posterior distribution.

most cyclic edge in the network. The next largest vorticity is 0.535 on the competitors B,

O, and P. B beat P 22 out of 25 events, and P beat O 31 out of 34 events. Thus we would

expect B to be far superior to O. Instead B only beats O 8 out of 15 events. Reversing

the outcome of a single event between B and O would make this cycle intransitive. This

example highlights that the cyclic component accounts not only for explicit cycles, but also

for triangles where the win redocrds cannot be plausibly explained by a predictive rating.

This triangle fails the “strong stochastic transitivity" hypothesis that, if pij > 1/2 and

pjk > 1/2 then pik > max{pij, pjk} [231, 180]. The edges from B to P, and P to O are the

second and third most cyclic edges in the graph, followed by the edges from R to 3, and 3

to B which appeared in the original cycle discussed.

Both of these triangles have vorticities that are clearly larger than the vorticities on the
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remaining triangles. The next largest vorticities are 0.248, 0.208, and 0.131, all involving

B. Of these top five cycles two involve the edge from B to O, three involve the edge from

B to 3, and two involve the edge from B to Y. Thus B, who ranks in the middle of the flock

when the flock is ranked by total number of individuals dominated [234], is involved in

most of the strong cycles observed. The cycle between B, 3, and R, has a strong impact

on the rankings when ranking by total number of individuals dominated. If we rank by the

total number of individuals dominated then the rank order is 3, P, R, B, O, G, Y where 3, P,

and R all dominated four other birds, B dominated three, O dominated three birds, and Y

dominated none and won very few contests. Note that B, which is ranked beneath P and R

by the total number of birds dominated, won the majority of contests with P and R by large

margins (22 out of 25) and (16 out of 16). If the birds are ranked using the Hodge ratings

then B is ranked first instead of fourth, P is ranked second, followed by 3, then O, then R

who has fallen from the top three to the bottom three, then G, then Y. When accounting

for the degree to which one bird dominated another, B is ranked highest, 3 is ranked third,

and R is ranked fifth, but just counting birds dominated 3 is ranked first, R third and B

fourth. Thus the strong cycle observed between B, 3, and R, has a strong influence on the

rankings when ranking only by number of birds dominated and dominance relations. These

two cycles are illustrated in Figure 5.9.

Other cycles worth highlighting occured in the juncos and the canaries examples. Two

clear cycles are apparent in the junco examples, one involving three male juncos in which

individual B3 beat B4 22 out of 24 contests, B4 beat B5 19 out of 23 contests, and B5 beat

B3 14 out of 15 contests. The reversal of the relation between B5 and B3 is all the more

striking because all other relations in the set of six birds are transitive, and 11 of all 15 pairs

of birds had entirely despotic relationships, with a single individual winning all contests.

If analyzed in isolation this cycle has vorticity 0.79, has relative intransitivity 0.95, and is
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Figure 5.9: Cycles observed in animal populations and transitivity. The table in the
left hand panel gives the average number of dominance relations that are flipped when
sampling from the posterior per edge, the expected value of Landau’s linearity index h
over the posterior, and the posterior probability that the society is transitive. The rows are
organized in order of increasing probability of transitivity. The four examples containing
cycles discussed in the text are bolded. All quantities were estimated using 106 samples
from the posterior, so quantities whose values are reported past the thousandths place
are marked with an asterisk. Note that the first pair of dove examples, the first parakeet
example, canary example, first two sparrow examples, and last junco examples are clearly
intransitive, with posterior probability of transitivity less than 10−3. The last dove example,
parakeet example, and second to last junco example are possibly transitive, but with a small
posterior probability. The cichlid example is very clearly transitive, and the remaining
junco and sparrow examples are likely transitive. The right panel shows four of the
cycles discussed in the text (two from the parakeets example, and the two additional junco
examples). Arrows point from loser to winner. The red edge denotes the edge that points in
the opposite direction predicted by heirarchy, and the dotted edge represents in the B, O, P
cycle represents the edge that is far closer to neutral than expected. The vorticity associated
with each triangular cycle shown inside each triangle, and the posterior probability that the
corresponding systems are transitive is reported next to the brackets.

plausibly perfectly cyclic (sample p-value 0.51). A similarly noteworthy cycle is apparent

in a different data set, this time involving four male juncos. Individual B2 beat B3 27

out of 27 events, B3 beat A5 35 out of 35 events, and individual A5 beat A6 5 out of 5

events. All three of these pairs have entirely despotic relationships. Nevertheless, A6 beat
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B2 14 out of 18 events, forming a cycle between the four birds. Individual B2 also beat

individual A5 37 out of 38 events forming a cycle between B2, A5, and A6. If analyzed in

isolation this set of four birds has cyclic component of size 1.38, which is the largest cyclic

component measured out of any of the data sets and has relative intransitivity 0.84. These

examples clearly illustrate that there are strongly cyclic subsets of individuals within the

junco examples, however, it is important to note that there are 90 triangles among the first

six junco examples alone, so the significance levels for determining whether an observed

cycle may be incidental should be chosen to reflect the number of triangles considered. The

posterior probability that each example is transitive, and any observed cycles are incidental,

is reported in Figure 5.9.

Shoemaker [221] discusses a series of nine cyclic triangles among ten canaries. Of

the nine triangles, seven are produced by clear structural reasons. Male canaries dominate

female canaries in almost all cases, except for their mate. In a mated pair the female

dominates the male. This produces cycles when a male who dominates another male who

dominates the first male’s mate, is in turn dominated by his mate, or when a male dominates

a female who dominates his mate. For example, individuals 15 and 55 were mates, and

individuals 19 and 97 were mates [221]. The edges between 15 and 55, and 19 and 97,

have a large cyclic component, and are the second and third most cyclic edges of all forty-

five edges in the network. The triangles identified by Shoemaker account for the relatively

high degree of intransitivity in the canary example, which is the most relatively intransitive

of all examples considered.

Comparison to Political Examples

The animal examples are clearly more scattered than the political examples. This is true

both within species (see right-hand panel of Figure 5.8), and between species (see left-hand

343



panel of Figure 5.8). The animal examples show much more variability within species

than the political examples showed within nationality. This is not surprising as, there

is more uncertainty in the animal examples and animal societies have noticeably large

variations, both between species, and within species (cf. [213, 214]). Societies may evolve

differently depending on access to resources [222, 219], and as a result animal societies

are observed to vary in rates of agonism [236], intensity of conflict, degree of despotism,

and linearity. Despite the larger variation within species, the results from the nine examples

with moderate to low uncertainty show that societies drawn from the same species still tend

to cluster (see the doves, pigeons, and juncos in Figure 5.8). This observation should be

tested on more species, and with more than two trials for each species.

The significance of an observed index of linearity is usually evaluated by estimating

the probability of sampling a random set of dominance relations that is equally or more

linear. The dominance relations are usually sampled uniformly and independently [143,

230]. This sort of randomization test is widely used to evaluate the significance of measures

of social structure (cf. [216]). We evaluate the significance of the estimated sizes of the

transitive and cyclic components by sampling random win probabilities independently from

the prior distribution, and then estimating the probability that, had the win probabilities

been drawn from the prior, that we would have estimated a larger or equally large transitive

component, or a smaller or equally small cyclic component. This tests whether the true

win probabilities could plausibly have been sampled independently from the prior given the

observed degree of hierarchy (large transitive component, small cyclic component). Ten of

the eighteen animal examples had a significantly large transitive component, and thirteen

had a significantly small cyclic component (significance 0.05). Two of the five examples

with a non-significantly small cyclic component and two of the eight examples with non-

significantly large transitive component were sparrow examples, which had low samples
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sizes. All of the nine examples with large sample sizes were significantly less cyclic than

would be expected had the win probabilities been sampled independently from the prior,

except for two ring dove examples. Therefore, for most of the examples considered the

examples were significantly more linear than would be expected if the win probabilities

were sampled independently from the prior. Of the examples with large sample sizes only

one species, the ring dove, could plausibly have win probabilities sampled independently.

The size of the cyclic component relative to the transitive component is larger for almost

all of the animal examples than the political examples, and is larger for all nine animal

examples with moderate uncertainty. This difference is shown clearly by the left-hand

panel of 5.8. Even including the credible intervals, the animal examples are concentrated

between the dashed lines demarking 25 percent and 50 percent cyclic. All of the political

examples are concentrated beneath the 25 percent cyclic line. The relative intransitivity,

||fc||2/||f ||2 of the ring doves, the least relatively intransitive animal studied, is between

0.53 and 0.67, or 0.56 and 0.59 depending on the example considered. In contrast the

most relatively intransitive political examples have relative intransitivity between 0.30 and

0.32 (Danish), 0.18 and 0.21 (Dutch), and 0.18 and 0.59 (American). Of the nine animal

examples shown in Figure 5.8 the canaries are the most relatively intransitive, with relative

intransitivity between 0.65 and 0.67. Significance of the estimated relative intransitivities

were computed by sampling win probabilities independently from the prior. All of the

eighteen animal examples had significantly small relative intransitivities except for the two

dove examples discussed before, and one of the sparrow examples. In many cases the

observed degree of relative intransitivity was significant, with sample p-values on the order

of 10−4 for the pigeons, cichlids, and canaries, and 10−3 for the parakeets and two-thirds of

the juncos. Thus, for all species except the doves and sparrows we can reject the hypothesis

that the win probabilities on each pair are independent, and for both the doves and sparrows
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it is unlikely, but possible, that the win probabilities are independent. Therefore, for all the

other species there is some correlation structure in the win probabilities that accounts for

the relative transitivity of the social hierarchies.

As for the political examples we estimated the size of the correlation ρ. When the

tournament is complete the estimated correlation coefficient ρ determines the estimated

relative intransitivity, so all examples that were significantly less intransitive than would

be expected if win probabilities were independent had significant correlation coefficients.

The estimated correlation coefficients ranged from 0.155 (canaries) to 0.448 (juncos). In

general the animal examples had more variation in correlation coefficients both within

and between species than the political examples, and had smaller correlation coefficients

on average. This matches the observation that the animal examples had a larger cyclic

component relative to their transitive component.

In summary, the animal examples were, for most part, not perfectly transitive, had larger

cyclic components than the political examples (both relative to the transitive component,

and absolutely), and lower correlations. Like the political examples the animal examples

showed more transitive structure than cyclic structure, with relative intransitivity signifi-

cantly smaller than what would be expected if the win probabilities were all independent.

Specific cycles, and edges with a large cyclic component, can be identified, and in some

cases are explained by structural properties of the pair relations [221]. Also like the political

examples the animal examples varied more in the size of the transitive component, and

this variation accounted for most, but not all, of the difference between egalitarian and

despotic societies. The animal examples showed considerably more variation in structure

both within and between species than is observed in the political examples. Finally, smaller

sample sizes in the animal examples require more careful analysis. By using bias estimates,

we could identify examples with dangerously low sample sizes, and by using hypothesis
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testing to compute credible bounds we could draw some, albeit weaker, conclusions about

systems with low sample sizes.

5.7 Sports

Sports are a natural application area for the techniques developed in this chapter. Sports

also present a challenging estimation problem since sports teams rarely play many repeated

games per pair. Major League Baseball (MLB) is a promising exception, as MLB teams

play many games per season, and 19 games per pair within a division.

We collected historical win/loss data for every year of MLB history since 1880, and

analyzed data from each season, with prior models fit to decade and league. For comparison

win/loss records from football and basketball were collected and analyzed. All data was

gathered from FiveThirtyEight. The prior distribution distribution was estimated for each

ten year interval since 1880, and the estimation procedure for the HHD was applied to the

1999-2019 seasons.

Despite the moderately large number of games played per pair of teams within division,

the results were almost entirely inconclusive because the best fit for the prior parameter, γ,

ranged from 21 to 26 over the course of the twenty years considered (fit to a ten year

sliding window). Results for baseball, basketball, and football are shown in Figure 5.10.

Since γ is large for baseball, the prior distribution of win probabilities for baseball is

tightly distributed about one-half. As a result, we expect most baseball teams to be close to

evenly matched, and require large win margins before estimating large win probabilities.

It would require about 20 games per pair before the resulting estimates would be more

informed by the data on the given pair, than by our prior expectation that baseball teams

are evenly matched. Since the prior introduces a conservative bias, the resulting estimates
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Figure 5.10: MLE estimate of the prior parameter γ on a ten year sliding interval for
professional baseball, basketball, and football. Marked lines represent MLE estimates for
γ, and the shaded interval represents the 95 percent HPDI. Results for baseball are shown
in blue, basketball in purple, and football in red. Note the marked difference in the size
of the prior parameter in baseball than in basketball or football. The larger γ the more
concentrated the prior distribution about fifty percent win probabilities. The value of the
prior is an effective number of games, and unless more games are observed than γ the
estimation depends more on the prior distribution than the data available for each pair of
teams.

for the log-odds are all small. Thus, even though the large (relative to other sports) event

counts in baseball reduce the variance in the posterior, the signal is also small since most

baseball teams are evenly matched. As a result the analysis returns inconclusive results,

with wide confidence intervals, moderate to large p-values, and large estimated biases due

to uncertainty. Thus, unlike in the political and animal examples discussed, we cannot

discern whether cycles observed in baseball are structural or incidental.

The estimation framework developed in this chapter can be extended to incorporating

more game data than game outcomes. The framework developed in this chapter models and

estimates of the win probabilities using only game outcomes. Historical records of game
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Figure 5.11: Best fit prior distributions for each decade of Major League Baseball since
1880. Decades are color coded. 1880 is shown in blue, and 2010 is shown in red.
Highlighted decades are 1880, 1920, 1960, and 2010. Note the gradual concentration of
the prior distribution about win probabilities equal to one half.

scores are widely available, as are player and team statistics. Considerable effort has been

devoted within the sports literature to estimating win probabilities based on team/player

statistics (cf. [121]). Game scores and player statistics could be leveraged to get better win

probability estimates, possibly enabling the sort of network-level analysis performed for

the political and animal examples described in this chapter.

An example is developed in Appendix C, where game scores are modelled as Poisson

random variables. Specifically, for each pair of teamsA andB it is assumed that teamA has

an expected scoring rate against B, and team B has an expected scoring rate against team

A. Then the game is broken into a series of intervals in which teams have the opportunity to

score, and the score realized after each interval is a Poisson random variables. For baseball

we break the game into nine innings. If a team leads after nine innings then they win,

otherwise additional innings are added, and play continues into extra innings. Play stops
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once one team leads. Essentially the same model could be applied to basketball, or other

sports with the same tie-breaking structure. An estimation framework for the HHD based

on this Poisson scoring model is discussed in Appendix C.

We plan to test this estimation framework on baseball and basketball in the future.

Similar methods could be applied to sports where a winner is determined by a sequence of

repeated interactions. For example, the probability of winning in tennis can be computed

from the probability of winning a single point [149], so tennis win probabilities could be

estimated using scores.

5.8 Summary

In this chapter we have shown how the HHD can be used to quantify how much cyclic and

transitive competition is present within a competitive system, and how the components of

the HHD can be estimated from win/loss data. Our estimation tools are rooted in logistic

regression, and are accompanied by uncertainty quantification, bias estimation, and hypoth-

esis testing. Quantifying uncertainty and bias is essential since there is not always enough

information in win/loss data to avoid errors. The hypothesis testing framework, and search

for credible bounds, can be used to answer questions that require less information to answer

than direct estimation of the components, and are less prone to errors. Examples from

politics and animal behavior were presented. Future work could apply these techniques to

other competitive systems.
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Part IV

Dynamics: Application to Markov Processes
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Chapter 6

Random Walk Models and Physical

Interpretation

“The recognition of the formal analogy between the two systems of ideas leads

to a knowledge of both, more profound than could be obtained by studying each

system separately [237].”

– Clerk Maxwell

6.1 Preface

Thus far we have focused on using the HHD to describe the structure of an edge flow.

If an edge flow describes the dynamics of a system then the HHD can also be used to

analyze those dynamics. In this chapter we apply the HHD to discrete-space continuous-

time Markov processes, and show that, for the appropriate choice of edge flow, using the

HHD to analyze a random walk is equivalent to introducing and analyzing the thermo-

dynamics of an analogous physical system. This analogy to thermodynamics motivates
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some of the terminology (i.e. potentials), and helps to contextualize the analysis.1 Other

authors have considered similar thermodynamic interpretations of cycle decompositions

of stochastic processes. Qian et al. introduce an axiomatic thermodynamic theory for

diffusion processes governed by an SDE [20] which makes use of a continuous HHD, and

apply it to thermal ratchets [239]. Our approach is based on Schnakenberg’s network theory

[5], and is closely related to Qian’s theory on discrete state spaces. An extensive review of

cycle decompositions of Markov chains is available in [3].

6.2 Continuous Time Discrete Space Markov Processes

Continuous-time discrete-space Markov chains are a ubiquitous class of models that are

used across disciplines (cf. [75, 240, 24, 241, 242]). A continuous-time discrete-space

Markov chain is a random walk on a directed network whose vertices represent possible

states of the process and whose edges represent possible transitions. Let X(t) denote the

state of the process at time t, and x denote the a particular state. The sequence of states,

{X1, X2, ...} visited by the random walk is the skeleton process, and the sequence of event

times T = {T1, T2, ...} record the moment of each transition.

Transitions occur at random times, and occur with exponentially distributed waiting

times. There is an instantaneous transition rate associated with each edge which parametrizes

the corresponding waiting time distribution [241]. The transitions rates could depend on

time, in which case the Markov chain is time inhomogeneous. We will only consider time

homogeneous rates, that is, rates that do not change in time.

Suppose that at time t the process is in state X(t) = x. Then let Nx be the set of

all states y that can be reached from x in a single transition. Let lyx be the transition

rate from x to y. Then, the waiting time distribution to the first transition out of state
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x is exponential with parameter equal to the sum of all the transition rates
∑

y∈Nx lyx

so that the probability that a transition occurs after waiting a time s is proportional to

exp (−
∑

y∈Nx lyx). Then, once a transition occur, the probability that the transition moved

X to state y is lyx/
∑

z∈Nx lzx [242]. Equivalently, if a waiting time is sampled for each

possible transition from exponential distributions with rates lyx for each y ∈ Nx then the

transition with the shortest waiting time occurs [243]. Exact trajectories of continuous-time

discrete-space Markov chains can be generated by Gillespie’s Direct Method, sometimes

called the Stochastic Simulation Algorithm, which uses the former approach (sample the

transition time, then sample which transition occured) [242], or by First Reaction Method

(sample a sequence of transition times, then pick the transition which occured first). The

waiting times for the unused transitions can be reused to minimize the number of random

number draws when using the Next Reaction Method [243].

An important class of discrete-space continuous-time Markov processes are reaction

networks. Reaction networks are widely used to model well-mixed systems of chemical

reactions with small particle counts, especially in molecular biology [241]. Reaction net-

works are also used to simulate birth-death processes in ecology [75].

In a reaction network the set of possible transitions is described by a list of possible

reactions, where each reaction makes a specific change to the state variables, and occurs

with a rate that is a function of the state variables [242]. Let X ∈ Zd represent the state

of a process with d state variables. These might represent the number of molecules of a

certain type, number of proteins in a certain configuration, or number of individuals of a

certain species. Then let R be a set of possible reactions. Let rk ∈ R be a particular

reaction. Then let s(k) be the kth stoichiometry vector, and let λk(x) ≥ 0 be the propensity,

or rate function, associated with the kth reaction. Then, if at some time t the process is in

state X(t) = x then the set of possible reactions are all rk ∈ R such that λk(x) > 0, the
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instantaneous rates of the reactions are given by λk(x), and, if reaction k occurs at time

t+ s then X(t+ s) = x+ s(k) [241].

Now suppose that, at time t, the probability that X(t) = x is p(x, t). Then p(x, t) is

governed by the system of linear differential equations [241, 242]:

d

dt
p(x, t) =

∑
rk∈R

λk(x− s(k))p(x− s(k), t)− λk(x)p(x, t). (6.1)

This is the master equation for a reaction network. A master equation governs the spread

of probability across the possible states of the process [242].

If the set of possible states is finite then the master equation can be expressed using a

matrix L. Index the states of the process so that xj is the jth state corresponding to vertex j

of G, where G is the undirected version of G� which has one vertex for each possible state

the system could reach, and a directed edge associated with each possible transition. Then

let lji be the instantaneous rate of transition from i to j, and let lii = −
∑

j∈Ni lji. Let pi(t)

denote the probability that X(t) = xi. Then the master equation is simply:

d

dt
p(t) = Lp(t). (6.2)

The matrix L is the Laplacian for the random walk. Note that this is not the same as the

node or face Laplacians that appeared in the HHD. The columns of L all sum to zero, so

probability is conserved by Equation (6.2).

Given the transition rates lij we will study the edge flow:

fk =
1

2

(
log(lj(k)i(k))− log(li(k)j(k))

)
(6.3)

Note that the edge flow between i and j is only finite if it is possible to move from i to
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j, and from j to i, with nonzero probability. Thus we assume that, if there is a directed

edge from i to j with nonzero transition rate, then there must be a directed edge from j to

i with a nonzero transition rate. This assumption is based on the principle of microscopic

reversibility, which holds for any physical system. That said, not all models of physical

systems obey microscopic reversibility since it may be convenient to round very small

transition rates to zero, especially if they are too small to measure. This limits the applica-

tions of our methods to continuous-time discrete-space Markov chains without absorbing

states [75]. Many ecological models include absorbing states, namely, extinction, so it is

important to note this limitation.

The motivation for this choice of edge flow is described in Section 6.3, where it is shown

that this choice of edge flow arises naturally from a class of networks whose dynamics do

not exhibit any tendency to cycle, and can be described entirely by a potential function and

a set of conductances on the undirected edges. In Section 6.5 we show that this choice of

edge flow is naturally related to the thermodynamics of Markov chain models of physical

processes. Thus, by defining the edge flow according to Equation (6.3) the analysis using

the HHD amounts to an analysis of the thermodynamics of an analogous physical system

with the same transition rates as the system of interest.

Under the assumption of microscopic reversibility the directed graph G� has a pair

of edges between each pair of nodes that are connected, so one undirected edge can be

introduced for each pair of directed edges. As in Chapter 2 let G denote the undirected

version of G�. If G is connected then G� is irreducible. A Markov chain is irreducible if

there is a path between any pair of nodes that can traversed with nonzero probability [241].

Since G is connected there is a path from any i to any j in G. Microscopic reversibility

ensures that the path can be taken in either direction in G� with nonzero probability. If

a continuous-time discrete-space Markov chain is irreducible then it is ergodic, and p(t)
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converges to a unique steady state distribution, q, from any initial conditions [241, 244].

This steady state is the Perron-Frobenius eigenvector of the matrix L corresponding to

eigenvalue 0, and is the unique vector in the nullspace of L with nonnegative entries that

all sum to one.

The existence of a unique steady state, and convergence to it, can be proved directly

from the Perron-Frobenius Theorem and the irreducibility of G�. Suppose that p(0) = p0.

Then since p(t) obeys the master equation (Equation (6.2)) the probability distribution at

time t is exp(Lt)p0 where exp(A) denotes the matrix exponential. Then, if we coarse

grain time by considering a sequence of discrete times {0, t1, t2, ...} where tj+1 = tj +

∆t, then X(tj) is a discrete time Markov process with transition matrix exp(L∆t). Since

exp(L∆t) is a transition matrix for a discrete time Markov process it must be a stochastic

matrix, that is, a matrix with all nonnegative entries and whose columns sum to one to

conserve probability. Therefore exp(L∆t) is a square matrix with real, nonnegative entries.

Moreover, since G� is irreducible, and any sequence of nonzero waiting times is possible, it

is possible that ifX(t) = x thenX(t+∆t) = y for any y ∈ V provided ∆t > 0 [245]. Then

all of the entries of exp(L∆t) must be positive if ∆t > 0, so the discrete time process is

both irreducible and aperiodic [244]. The Perron-Frobenius Theorem states that if a matrix

A is square, real, and non-negative then it has a unique largest eigenvalue corresponding

to a nonnegative eigenvector [246]. Any stochastic matrix has an eigenvalue equal to one

since the sum of the columns equal one. The Gershgorin circle theorem2 ensures that this

is the largest possible eiegenvector since all entries are nonnegative and all columns sum to

one. It follows that there is a unique eigenvector corresponding to eigenvalue 1, and all of

2All eigenvalues of a square matrixAwith complex entries are contained in the union of the disks centered
at the diagonal entries of the matrix, and with radii equal to the sum of the magnitude of each off-diagonal
component in the corresponding columns [247]. For a real V ×V matrix A it follows that all eigenvalues are
contained in the interval ∪Vj=1[ajj −

∑
i 6=j |aij |, ajj +

∑
i 6=j |aij |]. For a stochastic matrix ajj +

∑
i 6=j |aij |=∑

i aij = 1 and ajj −
∑

i 6=j |aij |= 0.

357



its entries have the same sign, so it can be chosen so that all of the entries are nonnegative.

Properly normalized this eigenvector is a steady state distribution. All other eigenvalues

must be less than one, and, by Gershgorin, greater than or equal to zero. Thus, no matter

the initial distribution, the sequence p(tj) must converge to the steady state distribution

[241].

Lemma 21 (Convergence to a Unique Steady State). If G� is a finite connected directed

network that obeys microscopic reversibility (if there is an edge from i to j with nonzero

transition rate then there is an edge from j to i with nonzero transition rate), then the

continuous-time discrete-space Markov processX(t) with Laplacian L has a unique steady

state distribution q, and the probability that X(t) = x, p(x, t), converges to q from any

initial distribution p(x, 0) = p0(x).

6.3 The Conservative Case: Detailed Balance

When we studied tournaments we started by looking for a special class of tournaments

that were, in a sense, acyclic. Here, as before, we start by considering a special case - the

conservative case. We would like to choose an edge flow so that, when the edge flow is

conservative, the process has no tendency to circulate.

One way to think about circulation is through the probability fluxes, J(t). The proba-

bility flux on edge k is the difference between the rate of flow of probability from i(k) to

j(k), and the rate of flow from j(k) to i(k):

J(t)k = J(t)i(k)j(k) = lj(k)i(k)p(t)i(k)− li(k)j(k)p(t)j(k). (6.4)

Note that the collection of fluxes is, itself, an edge flow.
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A reasonable measure of circulation is the curl of the fluxes. If the curl of the flux

around a loop is nonzero then the process has a net tendency to move around that loop in

a particular direction. The fluxes do not circulate if the curl of the fluxes around any loop

is zero, or, more strongly, if it is impossible to follow the fluxes around a cycle. More

precisely, the fluxes do not circulate if there is no cycle where all of the fluxes on the cycle

point in the same direction. The fluxes depend on the distribution, so different pwill lead to

different J . It would be easier to define a “no circulating flux" condition if the fluxes were

unique. Since the probabilities p(t) converge to a unique steady state q, the fluxes converge

to a unique set of steady state fluxes. Therefore, one way to define a process that does

not tend to circulate is a process whose steady state fluxes do not circulate. We will show

in Section 7.3.2 that the requirement that the steady state fluxes do not circulate actually

implies that the fluxes never circulate, regardless the current distribution.

The rate of change in the probability at a particular node is the (negative) divergence of

the fluxes:
d

dt
pi(t) = [GᵀJ(t)]i (6.5)

At steady state d
dt
p(t) = 0 so the steady state fluxes must be divergence-free. By Theo-

rem 5, if G is finite and closed, then the steady state fluxes must lie in the range of Cᵀ.

Therefore:

Lemma 22. The curl of the steady state fluxes around any loop is zero if and only if there

is no cycle on which all of the steady state fluxes point in the same direction, and if the curl

of the steady state fluxes is zero then the steady state fluxes are all identically zero.

Proof. First, suppose that all of the steady state fluxes are zero. Then CJ = C0 = 0 so

the curl of the fluxes is zero. If J = 0 then the fluxes do not point in any direction, so it is

impossible to find a cycle on which all of the fluxes point in the same direction (clockwise
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or counterclockwise).

Next, suppose that there is no cycle in G on which all of the fluxes point in the same

direction (clockwise or counterclockwise). Form a directed graph, G→, with one edge for

each undirected edge of G with a nonzero flux, oriented in the direction of the flux. The

steady state fluxes are divergence free so the directed graph, G→ must be cyclic (see Lemma

16). That is, for any pair of connected nodes in G→ there is a cycle including both nodes.

Therefore, if there are any connected nodes in G→ there is a cycle in the original graph that

can be traversed entirely in the direction of the flux. It follows that, if there is no such cycle

in the original graph, then there must be no directed edges in G→, so all of the fluxes must

be zero. If J = 0 then the curl of J is zero on any cycle.

Finally, suppose that the curl of the steady state fluxes is zero. The steady state fluxes

are divergence free so there exists a vector θJ ∈ RL such that CᵀθJ = frot. Then, if the

curl of J is zero on any loop, CCᵀθJ = Cᵀfrot = 0. The matrix CCᵀ is invertible so

CCᵀθJ = 0 implies θJ = 0, and hence J = 0.

Lemma 22 can be shown more intuitively as follows. Suppose the system is at steady

state and there is a nonzero net flow of probability between two states. In order for the two

states to maintain constant probability the net flow into each must balance the net flow out

of each. Since there is a net flow between the two there must be an equivalent net flow into

and out of the pair. If this is true for all states then any net flow of probability must form

closed cycles (see Lemma 16). Therefore, if probability never flows in a closed cycle, at

equilibrium the net flow of probability between any two states must be zero.

Lemma 22 establishes the equivalence of two different notions of circulation. Whether

we define circulation as a nonzero curl, or the existence of a cycle on which all of the

fluxes point the same direction, the only steady state in which the fluxes do not circulate
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is a steady state with no flux. This requirement is intuitively connected to conservative

dynamics. If the probability flow is driven by a scalar potential then it cannot circulate

when at steady state. Probability cannot flow downhill around a closed cycle, since no path

around a closed cycle can be downhill at every step.

The requirement that all of the steady state fluxes are zero is called detailed balance

[248]. Isolated physical systems automatically reach an steady state without net circulation

since, in physical systems, rotation at steady state requires an external energy source [240].

Thus all isolated physical systems obey detailed balance. A steady state with zero steady

state fluxes is called an equilibrium. If the process does not obey detailed balance it will

still reach a steady state, but the steady state is a nonequilibrium steady state since the

probability fluxes are nonzero and circulate [248].

A closely related idea is time-reversibility [20]. A Markov process is reversible if

any trajectory is equally likely forward or backward conditioned on the endpoints. A

process that tends to circulate is not time-reversible since trajectories moving around cycles

will usually traverse the cycles in a particular direction in forward time, and the opposite

direction in backward time. Thus if a process is time-reversible it should not circulate.

This approach offers a more general notion of non-circulation since it is not defined with

respect to steady state dynamics. That said, the steady state fluxes equal the average rate

at which an edge is crossed in its forward direction minus the average rate it is crossed in

its backward direction, so can be expressed as the average number of forward traversals

minus the average number of backward traversals on a long trajectory [4, 6]. If the process

is time-reversible then the probability of traversing any path forwards should equal the

probability of traversing the path backwards, so the net fluxes should approach zero on long

trajectories. This suggests that the two notions may actually be equivalent, even though

time-reversibility is defined without referencing a steady state distribution.
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Consider a finite trajectory visiting the sequence of states {x0, x1, ...xn} and spending

waiting times w = {w0, w1, ...wn} in each state. Then define the backward trajectory:

{xn, ...x1, x0}, {wn, ...w1, w0}. Since the random walk is a Markov process, the probability

of each transition and event time depends only on the current state. Therefore, if we let X

denote the states visited by the process X(t), and let W denote the waiting times, then the

probability of observing the forward trajectory out of all trajectories of length n starting at

x0 is:

Pr{X = {x0, x1, ...xn},W = {w0, w1, ...wn}} =

=

[
n−1∏
k=0

lxk+1xk

|lxkxk |
|lxkxk |exp(−|lxkxk |wk)

]
|lxnxn|exp(−|lxnxn|wn)

=

[
n−1∏
k=0

lxk+1xk exp(−|lxkxk |wk)

]
|lxnxn|exp(−|lxnxn |wn)

=

[
n−1∏
k=0

lxk+1xk

][
n∏
k=0

exp(−|lxkxk |wk)

]
|lxnxn|

(6.6)

where |lxkxk |=
∑

y∈Nxk
lyxk is the net rate of transition out of state xk. Then the first

bracketed expression depends on the direction of traversal, the middle bracketed expression

does not depend on the direction of traversal since it only depends on the states visited and

time spent in each state, and the last term depends on the time spent in the last node.

Therefore the ratio of the probability of the forward to backward trajectories is:

[
n−1∏
k=0

lxk+1xk

lxkxk+1

]
|lxnxn|
|lx0x0|

The first half of this expression depends on the path taken, and the second half depends

on the conditioning at the endpoints. For example, if we start recording the trajectory as

soon as it leaves the first state and stop recording as soon as it arrives at the second state,
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then the ratio of the forward to backward trajectories has the same form. Alternatively,

if we only consider the probabilities of the skeleton process then we arrive at the same

expression.3

Suppose that the trajectory is a cycle. Then |lxnxn ||lx0x0 |
= 1 since x0 = xn. Therefore the

ratio of the probability of observing a cycle in one direction to the probability of observing

the cycle in its reverse direction is:

[
n−1∏
k=0

lxk+1xk

lxkxk+1

]
.

A Markov chain is reversible if these two probabilities are equal [240]. That is, a

Markov chain is reversible if the probability of observing a cyclic sequence of events does

not depend on the direction in which the cycle is traversed. If these two probabilities are

the same for all cycles then the process obeys the cycle condition (see Equation (4.7)):

n−1∏
k=0

lxk+1xk

lxkxk+1

= 1 if xn = x0. (6.7)

Lemma 23. If a discrete-space continuous-time Markov process X(t) on a finite network

with microscopic reversibility obeys detailed balance (steady state fluxes J = 0), then it is

reversible and satisfies the cycle condition.

Proof. Suppose that the process obeys detailed balance. Then, by definition, all of the

steady state fluxes are zero so:

ljiqi = lijqj. (6.8)

for all connected pairs of nodes i and j. Now consider a closed cycle y starting and ending

3For the skeleton process the probabilities are
∏n−1

k=0 lxk+1xk
/|lxkxk

| and
∏1

k=n lxk−1xk
/|lxkxk

| so the
ratio of forward to backward probabilities is the same.
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in state xi. For clarity consider the smallest nontrivial cycle:

y = xi → xj → xk → xi.

By rearranging the detailed balance condition we can fix qj in terms of qi, qk in terms

of qj , and qi in terms of qk:

qj =
lji
lij
qi, qk =

lkj
ljk
qj, qi =

lki
lik
qk.

Carrying this process to completion solves for qi in terms of qi. That is, carrying the

process to completion gives a consistency condition for detailed balance that is entirely

independent of the steady state distribution. Plugging the first equation into the second,

and the second into the third:

qi =
lji
lij

lkj
ljk

lik
lki
qi

Or:
lji
lij

lkj
ljk

lik
lki

= 1, lijljklki = liklkjlji. (6.9)

Now consider a cyclic sequence of nodes, x0, x1, x2, ...xn = x0. Then:

qxk =

[
k−1∏
j=0

lxj+1xj

lxjxj+1

]
qx0 .

Since the path is a cycle qxn = qx0 so the product of the ratio of forward to backward rates

around the cycle must equal 1. It follows that, if a process obeys detailed balance then it

must obey the cycle condition (Equation (6.7)). If a process obeys the cycle condition then

it is time reversible, so any process that obeys detailed balance (zero steady state fluxes)

must be reversible.
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Lemma 23 shows that any process that obeys detailed balance is also reversible. The

converse is also true [20]. If a process is reversible then it satisfies the cycle condition, and

the cycle condition implies that the process has zero steady state flux.

Theorem 24 (Detailed Balance). A discrete-space continuous-time Markov chain on a

finite network obeying microscopic reversibility obeys detailed balance if and only if:

1. the steady state fluxes are all zero,

2. it is time-reversible (satisfies the cycle condition Equation (4.7)),

3. the edge flow fk = 1
2

(
log(lj(k)i(k))− log(li(k)j(k))

)
is conservative,

4. there exists a potential function φ such that −Gφ = f and lij = ρij exp(φj − φi)

where ρij = ρji is a symmetric function on the edges

If a process obeys detailed balance then the steady state distribution obeys a Boltzmann

type distribution:

qi ∝ exp(−2φi). (6.10)

Proof. Lemma 23 establishes that detailed balance implies the cycle condition, and, as a

consequence, reversibility. If the cycle condition holds then the product of the ratio of for-

ward to backward transition rates around any cycle equals one. Therefore, if x0, x1, ..., xn

is a cyclic sequence of nodes:

log

(
n−1∏
j=0

lxj+1xj

lxjxj+1

)
=

n−1∑
j=0

log(lxj+1xj)− log(lxjxj+1
) = log(1) = 0.

Thus, if the edge flow fk is defined according to Equation (6.3), then the cycle condition
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implies that the curl of f around any loop is zero. It follows from the fact that the network

is finite that f must be conservative. If f is conservative then there must exist a potential φ

such that −Gφ = f . If f = −Gφ then
√
lij/lji = exp(−(φi − φj)).

Then:

lij =
√
lijlji

 
lij
lji

= ρij exp(φj − φi)

where ρij =
√
lijlji is the geometric average of the forward and backward transition rates,

so does not depend on the ordering of the indices. Note that these coefficients have the

same units as the transition rates, probability over time, while the geometric difference

used to define the edge flow and associated potential is unit-less.

To prove the converse suppose that f = −Gφ for some potential. Then the definition of

the edge flow implies lij = ρij exp(φj − φi). If f = −Gφ it is automatically conservative,

so is curl free. Since the edge flow is conservative the sum of f around any loop is zero,

so the cycle condition is automatically satisfied and the process is reversible. It remains to

show that, if the cycle condition is satisfied, then the steady state fluxes are all zero.

Any reversible physical process is energetically isolated, so reaches thermal equilib-

rium, with a steady state fixed by the Boltzmann distribution. Therefore, a natural ansatz

for the steady state of a process obeying detailed balance is:

qi =
1

Z
exp(−βφi). (6.11)

where Z =
∑

i exp(−βφi) is analogous to the partition function and β is analogous to the

inverse temperature. To check if there is a choice of β for which Equation (6.11) defines

the steady state distribution compute the flux on each edge:

ljiqi − lijqj = ρij (exp(φi − φj) exp(−βφi)− exp(φj − φi) exp(−βφj)) .
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Now, if β = 2 then:

ljiqi − lijqj = ρij (exp(−(φi + φj))− exp(−(φi + φj))) = 0

so the flux on each edge is zero. If the flux on every edge is zero then the rate of change of

probability at each node is zero, so q defined by Equation (6.11) is the steady state. Since

the steady state fluxes are all zero the process obeys detailed balance.

Alternatively, detailed balance requires lijqj = ljiqi or:

qi
qj

=
lij
lji
. (6.12)

But then log(qi) − log(qj) = 2fij . Since f = −Gφ this implies log(qi) − log(qj) =

2(φj−φi) which is solved, up to the addition of a constant, by setting log(qi) = −2φi.

Therefore, for networks obeying detailed balance we have a simple decomposition of

the edge transition rates that expresses the edge transition rates in terms of a potential:

1. Split each pair of transition rates into their geometric difference
√
lij/lji and geo-

metric average
√
lijlji. Let ρij =

√
lijlji = ρji denote the geometric average of the

forward and backward rates. We will refer to ρ as the per capita conductances, since

ρ have units one over time, and correspond to the average transition rate over the

edge. This choice of terminology is motivated in Section 6.3.1. Then set the edge

flow f equal to the log of the geometric difference: fij = log(
√
lij/lji).

2. If the process obeys detailed balance then f = −Gφ where φ is the scalar potential,

and the steady state qi ∝ exp(−2φ). Note that the steady state in detailed balance

is independent of the per capita conductances ρ. Whenever it is possible to express
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f with the gradient of a potential the corresponding Markov process obeys detailed

balance and is time reversible.

In contrast, if f is not in the range of the gradient then it is not conservative and the

system does not obey detailed balance. Outside of detailed balance the steady state is

maintained by circular balance [4], with nonzero steady state currents. In that case the

steady state distribution does not obey Equation (6.10). By analogy the effective potential

is defined:

φeff ∝ − log(q) (6.13)

for an appropriately chosen scaling constant.

6.3.1 An Electric Circuit Analogy

When the Markov process obeys detailed balance we can introduce an electric circuit

analogy where the flow of current over the circuit mimics the flow of probability over

the network. This analogy is used as an introductory example for how a random walk

on a network can be related to a physical process, and how that relation can help build

intuition about the random walk. The usefulness of any analogy of this kind depends on

the familiarity of the analogous system, and how contrived the analogy is. For a random

walk obeying detailed balance there is a simple analogy to circuits that clarifies the role

of the potential, and the geometric average of the transition rates which appeared in the

previous discussion.

Connections between electrical networks and random walks on graphs are well studied

(cf. [28, 249]). Given a network an associated electrical network is constructed by replacing

each edge in the network with a resistor. By scaling the resistances appropriately the elec-

trical network can imitate the behavior of the random network. Without an energy source
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(battery) to drive current the electric circuit analogy only applies to reversible random walks

(conservative networks). In this context charge, current, and voltage all have a probabilistic

interpretation [28]. Given different boundary conditions (input current or voltages) we can

ask different questions about the random network. For example, the voltage established

when a current is introduced at some nodes, and removed at a boundary set, is analogous

to passage times onto the boundary set in the random network. Commute and cover times

in the random network are equivalent to the total resistance between a pair of nodes [249].

These connections are both illuminating and useful. They can be used to help clarify

dynamics on random network processes, and to guide intuition. Since efficient methods

for computing current, charge, and voltage distributions are well developed, the connection

between random network processes and electrical networks can be leveraged to solve large

problems in random networks. For this reason circuit theory has been used to study

connectivity in chemical, neural, economic, and social networks [250]. Circuit theory

has also been introduced in ecological settings to study connectivity in spatial dispersal

networks [250].

Suppose you are given an electric circuit that consists exclusively of resistors joining

nodes. The nodes are analogous to the states of the network, the resistors are analogous to

the undirected edges. Each node is attached to a capacitor which is subsequently grounded

as shown in Figure 6.1. When we introduce a distribution of charge Q over the nodes, how

will the charge flow through the network?

Suppose the capacitance of node xi is Ci. Then the voltage of node xi is Vi = Qi/Ci.

The capacitance is the capacity of a node to store charge at a given voltage. If node xi is

connected to node xj with a resistor of resistance Rij then the current Iij across the resistor

from xi to xj is:

Iij =
1

Rij

Å
Qi

Ci
− Qj

Cj

ã
.
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Electric  Circuit  

C1 C2 ... C7

R12 R23 ... R67

Random  Walk

L12

L21

L23

L32

...

...

L67

L76

Probability

Charge

Ground

Figure 6.1: The electric circuit analogy. Charge is analogous to probability, and will
tend to accumulate where the capacitance is large. A large capacity to store probability
corresponds to small potentials. The resistances scale the time for charge to distribute
itself, but have no effect on the final distribution.

The flow of current is remarkably similar to the rate of flow across an edge in our

original network:

ljipi − lijpj = ρij (exp (−[Gφ]ji)pi − exp (−[Gφ]ij)pj)) .

however there are subtle differences between the two equations. If we consider charge

analogous to probability then Q is analogous to p. Note that for the electric network the

charge is divided by a function on the nodes Ci, whereas for the probabilistic network

the distribution is multiplied by a function on the edges exp (−[Gφ]ij). In order to make

these two equations consistent we need to find a way to rewrite the second equation as a

difference between functions on the nodes.

The equations also differ in units. The electrical resistance R has unit volt seconds per
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coulomb: [R] = [V ][t]/[Q]. The capacitance C has unit coulomb per volt: [C] = [Q]/[V ].

Since exp (−[Gφ]ij) is a geometric difference of two functions with the same units it is

necessarily dimensionless. The per capita conductance ρ is the geometric mean of the

instantaneous rates, so necessarily has units time: [ρ] = 1/[t].

The differences here are subtle but important. Suppose we measured probability in

Coulombs. Treating energy as a dimensionless quantity (ignoring Volts) [ρ][Q] = 1/[R]

and [Q]/[C] equals [exp (−(∇φ)ij)]. That is, the latter are per capita rates, the former are

not. We can treat energy as dimensionless since the energies are related to the edge flow f ,

which is dimensionless.

To resolve these differences expand the flow of probability:

ljipi − lijpj =
√
lijlji

Ç 
lji
lij
pi −
 
lij
lji
pj

å
=
√
lijlji

Å…
qj
qi
pi −
…
qi
qj
pj

ã
.

where the last equality follows from Equation (6.12). Next, simplify the ratio of the steady

state distributions and pull out a common factor of the geometric averages of the steady

states:

√
lijlji

Å…
qj
qi
pi −
…
qi
qj
pj

ã
=
√
lijlji

Å√
qiqj

qi
pi −

√
qiqj

qj
pj

ã
=
√
lijljiqiqj

Å
pi
qi
− pj
qj

ã
.

Notice that this form matches the electrical network equation if we let C = q and

1/Rij = ρij
√
qiqj. Then the per capita conductance ρ is replaced with the resistance R and

the capacitance ratio with the capacitance C. So, letting:

1

Rij

=
√
lijljiqiqj = ρij

√
qiqj, Ci = qi = exp (−2φi) (6.14)

gives an exact analogy between the flow of probability on the probabilistic network and the
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flow of charge on a electric network:

Iij = ljipi − lijpj =
1

Rij

Å
pi
Ci
− pj
Cj

ã
. (6.15)

Notice that the conductance of the electric circuit is the per capita conductance times

the geometric average of the steady state charge (probability) at each end of each edge.

Therefore 1/Rij = ρij
√
qiqj =

√
(lijqj)(ljiqi) is the geometric average of the rate at which

probability is exchanged between the two nodes at steady state. Since the system obeys

detailed balance these two rates are identical, so the conductance 1/Rij is the rate at which

charge/probability flows between the two nodes at steady state.

This analogy provides a clear interpretation of ρ and φ. In particular it shows that we can

think of φ as the logarithm of a capacitance associated with each node. This should not be

a surprise, after all, capacitance is a per capita potential. Glancing back at Equation (6.15)

we can also see that the capacitance is effectively the amount of probability that any node is

capable of holding before it starts to diffuse out. In other words, the capacitance describes

each node’s capacity to store probability.

More generally this analogy shows that the diffusion of probability obeys the same

physical principles as the diffusion of charge. Both represent an ensemble of random walks

directed by a potential function. Analogies of this type are well explored (see [34, 249, 28,

251]), and have been proposed in an ecological setting ([250]). In general these analogies

only use resistors. The analogy developed here generalizes this idea by introducing an

underlying capacitance. Introducing capacitors changes the interpretation of the electric

network, and puts more emphasis on the potential/equilibrium distribution.

It is not hard to imagine other physical analogies for the flow of probability.

Consider a series of tanks of water separated by pipes of different gauge. Introduce a
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solute into one of the tanks. The rate at which it will diffuse between all the tanks depends

on their volume, and the gauge of pipe linking the tanks. The total quantity of solute is

conserved as it diffuses, and it diffuses to a static equilibrium. Solute diffuses from high

concentration to low concentration. Equilibrium is achieved when all the tanks have the

same concentration. Since the amount of solute needed to reach equilibrium concentration

per tank depends on the volume of each tank the tank volume plays the same role as the

capacitance. The concentration plays the role of voltage.

The main goal of these analogies is to provide physical intuition for network potentials.

They offer natural ways to think about the role of potentials in networks, and emphasize

crucial properties of conservative networks. They all move from high to low potential.

They are all ergodic. They all approach a static steady state that is independent of the rate

of diffusion across any edge.

We should not be surprised that evocative analogies are easy to find. One of the main

virtues of a potential description is its appeal to intuition. This is why, at least in part, that

qualitative potentials are frequently invoked in lieu of a quantitative potential. References

to an evolutionary potential landscape, or basin of attraction often invoke potentials to make

informal or verbal arguments based on that intuition (cf. [252]).

The electric circuit analogy provides a concrete example that can be used to ground

intuition in a qualitative setting. In Section 6.5 we develop a much deeper physical analogy

that relates the dynamics of the Markov process to the thermodynamics of an analogous

physical process.
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6.4 The HHD for Markov Chains

Let L be the Laplacian for a continuous-time discrete-space Markov chain, where lij is the

rate of transition from node j to node i with the property that if lij > 0 then lji > 0. Then

let:
ρij =

√
lijlji

fij =
1

2
(log(lij)− log(lji)) = log

Ç 
lij
lji

å (6.16)

where f is the edge flow, and ρ are the per capita conductivites. Then lij = ρij exp(fij),

ρij = ρji, and fij = −fji. The flow, f , represents the difference in the forward and

backward rates between a pair of states, and thus the preferred reaction direction. The

conductivity, ρ, describes the rate at which reactions occur, on average, between the pair.

Let G be the undirected version of G�. Let G be the gradient operator associated with

G and let C be the curl associated with a cycle basis of G. Then let φ, θ be the solutions to:

f = fcon + frot = −Gφ+ Cᵀθ (6.17)

where θ is unique and φ is determined uniquely up to an additive constant.

Equation (6.17) defines the HHD for continuous-time discrete-space Markov chains.

The rest of this dissertation is devoted to studying how this decomposition can be used to

understand the dynamics of the Markov process.

Note that a process obeys detailed balance if and only if frot = 0 and θ = 0. Otherwise

the process does not obey detailed balance and reaches a nonequilibrium steady state, in

which the probability distribution is constant, but there are nonzero circulating probability

fluxes.
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6.5 A Thermodynamic Analogy

In Section 6.3.1 we developed a physical analogy relating Markov processes that obey

detailed balance to an electric circuit built of resistors and capacitors. This analogy is

limited in two ways. First, it only treats the detailed balance case, in which the edge

flow defined by Equation (6.3) is conservative. Second, the analogy relates the flow of

probability over the network to the flow of charge over a circuit, which is treated as a

deterministic process. A better physical analogy would relate the given Markov process to

a Markov process representing a physical system with meaningful thermodynamics. Then

the thermodynamics of the analogous system could be analyzed, and related to the analysis

using the HHD.

The following section develops this thermodynamic description. Highlights include

simple relations between the network potentials and the Free Energy of the system, demon-

stration that the rotational potential is associated with coupling to external energy sources,

and a decomposition of the affinities (generalized thermodynamic forces) into an internal

and external component via the HHD. These results are largely based on [5, 19, 20, 4] who

introduce axiomatic thermodynamics for Markov chains. Although the following section

only addresses the thermodynamics for discrete state spaces some of the same results carry

over naturally to continuous state spaces [20]. Here we will not address continuous state

spaces since we do not yet have the analytic tools to apply the HHD to diffusive processes

in the continuum.

It is important to note that, if the study system is physical, then the thermodynamic

interpretation developed here may not match the thermodynamics of the original system

since our approach assumes no knowledge outside of the states and transition rates. Sys-

tems with different underlying thermodynamics may have the same transition rates, so at
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best we hope to construct an analogous physical system with meaningful thermodynamics.

Thus our objectives are primarily phenomenological. For appropriate physical systems this

analysis is an exact analysis of the actual thermodynamics of the system (cf. [22]).

Assume that X(t) is a Markov process on a network where xj is the collection of

state variables associated with the jth possible state of the system. These are usually

counts, such as the number of molecules of a certain type, in a certain configuration, or

in a certain place [241]. In an ecological setting these might be the number of individuals

in a certain population, in a certain region, with a certain age, and a certain sex [75].

Assume that the state space is finite, though potentially very large. Assume that the

underlying directed graph G� is connected, and that for every forward transition there

exists a backward transition. Let L be the Laplacian storing the transition rates lij .

The key physical principle which bridges our formal development of the HHD for

Markov processes, defined in Section 6.4, and the thermodynamics of an analogous phys-

ical system is the following relation between the ratio of forward and backward transition

rates and the work required to move forward over a transition [4]. If there is a physical

process which is modeled by a Markov chain on G� with transition rates L, then:

lji
lij

= exp

Å
1

kBT
wij

ã
(6.18)

where kB is the Boltzmann constant, T is the temperature, and wij is the work required

to move from state i to state j [4, 5]. Schnakenberg provides an example based on the

diffusion of charged particle through a pore in a membrane [5], and Esposito et al. provide

an example based on a thermal engine [253].
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Taking a logarithm on both sides and dividing by 2 yields:

fij =
1

2kBT
wij (6.19)

where the factor of 1/2 arose from the choice to define the edge flow as the log of the

geometric difference in the transition rates.

Therefore the edge flow defined by Equation (6.3) is analogous to the work required to

move between two states, scaled by the temperature of the system. If a physical system is

energetically isolated then the work to change states is simply the change in the internal, or

potential energies of those two states.

For arbitrary processes governed by transition rates L there may not be a natural def-

inition of temperature, so the temperature may be defined as an arbitrary constant [5]. A

natural constant to pick is kBT = 1. Then the the edge flow is equal to one half the work

required to cross each edge divided by a dummy variable with units of energy. In some

situations it is natural to define a temperature based on system size, or based on the balance

of diffusion to drift in the Markov chain. In those cases a different convention can be used

to choose the scaling constant kBT . In a physical model T should be the true temperature

of the system.

A natural consequence of Equation (6.19) is that the sum of f over a path is one half

the work to complete that path. Specifically, if {x1, x2, ...xn} is a sequence of states then

the work required to traverse the sequence is [4]:

2
n−1∑
j=1

fxj+1xj = log

(
n−1∏
j=1

lxj+1xj

lxjxj+1

)
.

Notice that the product inside the logarithm is the ratio of the probability of traversing the
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trajectory forward to the probability of traversing it backward, without the term associated

with conditioning on the endpoints. If the path is a cycle then this is the ratio of the prob-

ability of traversing the cycle forward to traversing the cycle backward (see the discussion

of reversibility in Section 6.3). Thus, with kBT = 1, exponentiating the work to traverse a

cycle recovers the ratio of the probability of traversing the cycle forward to traversing the

cycle backward.

This gives a clean physical interpretation of the right hand side of the HHD, the edge

flow represents the work to move between states, scaled by a dummy variable representing

temperature. If we scale the potentials by the same dummy variables then they have units

of energy. Then −Gφ and Cᵀθ both produce edge flows representing the work to move

between edges. That is, the gradient of a potential function φ is work.

Usually the gradient of a potential is a force, since the gradient is usually a differential

operator. In a discrete setting the gradient is a difference operator. If ∆xij represents the

change in state when moving from state i to state j, and ||∆xij|| represents some measure

of the magnitude of the change in state, then the average force over the transition from

i to j would be wij/||∆xij||. Let Dx be a diagonal E × E weight matrix with diagonal

entries equal to 1/||∆xi(k)j(k)||. Then Dxw is the force required to cross each edge, and the

rescaled gradient DxG is a finite difference approximation to a derivative operator since

[DxGφ]k =
φj(k)−φi(k)
||∆xi(k)j(k)||

. Thus, if both sides of the HHD are be multiplied by Dx, then the

rescaled gradient DxG of the potential recovers the conservative component of the forces.

Note that this is a trivial reweighting of the HHD that does not change either φ or θ. In

a purely abstract setting, with no state variables associated with the vertices, then moving

from vertex i to vertex j corresponds to moving a unit probability mass, so it would be

natural to assign each edge length one. Then the average force on each edge is equal to

twice the edge flow, and the gradient of the potential is the force on each edge. Unless
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there is a natural length associated with each edge (magnitude of the change in some state

variable) we will use the convention that all edges have length one, so the edge flow equals

the average force on each edge times a dummy variable with distance one.

If the system of interest obeys detailed balance then fji = φi − φj for some scalar

potential φ. If we rescale the potentials by 1
kBT

then φi − φj = 1
kBT

fij = 1
2
wij . Therefore,

if the system obeys detailed balance then the work to move from state i to state j can be

expressed as the difference in a potential function, and the potential function at each vertex

can be interpreted as the internal energy of the system when at those vertices. Alternatively,

given an isolated physical system the work to move between states is always the difference

in the internal energy of the states, so the edge flow obeys detailed balance. Then the scalar

potential, after the appropriate scaling, would match the internal energy up to a factor of a

half. If Ei is the interal energy of the ith state then:

φi =
Ei
2

(6.20)

if the potentials are defined by 1
kBT

[−Gφ+ Cᵀθ] = f .

Equation (6.19) relates the HHD applied to the edge flow f to the energy and work as-

sociated with an analogous physical process. To build a complete thermodynamic analogy

we also need to introduce entropy.

Entropy is a measure of the spread of a distribution, so is defined relative to a given

probability distribution. Let p(t) be the probability distribution for X(t). Then, the entropy

associated with the distribution p is [20, 185]:

H(p) = −
∑
i∈V

pi log(pi) (6.21)

where the base of the logarithm determines the units used to measure entropy. Changing
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the base of the logarithm multiplies the entropy by a constant. In information theory the log

is usually either base e (nats) or base 2 (bits) [185]. In a physical setting the natural units for

entropy are given by using log base e, then multiplying by the Boltzmann constant kB. Here

entropy is denoted with H since this is the standard notation in information theory, and the

definition of entropy provided by Equation (6.21) is the information theoretic definition of

entropy [185]. It is important to note that the information theoretic definition of entropy

and the statistical mechanical definition are not the same (differ by more than choice of

units) for all systems [254]. The entropy is well defined for any probability distribution

since, if pi = 0, then pi log(pi) is set to 0 by convention since limx→0 x log(x) = 0.

It is important to note that the entropy H(p(t)) does not necessarily increase over time

[255]. A simple counterexample suffices.

Consider a network with two nodes. Then the network necessarily obeys detailed

balance so the edge flow is the gradient of some potential. Assume that the potential

at the two nodes are equal and the initial state, x1 is known (i.e. p(0) = [1, 0]). Then,

as time progress, p1(t) will decrease and p2(t) will increase until p1 = p2 and entropy

is maximized. Suppose instead that the opposite is true. Let the potential at the first

node be much much smaller than the potential at the second node. If the difference is

taken towards infinity then the equilibrium distribution q approaches [1, 0]. Now start from

p(0) = [0.5, 0.5]. The entropy of a distribution over N states is maximized by the uniform

distribution p = [1/N, 1/N...1/N ] [185], so H(p(0)) > H(p′) for any p′ 6= p(0). Since

q 6= p(0) the entropy must decrease. In fact, since q is near to [1, 0] the entropy is nearly

minimized.

Clearly entropy H(p) need not increase as time progresses. It is certainly possible that

the equilibrium distribution of a Markov chain is more tightly distributed than the initial

distribution in which case entropy will decrease. In fact entropy is only guaranteed to
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increase as time progresses if the equilibrium q is the uniform distribution [185, 255]. The

fact that the information entropy H(p) may decrease does not, however, violate the second

law of thermodynamics, since considering entropy alone ignores the energy associated with

states, and the work to move between states. In order to consider entropy production

properly we need to consider both the change in the entropy H(p(t)) and the energetics

associated with the potentials and edge flow.

Suppose that the process of interest obeys detailed balance. Then the internal energy of

the system can be expressed as the expected value of the potential:

E[EX(t)] =
∑
i∈V

Eipi(t) = 2
∑
i∈V

φipi(t). (6.22)

Then the associated free energy F (p) is defined [20]:

F (p(t)) = E[EX(t)]− TH(p(t)). (6.23)

The free energy defined by Equation (6.23) is analogous to the Helmholtz free energy.

However, since the number of nodes in the network is fixed the network volume is fixed.

Similarly the total amount of probability in the network is conserved. Thus there is no

meaningful analogy to pressure, so the Helmholtz and Gibbs free energies are equivalent

up to the addition of a constant. Free energy may be interpreted as the energy still available

in a system to do work. Isolated physical systems move to minimize their free energy. For

example, the concentrations of chemical species in an isolated system of chemical reactions

in an aqueous solution will eveolve to minimize their Gibbs free energy.

If we adopt the convention that kBT = 1 then TH(p(t)) = −kBT
∑

i∈V pi(t) log(pi(t))

which equals−
∑

i∈V pi(t) log(pi(t)) is the standard definition of entropy using nats. Then,
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in terms of the potential φ:

F (p) =
∑
i∈V

(2φi + log(pi))pi. (6.24)

Since we assumed that the process obeys detailed balance the scalar potential is di-

rectly related to the steady state distribution q by a Boltzmann type distribution (see Equa-

tion (6.10)). In particular 2φi = − log(qi)− log(Z) where Z is a normalization constant so

that exp(−2φ)/Z is normalized. Then:

F (p) =

[∑
i∈V

log

Å
pi
qi

ã
pi

]
− log(Z) = DKL(p||q)− log(Z) (6.25)

where DKL(p||q) is the Kullback-Liebler divergence (KL divergence) between the distri-

bution p and the steady state distribution q [185, 254].

The KL divergence is the measure of the distance between two distributions. The KL

divergence of p given q is the relative entropy of the distribution p relative to the distribution

q [185]. In some closed physical systems the free energy can be shown to be equivalent to

the relative entropy [254], so while the approach used here is entirely phenomenological,

for appropriate physical systems (i.e. proteins and macromolecules in aqueous solution at

constant temperature or polymer chains) the free energy defined by Equation (6.25) is the

true free energy of the system.

The KL divergence is well defined for any p since, under the assumption of microscopic

reversibility the Markov process is ergodic and has some chance of visiting any state, so

the steady state distribution is not zero at any state. Note that the KL divergence is not

a true distance since it is not symmetric in its argument and does not satisfy the triangle

inequality [185].
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The KL divergence is an example of an f -divergence:

Df (p||p′) =
∑
i∈V

p′if

Å
pi
p′i

ã
(6.26)

where f is a convex function such that f(1) = 0. Any f -divergence defines a quasi-metric

on the space of probability distributions since any f -divergence is nonnegative and zero if

and only if p = p′, but generally is not symmetric in p and p′, and generally does not satisfy

the triangle inequality. The KL divergence is the f -divergence with f(x) = x log(x). Renyi

introduced f -divergences in [256] where he showed that any f -divergence decreases for

Markov processes. Since this fact is essential for the development of our thermodynamic

analogy we review a proof provided by [185] for KL divergences.

The non-negativity of KL divergences is guaranteed by Jensen’s inequality. If f is

a convex function then Jensen’s inequality states that E[f(X)] ≥ f(E[X]) for any ran-

dom variable X distributed according to any probability distribution. The f -divergence

(Equation (6.26)) is Df (p||p′) = E[f(p(X)/p′(X))] where X is distributed according to

p′. Therefore Df (p||p′) ≥ f(E[p(X)/p′(X)]). But:

E[p(X)/p′(X)] =
∑
i∈V

pi
p′i
p′i =

∑
i∈V

pi = 1.

By definition f(1) = 0 so Df (p||p′) ≥ f(E[p(X)/p′(X)]) ≥ f(1) = 0. If p = p′ then

f(p′i/pi) = 0 for all i so Df (p||p′) = 0. Thus any f -divergence is nonnegative and equals

zero if p = p′.

The monotonicity of the KL divergence when applied to a Markov chain can be proved

using the chain rule for relative entropy, the nonnegativity of f -divergences, and the Markov

property.
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Suppose X and Y are a pair of random variables with joint distributions p(x, y) and

p′(x, y), marginal distributions p(x) and p′(x), and conditional distributions p(y|x), p′(y|x).

Then the chain rule for relative entropy states that [185]:

DKL(p(x, y)||p′(x, y)) = DKL(p(x)||p′(x)) +DKL(p(y|x)||p′(y|x)).

The chain rule can be proved by some trivial manipulation:

DKL(p(x, y)||p′(x, y)) =
∑
x,y

p(x, y) log

Å
p(x, y)

p′(x, y)

ã
=
∑
x,y

p(x, y) log

Å
p(x)p(y|x)

p′(x)p′(y|x)

ã
=
∑
x,y

p(x, y) log

Å
p(x)

p′(x)

ã
+
∑
x,y

p(x, y) log

Å
p(y|x)

p′(y|x)

ã
=
∑
x

p(x) log

Å
p(x)

p′(x)

ã
+
∑
x

p(x)
∑
y

p(y|x) log

Å
p(y|x)

p′(y|x)

ã
= DKL(p(x)||p′(x)) +DKL(p(y|x)||p′(y|x)).

Now suppose that p(t), p′(t) are two different distributions representing the state of the

Markov process initialized from possibly different initial distributions. Let p(t+∆t), p′(t+

∆t) be the distributions after time ∆t has passed. Then p(t + ∆t) = exp(L∆t)p(t)

and p′(t + ∆t) = exp(L∆t)p′(t) where exp(L∆t) is the discrete time transition matrix

corresponding to the time interval ∆t. This is a stochastic matrix, so its ith column is the

conditional distribution for the state of X(t + ∆t) given X(t) = xi. Note that the same

transition matrix updates both distributions.

Now let p(x(t), x(t + ∆t)) denote the joint probability that X(t) = x(t) and X(t +

∆t) = x(t + ∆t). Marginal and conditional notation follows similarly. Then, using the
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chain rule for relative entropy twice, once forward in time and once backward:

DKL(p(x(t), x(t+ ∆t))||p′(x(t), x(t+ ∆t)))

= DKL(p(x(t))||p′(x(t))) +DKL(p(x(t+ ∆t)|x(t))||p′(x(t+ ∆t)|x(t)))

and

DKL(p(x(t), x(t+ ∆t))||p′(x(t), x(t+ ∆t)))

= DKL(p(x(t+ ∆t))||p′(x(t+ ∆t))) +DKL(p(x(t)|x(t+ ∆t))||p′(x(t)|x(t+ ∆t)))

Now, since both p(t+∆t) and p′(t+∆t) are updated by the same transition matrix, the

conditional distributions p(x(t + ∆t)|x(t)) and p′(x(t + ∆t)|x(t)) are the same, so their

KL divergence is zero. Then, setting the two equations equal to one another, and moving

DKL(p(x(t+ ∆t))||p′(x(t+ ∆t))) to the left hand side:

DKL(p(x(t))||p′(x(t)))−DKL(p(x(t+ ∆t))||p′(x(t+ ∆t)))

= DKL(p(x(t)|x(t+ ∆t))||p′(x(t)|x(t+ ∆t))) ≥ 0.

But p(x(t)) = p(t) and p′(x(t)) = p′(t) so:

DKL(p(t)||p′(t)) ≥ DKL(p(t+ ∆t)||p′(t+ ∆t)) for any ∆t > 0. (6.27)

Therefore the KL divergence between p(t) and p′(t), each governed by the master

equation, but possibly initialized from different distributions, is monotonically decreasing.4

That is, as time progresses distributions become more similar as they converge to the steady

4Note that this proof did not rely on detailed balance, so the KL divergence between p(t) and its steady
state q is always monotonically nonincreasing, so is a Lyapunov function. That said the interpretation of the
KL divergence between p(t) and q as the Helmholtz free energy depends on the relation between φ and q
which requires detailed balance.
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state. If p′(0) = q then p′(t) = q for all time since q is the steady state. Therefore

the KL divergence between p(t) and the steady state q is monotonically nonincreasing. It

follows that the Helmholtz energy associated with a process that obeys detailed balance is

monotonically nonincreasing in time:

d

dt
F (p(t)) =

d

dt

∑
i

(2φi + log(p(t)i))p(t)i = DKL(p(t))− log(Z) ≤ 0. (6.28)

Moreover, since p(t) converges to q as t goes to infinity the KL divergence converges to

zero, so the Helmholtz energy converges to − log(Z). Since the KL divergence is nonneg-

ative this is the minimum possible value of the Helmholtz energy. Since the KL divergence

is convex in p and p′ [185], the free energy is a convex function in the distribution p.

Therefore, for a process obeying detailed balance, if the Helmholtz free energy is

defined by Equation (6.23), or, equivalently, by Equation (6.24), then the free energy is

a convex function in the distribution p, is nonincreasing in time, and F (p(t)) converges to

its minimum value as p(t) converges to the steady state. Thus the Helmholtz energy is a

Lyapunov function5 for the process p(t) [5, 240]. The fact that all f -divergences have the

same monotonic property means that any generalized free energy of the form Df (p||q) is a

Lyapunov function for p(t).

The monotonicity of the Helmholtz energy offers an elegant physical interpretation.

Since the Helmholtz energy is the expected internal energy minus the entropy, the probabil-

ity distribution moves simultaneously to minimize its energy and to maximize its entropy. If

the system was purely deterministic the entropy would play no role, and the system would

simply move to minimize its potential energy by aggregating in the node with the lowest

energy. This is equivalent to excluding the diffusion term from the underlying stochastic

5A function f(p) that is monotonically nonincreasing in f(p(t)) and reaches its minimum as t goes to
infinity
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Figure 6.2: The left panel shows the space of possible probability distributions. The right
panel shows the same subspace as viewed from above. The black curves represent paths
taken by p(t) as probability diffuses from initial conditions near the outer edges of the
triangle. The colored contour plot on the right represent the Helmholtz Free Energy given
φ = [0.5, 1, 0.25], with smaller values shown in purple and larger values in red. Notice that
the Helmholtz free energy is a Lyapunov function for p(t), and is minimized at equilibrium.

process. Since the system is not purely deterministic it gradually converts available energy

into heat. This corresponds to the gradual loss of information. Entropy acts to spread the

distribution uniformly, while energy acts to collapse the distribution towards some minimal

states. The equilibrium distribution is a compromise between these two tendencies. Note

that this mimics the usual properties of the free energy for systems of chemical reactions.

In a system of chemical reactions the probability vector is replaced with concentrations, the

free energy is decreasing as the concentrations change, and converges to a minimal value

as the concentrations approach their steady states. The Helmholtz free energy for a three

state network is shown in Figure 6.2, along with solution trajectories of p(t).

The monotonicity of the Helmholtz energy is the second law of thermodynamics for

Markov processes that obey detailed balance [20, 185]. Since energy is conserved, when-
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Figure 6.3: Entropy in a three state Markov chain increasing and decreasing with time.

ever the system moves between states with different energies that energy must be ex-

changed with the environment, typically by radiating heat. The radiated heat produces

entropy in the environment, so the overall entropy production of the entire process is

the change in internal entropy plus the entropy introduced into the environment by the

release of heat [5]. Therefore, the rate at which the system produces entropy is the rate of

decrease in the Helmholtz free energy [20]. Then the total entropy production is always

nonnegative since the Helmholtz energy never increases. It follows that, if the internal

entropy H(p) decreases, then the decrease in entropy inside the system must be offset by a

greater decrease in the internal energy, which releases enough heat into the environment.

Consider three nodes connected in a line. Suppose that node 1 is connected to node 2

is connected to node 3. Now suppose the flow along each edge point strongly away from

the second node. Then the associated Laplacian could be:

L =


−ε 1 0

ε −2 −ε

0 1 ε



388



Figure 6.4: Entropy in a three state Markov chain (shown in blue), along with the expected
internal energy (shown in red), and the free energy (shown in purple). The entropy increases
and decreases, but the free energy decreases monotonically. The total entropy production
(− d

dt
F (p(t))) is shown in the bottom right. It is always positive, so the total entropy, shown

in the top right, is always increasing.

where ε � 1. Then the equilibrium q is approximately [0.5, 0, 0.5]. Set p(0) = [0, 1, 0].

Then the entropy at time zero is minimized.

When released, probability diffuses rapidly out of the second node, and accumulates in

nodes 1 and 3. Since the process is symmetric there is some time tmax such that p(tmax) =

1
3
[1, 1, 1] is uniform and the entropy is maximized H(p(tmax)) = Hmax = − log (1/3).

At equilibrium q approaches [0.5, 0, 0.5] which has entropy H(q) ≈ − log (1/2). Since

H(p(0)) < H(q) < H(p(tmax)) the entropy will first increase to a maximum, then

decrease as the distribution approaches equilibrium. The corresponding process is shown

in Figure 6.3.

While the entropy of the system, H(p(t)) decreases for times t > tmax the free energy

is monotonically decreasing, thus the total entropy produced by the system is increasing.

This exchange of energy and entropy is shown in Figure 6.4
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Following [5], let P denote the rate of entropy production. Then the entropy production

is − d
dt
F (p(t)) = − d

dt
E[EX(t)] + d

dt
TH(p(t)). In general, the time derivative of p can be

expressed as the negative divergence of the probability fluxes, d
dt
p(t) = GᵀJ(t). Therefore,

if f(p) is a scalar valued function of p, then by the chain rule, d
dt
f(p) = [∇f ]ᵀGᵀJ(t) =

(G[∇f ])ᵀJ(t) =
∑

k(∂pj(k)f(p)− ∂pi(k)f(p))Ji(k)j(k)(t). That is, the rate of change of any

function of the distribution is the same as the sum over the edges of the flux over each edge

times the change in the function if an infinitesimal amount of probability is exchanged

across the edge. Then:

d

dt
TH(p(t)) = − d

dt

∑
i

pi(t) log(pi(t)) =
∑
i<j

[
(∂pi − ∂pj)

∑
h

ph(t) log(ph(t))

]
Jij(t).

To simplify note that ∂pi
∑

h ph(t) log(ph(t)) = log(pi) + 1 so:

[
(∂pi − ∂pj)

∑
h

ph(t) log(ph(t))

]
= log(pi)− log(pj).

Therefore:
d

dt
TH(p(t)) =

∑
i<j

log

Å
pi
pj

ã
Jij(t). (6.29)

It follows that log
Ä
pi
pj

ä
is the infinitesimal change in the entropy associated with moving

an infinitesimally small amount of probability between nodes i and j. If pj < pi then the

ratio is greater than one, so the entropy increases as probability flows from i to j. If pj > pi

then the ratio is less than one, so the entropy decreases as probability flows from i to j.

The rate of change in the internal energy is:

d

dt
E[EX(t)] =

∑
i<j

2(φi − φj)Jij(t). (6.30)
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But −Gφ = f so 2(φi − φj) = 2fij = log(lij) − log(lji). Therefore the total rate of

entropy production is:

P = − d

dt
E[EX(t)] +

d

dt
TH(p(t)) =

∑
i<j

log

Å
lijpj
ljipi

ã
Jij(t). (6.31)

The log ratio appearing before the probability flux J are the affinities [5].

Affinities generalize the notion of forces from classical mechanics to thermodyanmics.

In classical mechanics forces are derivatives of energy functions, so are the change in

energy after an infinitesimal motion. The affinity associated with an edge is the change

in free energy associated with moving an infinitesimal amount of probability across the

edge. Thus, in detailed balance the the affinities Aij are given by:

Aij(p) = −[∇F (p)](ei − ej) = 2(φi − φj) + log

Å
pi
pj

ã
= log

Å
ljipi
lijpj

ã
. (6.32)

That is, the affinities are the projection of the negative gradient of the Helmholtz energy

onto the directions ei − ej associated with the flow of probability along the edges. The

first term in the affinity is the force on the edge ij associated with the work to move across

the edge. The second term is a diffusive force associated with the tendency to maximize

entropy.

Note that if the network consisted of a single edge then it would automatically obey

detailed balance so lijqj would equal ljiqi, in which case A(q) = 0. More generally, if

a process obeys detailed balance, then the affinity goes to zero at steady state. Mathe-

matically this is a direct result of the detailed balance condition, since ljipi = ljipj gives

log ((ljipi)/(lijpj)) = log (1) = 0. Thus, in detailed balance, steady state is achieved when

all of the “force” at play in the system balance.

391



Figure 6.5: Affinity of a two state system with the associated potentials φ, edge flow f , and
entropy H . The affinity A is shown in magenta, the potentials and associated forces in red,
and the entropy in blue. The affinity given no edge flow is shown in light magenta, and is the
partial derivative of the entropy corresponding to an infinitesimal exchange of probability
between the nodes. The difference in potential over the edge introduces a force f which
shifts the affinity down. The equilibrium distribution is the intersect of the affinity with
zero. This equilibrium falls between the uniform distribution, which maximizes entropy,
and the distribution [0, 1] which minimizes the potential.

The affinity associated with a single edge is shown in Figure 6.5. The component of

the affinity associated with the work to cross the edge, and the component associated with

the entropy are shown separately. If the network only consisted of one edge then the steady

state distribution is q such that Aij(q) = 0. The corresponding equilibrium is shown in

Figure 6.5.

Since the affinity is the change in free energy associated with an infinitesimal exchange

of probability across each edge, the entropy production is given by the inner product [20,
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253]:

P (p) = A(p)ᵀJ(p) =
∑
i<j

Aij(p)Jij(p). (6.33)

The entropy production, P , defined by Equation (6.33) is closely related to the Joule

heating in the electric circuit analogy developed in Section 6.3.1. Recall that, if a network

obeys detailed balance, then the transition rates lij and lji can be rewritten 1
RijCj

and 1
RjiCi

,

where Rij = Rji is the resistance on edge ij, and Cj = qj are capacitances and equal the

steady state distribution. Then the affinities are:

Aij(p) = log

Å
Cj
pj

pi
Ci

ã
= log

Å
pi
Ci

ã
− log

Å
pj
Cj

ã
.

If the system is near steady state then pj ' Cj , so each ratio is near one, and the logarithms

can be replaced with their Taylor expansions:

Aij(p) '
pi
Ci
− pj
Cj

+O
ÇÅ

1− Cj
pj

pi
Ci

ã2
å
.

If the probabilities represent a charge distribution then the linear term is the voltage

over the edge, so Aij(p) ' Vij to first order.

The currents in the electric circuit analogy obey Ohm’s law, so the entropy production

near steady state is:

P (p) =
∑
i<j

Aij(p)Jij(p) '
∑
i<j

VijJij(p) =
∑
i<j

V 2
ij

Rij

.

The sum of the voltage drop squared over the resistance on every edge is the heat

produced by the current over the edge [34]. Thus, to first order the entropy production

of a process obeying detailed balance matches the Joule heating of the analogous electric
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circuit. The fact that this approximation only applies near steady state is not surprising

since Ohm’s law and Joule heating are themselves linearizations that only approximate the

true current and heat loss when the currents are relatively small.

Most of our discussion so far has focused on the detailed balance case, in which the

physical system is energetically isolated. Not all Markov chains obey detailed balance,

after all, if all Markov chains obeyed detailed balance then there would be no need for the

HHD. If the Markov chain of interest does not obey detailed balance then the analogous

physical system is coupled to an external energy source that drives circulation [5].

The relationship between the edge flow and work defined by Equation (6.19), and

information theoretic definition of entropy still apply out of detailed balance. The affinities

can also be defined in the same way, only with an additional term to account for work done

by external energy sources. If the affinity on an edge is defined by the free energy used

to move an infinitesimal amount of probability across the edge, then the affinity equals the

work to cross the edge plus the change in entropy associated with moving an infinitesimal

amount of probability across the edge. The work captures the total energy exchanged

with the reservoir, so the work to cross the edge still accounts for entropy produced in

the reservoir. The key difference when working with a system that does not obey detailed

balance is that the work to cross an edge may not be given exclusively by the difference in

potential on either side.

Let wij = 2fij be the work to cross edge ij from i to j. Then the affinity on edge ij is

[5]:

Aij(p) = −wij + [∇H(p)](ei − ej) = log

Å
ljipi
lijpj

ã
(6.34)

where the second equality follows from the definition of the edge flow. Notice that the

affinity defined by Equation (6.34) is the same as the affinity defined by Equation (6.32) if
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the form using the log ratio of the transition rates is used. This is the form provided by [5].

We can use the network HHD to write the affinities in terms of the potentials directly:

A(p)ij = −2fconij − 2frotij + fdifij(p) = −2[Gφ]ij + 2[Cᵀθ]ij + log

Å
pi
pj

ã
. (6.35)

where fdif stands for the diffusive forces associated with the entropy. Note that if the

Helmholtz free energy is still defined, F (p) =
∑

i piφi + pi log (pi) then the affinity can be

rewritten:

A(p)ij = 2(fconij + frotij) + log

Å
pi
pj

ã
= 2frotij − (∇F (p))ᵀ(ei − ej). (6.36)

In this context the affinity on a given edge is a combination of a rotational force, and the

partial derivative of the Helmholtz Free Energy along the edge.

Our main interest now is to associate the vector potential θ with external energy sources

exerting work on the system. That is, to identify rotation driven by external forces that act

on the system with the rotational potential.

To compute the net external forces driving rotation on a given loop, sum the affinities

about the loop [5]. Any path integral around the loops of the network can be decomposed

into path integrals about basis loops so we will consider the force necessary to drive rotation

around each basis loop. Then the collection of net external forces is simply:

Aext = CA(p) (6.37)

where Aext are the external forces, and A(p) is the vector of affinities on each edge. Notice

that the external forces are independent of the probability distribution inside the system

[5]. This is an essential consistency condition. The forces are necessarily external, since, if
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the process completes a cycle then any work done over the cycle must be associated with

energy exchanged with the reservoir [4].

Expand the affinities to prove that the external forces are independent of the distribution

p inside the system:

Aext = CA(p) = C (−2Gφ+ 2C∗θ + fdif(p)) .

The curl is orthogonal to the gradient, so Aext does not depend on φ. The diffusive

force is the log of the ratio of probabilities, which is a geometric difference of a function p

defined on the states. The curl of any function of this type is also zero. As a simple example

consider a loop i→ j → k → i. The curl of the diffusion term is:

log

Å
pipjpk
pipkpj

ã
= log (1) = 0.

Therefore the set of external forces equals to the curl of the rotational field, or, the face

Laplacian of the vector potential:

Aext = 2Cfrot = 2L2
Cθ. (6.38)

Thus the affinity on any edge is a combination of a diffusion term, a force associated

with the scalar potential that represents internal energy, and a force associated with the

vector potential that represents coupling to energy sources in a reservoir. The first potential,

φ, is related to the free energy of the system. The second potential is external, θ, and is

related to the forces applied to the system that drive rotation about closed loops [4]. If

we consider the component associated with the rotational potential as external then the

generalized force is a combination of internal and external forces. The internal forces
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arise directly from the gradient of the Helmholtz free energy, while the external forces are

associated with the rotational component of the edge flow/work, frot.

The external affinities, Aext, equal the work to traverse each basis cycle. Since the

work to complete a cycle equals the ratio of the probability of completing the path forward

to the probability of completing the path backward, the external affinities are immediately

related to the long time limit of the number of times each cycle is traversed forward relative

to backward [4]. For a cycle C let NC+(t) be the number of times the process X(t) has

completed a forward traversal of the cycle C at time t. Similarly let NC− be the number of

completed backward traversals. Then let JC+(t) = NC+(t)/t and let JC−(t) = NC−(t)/t.

In order to complete a cycle the process must first arrive at a node in the cycle. Once

X(t) has arrived at a node in the cycle the ratio of the probability of completing the cycle

forward instead of backward, conditioned on completing a cycle is exponential in the work

to complete the cycle. Thus, if JC+ = limt→∞ JC+(t), and JC− = limt→∞ JC−(t), with

convergence in probability, then in the long time limit [4]:

JC+
JC−

= exp(2C(C)f) = exp(Aext(C)). (6.39)

Therefore the external affinity on a loop is associated with the ratio of the number of

forward traversals to backward traversals in the long time limit. Note that this is not enough

to recover the steady state probability flux around the loop, CJ , since the flux around the

loop is J+ − J− =
√
J+J−(

√
J+/J− −

√
J−/J+) =

√
J+J−2 sinh(Aext/2) and

√
J+J−

is not fixed by the work to complete the loop. The long time distribution of forward and

backward cycle traversals is studied by [6].

If the affinities are defined by Equation (6.34) then the entropy production is still defined

by the inner product of the affinities with the flux, since the affinity on an edge is the total
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free energy used to move probability over the edge. Thus P (p) =
∑

i<j Aij(p)Jij(p)

recovers the entropy production for systems both in and out of detailed balance [5].

If the process does not obey detailed balance then the steady state fluxes are nonzero.

The steady state fluxes are necessarily divergence-free, so must be in the range of the curl.

It follows that the steady state fluxes can be written CᵀθJ for some θJ ∈ RL. Therefore,

the steady state entropy production P depends only on the external forces applied to the

system and the steady state flux:

P (q) = Jᵀ(q)A(q) = θᵀJCA(q) = θᵀJAext = 2θᵀJCfrot = 2Jᵀ(q)frot. (6.40)

That is, when a process does not obey detailed balance, the steady state entropy pro-

duction is the inner product of the steady state fluxes with the rotational component of the

HHD. Note that this can be reduced to an inner product defined on the space of loops rather

than edges. Summing over a set of basis loops rather than the edges is often preferable

since the long term production of observables is associated with the amount of observable

produced per cycle completed, and the coupling to the reservoir is expressed through the

tendency of external energy sources to drive circulation. Also note that we only need to sum

over a set of L cycles rather than all possible cycles. This is an advantage of Equation (6.40)

over the entropy production formula given by [4].

6.6 Summary

In this chapter we introduced discrete-space continuous-time Markov chains and showed

that, for an appropriately chosen edge flow, the HHD is closely related to the thermody-

namics of an analogous physical process. The detailed balance case (conservative edge

flow) was highlighted (see Section 6.3). It was shown that in detailed balance the scalar
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potential determines the steady state distribution. Outside of detailed balance the steady

state is maintained by circulation of probability. An electric circuit analogy was introduced

to build intuition in the detailed balance case. In Section 6.5 a general thermodynamic

analogy was introduced which relates the time evolution of the probability distribution to a

free energy function, work exerted to cross edges (the edge flow), and the internal entropy

of the system. A thermodynamic interpretation of the edge flow (work) and potentials

(energy) was introduced.
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Chapter 7

Dynamics

7.1 Preface

In this chapter we analyze the dynamics of continuous-time discrete-space Markov pro-

cesses using the HHD. We focus on nonequilibrium steady states and steady state fluxes,

and give exact limiting expressions for nonequilibrium steady states in terms of the HHD.

We show that the long term production rate of any observable based on path integration can

be simplified using the HHD, and that the space of observables that are martingales in and

near detailed balance are controlled by the ranges of the operators used in the HHD.

First we show that any nonequilibrium process can be transformed into a purely ro-

tational process by scaling the Laplacian by the steady state distribution associated with

the corresponding equilibrium process (see Section 7.2.1). This transform reduces the

problem of solving for an arbitrary nonequilibrium steady state to solving for the steady

state of purely rotational processes. Then, in Section 7.3.1 and Section 7.3.2 we show

that, if the Markov chain is dominated by diffusion (small edge flow, weak forcing), then
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nonequilibrium steady states and steady state fluxes can be approximated using the HHD. A

formal expansion of the steady state and steady state fluxes in the strength of rotation is in-

troduced in Section 7.3.2, and it is shown that, at every order, the terms in the expansion are

solutions to a recursive sequence of weighted HHD equations. We show that the first order

terms in this expansion are closely related to linear thermodynamics (thermodynamics for

processes near equilibrium). We also explore what requirements on the network topology

and conductances are needed to ensure that the steady state is rotation independent (see

Section 7.3.2).

In the opposite limit, when drift dominates diffusion (large edge flow, strong forcing),

then a different potential framework is needed (see Section 7.3.3). This framework is

analogous to the quasipotential used to study SDE’s in a small noise limit.

7.2 Nonequilibrium Steady States

7.2.1 The Purely Rotational Transform

To begin, suppose that L obeys detailed balance. Then there exists a set of resistances and

capacitances so that the probability flux can be written:

Jij(p) =
1

Rij

Å
pi
Ci
− pj
Cj

ã
(7.1)

where the resistances Rij = Rji are one over the rate at which probability is exchanged

between i and j at equilibrium (ρij
√
qiqj =

√
ljiqilijqj = ljiqi = lijqj), and the capaci-

tances Ci equal the steady state occupancy of each node, qi (see Section 6.3.1). If the scalar

potential is shifted appropriately then Ci = qi = exp(−2φi).
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The rate of change of probability at any node is the rate at which probability flows into

the node minus the rate it flows out, which is the (negative) divergence of the probability

flux. The negative divergence is just the gradient transpose. The rate of change of proba-

bility is also governed by the Laplacian through the master equation (see Equation (6.2)).

Therefore, when in detailed balance, the Laplacian can be decomposed:

L = Gᵀ
[
−R−1GQ−1

]
= −

[
GᵀR−1G

]
Q−1 (7.2)

whereR is a diagonalE×E matrix with diagonal entries set to the resistances on the edges

and Q is a diagonal V × V matrix with diagonal entries equal to C = q = exp(−2φ). This

can be seen directly by noting that lij = ρij exp (φj − φi) = ρij exp (−[φj + φi]) exp (−2φj) =

R−1
ij q

−1
j and ljj = −

∑
i∈N (j) ρij exp (φj − φi) = −

∑
i∈N (j) R

−1
ij qj .

Equation (7.2) can be read in two different ways. First, the Laplacian is the nega-

tive divergence of a matrix which maps from the probabilities p to the fluxes J(p) =

[R−1GQ−1]p. Second, the Laplacian is the product of a symmetric matrix GᵀR−1G with

a diagonal matrix Q−1 that scales the probability at each node relative to the steady state

probability. In the electric circuit interpretation the product Q−1p produces the voltage at

each node relative to the ground. Then the matrix GᵀR−1G is the matrix responsible for

mapping from voltages to change in charge.

Let:
p̂ = Q−1p

L̂ = LQ = −GᵀR−1G.

(7.3)

Then d
dt
p = L̂p̂. Since the probabilities are all nonnegative and the steady state is

strictly positive at every node p̂ is also nonnegative. Therefore, if scaled by an appropriate

normalizing constant p̂ can be interpreted as a probability distribution. Then pi = 1
Z
qip̂i
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where Z is the necessary normalization. This expresses the probability distribution for the

original unscaled process (Equation (7.1)) relative to the steady state.

The main advantage to this approach is that L̂ is still interpretable as the Laplacian for

a continuous-time discrete-space Markov chain on the same network, but L̂ is symmetric,

so corresponds to a weighted random walk. This relationship is easy to prove.

Consider a weighted random walk on G� with symmetric forward and backward transi-

tion rates wk = wi(k)j(k) = wj(k)i(k). Then the corresponding Laplacian can be constructed

from the weights by performing the product GᵀWG where Wkk = wk. This can be seen

constructively. The ij entry of the product [GᵀWG]ij is the weighted inner product between

the ith column of G and the jth column of G. These columns correspond to node i and j,

and the rows of the columns correspond to the edges. The rows of column i are only

nonzero at edges that connect to node i, and the rows of column j are only nonzero at

edges which connect to node j. The nonzero entries are all equal to±1. Therefore, if i = j

the weighted inner product is the sum of the weights on all edges neighboring node i. If

i 6= j but i and j are connected then the only row where both columns are nonzero is the row

corresponding to the edge ij. One entry must be +1 and the other−1 so [GᵀWG]ij = −wij

if nodes i and j are connected. If they are not connected then the two columns share no

nonzero entries in common so the product is zero. Then:

− [GᵀWG]ij =



wij if i 6= j and there is an edge between them

0 if i 6= j and there is not an edge between them

−
∑
k∈Ni

wik if i = j


(7.4)

which is exactly the structure of the Laplacian for a simple random walk with weights W .

Therefore L̂ = −GᵀR−1G is the Laplacian for the simple random walk with weights
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set to one over the resistances. It follows that if p(t) is known at some time, then p̂(t) can be

computed by scaling by the steady state and normalizing. Then p̂ obeys the master equation

corresponding to a simple random walk with weights set to one over the resistances. Since

master equation conserves probability
∑

i p̂(t) = 1 for all t, so after the initial rescaling

p̂(t) behaves exactly like the probability distribution for a simple random walk with weights

equal to one over the resistances.

Thus, after rescaling by the steady state distribution and a normalization constant, the

original detailed balance process can be transformed into a simple random walk with a

symmetric Laplacian whose transition rates are one over the resistances of the original

network.

This result can be generalized to arbitrary Laplacians in order to transform a generic

nonequilibrium Markov process into a purely rotational process.

Lemma 25 (The purely rotational transform). Let X(t) be a continuous-time discrete-

space Markov process that obeys microscopic reversibility on a connected graph G�, and

with transition rates L. Let ρ denote the per capita conductances be ρij =
√
lijlji. Let f

denote the edge flow fij = 1
2

(log(lji)− log(lij)).

Let φ denote the scalar potential associated with the HHD of f , and diag(exp(−2φ))

denote the diagonal matrix with entries equal to exp(−2φi). Then:

L̂ = Ldiag(exp(−2φ)) (7.5)

is the Laplacian for a Markov process whose edge flow is purely rotational with conduc-

tances equal to the rate of probability transfer between nodes at the equilibrium of the
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original process with the rotational component of the flow removed. Moreover:

pi(t) =
1

Z
exp(−2φi)p̂i(t)

d

dt
p(t) =

1

Z
L̂p̂(t)

(7.6)

where the normalization constant Z is chosen so that
∑

i p̂i(t) = 1, and φ is shifted so that∑
i exp(−2φi) = 1. Therefore if q is the steady state of the original process and q̂ is the

steady state of the scaled process, then q = 1
Z

exp(−2φi)q̂i.

Proof. The product Ldiag(exp(−2φ)) scales the rows of L. Expand L into the conduc-

tances and edge flow according to Equation (6.16). Then the product for a particular off-

diagonal entry is:

l̂ji = lji exp(−2φi) = ρij exp(fij − 2φi).

Note that the indexing convention is reversed for the Laplacian so that the transition rate

from i to j is indexed ji. This indexing ensures that the Laplacian can be used in the master

equation without a transpose. Then, expanding f using the HHD:

fij − 2φi = fconij + frotij − 2φi = φi − φj + frotij − 2φi = −(φi + φj) + frotij.

Therefore:

l̂ji = [ρij exp(−φi − φj)] exp(frotij).

The term in brackets is symmetric in i and j, so can be interpreted as a weight, or one

over a resistance. In fact, if the rotational component of the flow was removed from the

original process, then it would have obeyed detailed balance and [ρij exp(−φi−φj)] would

equal one over the resistance on edge ij, 1/Rij . In turn, 1/Rij equals the rate at which
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probability is exchanged between nodes i and j at the equilibrium (see Section 6.3.1). Each

entry of L is scaled by a positive number to produce L̂ so all of the off-diagonal entries of

L̂ are nonnegative.

The diagonal entries of the product are l̂ii = −[
∑

j∈Ni lji] exp(−2φi) = −
∑

j∈Ni l̂ji so

the columns of L̂ all sum to zero. It follows that L̂ is the Laplacian for a Markov process

on G� with conductances set to the rate at which probability moves between nodes at the

equilibrium of the original process without its rotational component, and with edge flow

equal to the rotational component of the original edge flow. It follows immediately that

if the original process obeyed detailed balance then the transformed Laplacian L̂ would

correspond to a simple random walk with weights equal to one over the resistances.

Equation (7.6) follows directly from the observation that exp(2φi) are all positive, and

p(t) are all nonnegative, so all the entries of p̂(t) are nonnegative, and for the appropriate

choice of Z the distribution p̂ is normalized. Then 1
Z
l̂jip̂i = lji

1
Z

exp(−2φi)p̂i = ljipi(t).

If q̂ is the steady state for the scaled process then L̂q̂ = 0 so d
dt
p(t) = 0 if p =

1
Z

exp(−2φ)q̂.

Thus, if the Laplacian of an arbitrary nonequilibrium process is rescaled by the equilib-

rium distribution of the corresponding equilibrium process, q(eq) = 1
Z

exp(−2φ), then the

resulting Laplacian is purely rotational, with edge flow equal to the rotational component of

the original edge flow, and conductances equal to the rate at which probability is exchanged

between nodes at the equilibrium distribution corresponding to the conservative component

of the original process. This transform is powerful since it reduces the general problem of

finding a nonequilibrium steady state, with an arbitrary combination of conservative and

rotational components, to the special case when the Markov process is purely rotational.

Note that the steady state fluxes of the purely rotational problem (up to a rescaling by a

normalization constant) are the steady state fluxes of the original problem since the fluxes
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satisfy:

Ĵij = l̂ij q̂j − l̂jiq̂i = l̂ij
q(eq)

j

q(eq)
j

q̂j − l̂ji
q(eq)

i

q(eq)
i

q̂i = lijZqj − ljiZqi = ZJij

so the steady state fluxes after the transform are the steady state fluxes of the original

system.

7.2.2 Isolated Cycles

The simplest rotational system is a network with isolated (edge disjoint) cycles. That is

a network whose cycles do not share any edges. The cycles may be singly connected, so

pairs of cycles may share a node, or may be connected by paths that include edges that are

not part of any cycle. Since the cycles are isolated the steady state on each can be studied

in isolation.

In this section we solve for the steady state for an arbitrary network with isolated loops.

The result provides helpful intuition for the weak and strong rotation limits. Suppose G has

a set of loops that are all edge disjoint. Assume that the network has potentials φ and θ and

conductances ρ.

First, rescale by exp (−2φ) to get the purely rotational system L̂ from L. This trans-

forms the problem into a purely rotational problem with a new set of conductances ρ̂ij =

ρij exp(−(φi + φj)). The true steady state can be recovered by scaling the steady state of

the purely rotational problem by the equilibrium distribution exp(−2φ).

Since it is always possible to scale to a purley rotational system we start by considering

the steady state of the purely rotational system. Unless the original system obeyed detailed

balance the new steady state will be dynamic - there will be nonzero fluxes on some edges.

Then the steady state is maintained by circular balance [4], where the net flux into and out
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of each node is zero. Since we assumed that each loop is disjoint, there cannot be any

flux across edges connecting loops that are not part of a loop themselves. Suppose that

there was an edge, not included in any cycle, with a nonzero steady state flux across it.

Then that edge would be a cut edge for the graph, so removing the edge from the graph

would break it into two components. If there is a nonzero flux across the edge then the

total probability in one component must be increasing, and the total probability in the other

must be decreasing. The probabilities must be constant at steady state so it is impossible

for there to be any steady state flux across an edge not included in a cycle. Moreover, if

edges ij and jk are in the same loop then Jij = Jjk since the divergence of the fluxes must

be zero at steady state. Therefore the flux across all edges in a given loop is constant.

Our goal now is to work out the steady state distribution and steady state fluxes on an

individual loop. The full steady state can be constructed by piecing together steady state

distributions for each individual loop. This is accomplished by noting that, if an edge is not

in a loop then the steady state flux across the edge must be zero, and there is no rotational

force on the edge. If there is no rotational force on the edge then there are no forces on

the edge, so the forward rate and backward rate are identical. Therefore the steady state

distribution is identical at either end of the edge. So, if two loops are connected by a path,

then the steady state distribution over the path is constant, and the nodes at the ends of the

path in the two loops must have the same steady state probability. Given two individual

steady states, one for each loop independently, we can always shift and rescale so that both

have the same probability at a pair of nodes. Therefore the full steady state can be built by

matching the independent steady states of each loop at nodes which are connected by paths

not included in any loop.

This reduces the problem of solving for a general steady state to solving for the steady

state on single loops. Focus on a particular loop. Denote the steady state flux on that loop
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J . Index all the nodes from 1 to |C| where |C| is the perimeter of the loop, and the node

indices increase in the direction of rotation. Index the edges so that edge k points in the

direction of rotation from k to k+1. Since all the loops are disjoint frotk = θ on every edge

in the loop. Moreover, since the loop is isolated θ is just the curl of f on the loop, divided

by its perimeter |C|. Therefore the forward and backward rates are:

l+k =
1

Rk

exp (θ), l−k =
1

Rk

exp (−θ). (7.7)

where Rk, the resistance of kth edge, and θ are defined by:

Rk = ρ̂−1
k =

exp (φk + φk+1)»
l+k l
−
k

, θ =

∑|C|
k=1 log (l+k )− log (l−k )

2|C|
. (7.8)

Let α = exp (θ). Then the edge rates are simply:

l+k =
α

Rk

, l−k =
1

αRk

.

Then the steady state flux on the edge is:

α

Rk

qk −
1

αRk

qk+1 = J

where the nodes are counted modulo |C| so that |C|+1 equals 1. Then the steady state

satisfies the recursion:

qk =
Rk

α
J +

1

α2
qk+1.
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Fix q1 = q|C|+1. Then:

q|C| =
R|C|
α
J +

1

α2
q1

q|C|−1 =
R|C|−1

α
J +

1

α2

Å
R|C|
α
J +

1

α2
q1

ã
q|C|−2 =

R|C|−2

α
J +

1

α2

Å
R|C|−1

α
J +

1

α2

Å
R|C|
α
J +

1

α2
q1

ãã
...

q|C|−k =
k∑
j=0

R|C|−j
α2(k−j)+1

J +
1

α2(k+1)
q1

Carrying the recursion all the way back to q1:

q1 = q|C|−(|C|−1) =

|C|−1∑
j=0

R|C|−j
α2(|C|−j)−1

J +
1

α2|C| q1

Solving for q1:

q1 =
α

1− α−2|C|

|C|−1∑
j=0

ï
R|C|−j
α2(|C|−j)

ò
J =

α

1− α−2|C|

|C|∑
k=1

ï
Rk

α2k

ò
J

The same analysis would work for any initial node. Therefore the steady state at any

node can be written as a sum over the resistances around the loop, weighted by α2k where

k is the distance from a given edge to the node of interest, in the direction of rotation. To

solve for the proper distribution we need to enforce normalization. This requires that the

sum of the steady state probabilities is one. Since we have the steady state as a sum over all

the edges this sum is a double sum over all nodes, and all edges. We can reverse the order

of the sum so that we first perform a sum over all nodes given a fixed edge. This requires

working out the contribution of a given edge to the steady state at each node. Given edge
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k the contribution to node k − 1 is ∝ Rk
α2 , to node k − 2 is ∝ Rk

α4 . This is carried out all the

way around the loop, so the contribution of a given edge is:

RkJ
α

1− α−2|C|

|C|∑
j=1

α−2j = RkJ
α

1− α−2|C|
1− α−2|C|

α2 − 1
= RkJ

α

α2 − 1
.

Summing over all edges gives the normalization constant Z:

Z = J
α

α2 − 1

∑
k

Rk = J
α

α2 − 1
R

where R =
∑

k Rk is the total resistance of the loop.

So, normalizing the expression for q1:

q1 =
α2 − 1

1− α−2|C|

|C|∑
k=1

ï
α−2kRk

R

ò
. (7.9)

Notice that:
|C|∑
k=1

α−2k =
1− α−2P

α2 − 1

so Equation (7.9) can be interpreted as a weighted average of Rk/R around the loop, with

weights set to the geometric distribution with parameter α−2 = exp (−2θ). Alternatively,

the steady state is the convolution of the distribution of resistances with the exponentially

decaying kernel exp (−2θ). Since θ > 0 this distribution is decaying as we consider edges

farther and farther away from the node of interest. It follows that q1 is a weighted average of

Rk/R that is weighted more heavily towards edges near node 1 in the direction of rotation.

This extends easily to different initial nodes. In all cases we perform a weighted average

of Rk/R around the loop in the direction of rotation starting from the node of interest, and

with weights set to the geometric distribution with parameter exp (−2θ). An example is
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Figure 7.1: The steady state distribution q for a purely rotational process on a loop. The
resistances on the loop are represented by the solid black lines. The steady state for different
θ are represented by the blue and red lines. Blue lines correspond to θ near 0, and red lines
correspond to θ near 2. In the strong rotation limit, θ → ∞ the steady state converges
to the distribution of resistances. The bottom right panel shows the convolution kernel
exp(−2kθ).

illustrated in Figure 7.1

Equation (7.9) makes it easy to evaluate the weak rotation and strong rotation limits of

the steady state. First, suppose rotation is strong. Then α = exp (θ) is very large. Then the

geometric distribution decays very rapidly. It follows that the weighted average is weighted

mostly towards the first edge leaving the node of interest. Therefore, in the limit as θ goes

to infinity:

lim
θ→∞

qk(θ) =
Rk,k+1

R
. (7.10)

That is, in the strong rotation limit the steady state distribution converges to the distri-

bution of resistances on the edges leaving each note. This result is entirely natural. In the

strong rotation limit the flux across each edge is almost entirely due to probability flowing

in the forward direction, so to force an equal current through all edges the probability in

front of edges with a large resistance must be larger. Large resistances produce bottlenecks,
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and probability accumulates on the lee side of edges with large resistances.

It is worth noting how different this result is from the limit as φ diverges. Then the

distribution converges towards a delta distribution, and is dominated more and more by

nodes with low potential. Therefore the potential directly determines the distribution. Here,

in the large θ limit, the distribution does not converge towards a delta, but rather towards

the distribution of resistances - which is entirely independent of θ.

On the other hand, if θ is very small then α ≈ 1 + θ so α−2k ≈ 1 − 2kθ. Then the

weighted average converges to:

lim
θ→0

q1(θ) ≈ 1

|C|(1− (|C|+1)θ)

|C|∑
k=1

(1− 2kθ)
Rk

R
≈ 1− 2θ

|C|∑
k=1

k
Rk

R
. (7.11)

It follows that the steady state converges to a uniform distribution as rotation becomes

weak.

This analysis provides an intuitive interpretation of the steady state of a purely rotational

loop. The steady state distribution moves continuously from a uniform distribution to the

distribution of resistances as the strength of rotation increases. When rotation is strong the

skeleton process approaches a regular periodic cycle, so, in order to maintain a constant

flux on all edges the probability of occupying a node immediately before a slow edge must

increase proportional to the resistance on the edge. Large resistances lead to bottlenecks,

where probability builds up until it is sufficient to match the steady state flux around the

loop. If the direction of rotation is reversed then the exact same arguments apply in the

opposite direction. As a result, if probability bottlenecks at the first endpoint of an edge

under positive rotation, then it will bottleneck at the second endpoint under the reversed

rotation. In contrast, when rotation is weak the process is dominated by diffusion, so

approaches a uniform steady state distribution.
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What is the steady state flux around the loop?

Since the flux is the same on all edges we need only evaluate it across one edge. On the

first edge:

J =
1

R12

(
αq1 − α−1q2

)
.

Both q1 and q2 are given by a sum over all edges. Consider the sequence of edges

from 2 to 1 in the direction of rotation. Each of these edges contribute α−2kRk to q1

and α−2(k−1)Rk to q2 (for now the other normalizing constants are ignored since they are

shared). Then, multiplying the first by α and dividing the second by α we find that the first

edge contributes α−2k+1Rk to the flux from q1 and α−2k+1Rk to the flux from q2. Therefore

the difference between the two is zero. It follows that only the edge from 1 to 2 contributes

to the flux. Therefore, replacing q1 and q2 with the contribution from the edge 1, 2 to both:

J =
1

R12

R12

R

α2 − 1

1− α−2|C|

Ä
αα−2 − α−1α−2|C|

ä
=

1

R

α2 − 1

1− α−2|C|

Ä
α−1 − α−2|C|−1

ä
.

Simplifying:

J =
1

R

α2 − 1

1− α−2|C|

(
1− α−2|C|)

α
=
α− α−1

R
.

Finally, plugging in α = exp (θ):

J = 2
sinh (θ)

R
. (7.12)

Equation (7.12) is very natural. The hyperbolic sine is monotonically increasing so

sinh (θ) is effectively a measure of the strength of rotation. Therefore J can be interpreted

as the net strength of rotation divided by the total resistance of the loop. When θ is large

the steady state flux is large and when θ is small the steady state flux is small. On the

other hand, when the resistance is large the flux is relatively small, and when the resistance
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is small the flux is relatively large. Moreover, since sinh (θ) is an odd function in θ, the

steady state flux given−θ is equal to−J given θ. That is, the magnitude of the steady state

flux is independent of the sign of θ, and the direction matches the direction of θ.

Using Equation (7.12) and Equation (6.40) the steady state entropy production is:

P = 2fᵀrotJ =
4|C|θ sinh (θ)

R
=

4θ sinh (θ)

R̄
(7.13)

where where R is the total resistance on the loop and R̄ is the average resistance of the

edges in the loop. Note that the total resistance R is the sum,
∑

k Rk, since the edges all

appear in series.

In the weak rotation limit the fluxes converges to:

lim
θ→0

J(θ) ' 2

R
θ. (7.14)

The scaling between θ and CJ in the weak rotation limit is the Onsager coefficient [5].

Therefore, for a single loop, the Onsager coefficient is 2|C|/R = 2/R̄ 1 .

Alternatively, when θ is large:

lim
θ→∞

J(θ) ' exp (θ)

R
. (7.15)

Therefore, for large driving forces the steady state current is exponentially large in

the driving force. In the large θ limit the probability of a backward transition vanishes

relative to the probability of observing a forward transition. The probability of observing a

1When we solve for the Onsager coefficients for arbitrary systems we will drop the factor of two from the
definition of the coefficients since we can associate the factor of 2 with θ so that frot can be interpretted as
work
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backward or forward transition is:

p− =
exp (−θ)

R−
R+

exp (θ) + exp (−θ)
, p+ =

exp (θ)

exp (θ) + R+

R−
exp (−θ)

where R+ and R− are the resistances on the forward and backward edges next to the node

occupied by the process. Suppose for now that all the resistances are the same. Then p−

and p+ only depend on θ and are constant across all the nodes.

It follows that the probability of observing exactly k consecutive forward reactions is

pk+p−. Therefore the length of streaks of forward reactions is geometrically distributed, and

the expected number of forward reactions before a backward reaction is:

E[consecutive forward reactions] =
p+

p−
= exp (2θ).

That is, the expected length of streaks of purely forward reactions is exponential in

θ. Alternatively, the expected length of consecutive backward reactions is exp (−2θ).

Therefore, when θ is large we expect the random walk to consist of long streaks of forward

reactions, with expected length exponential in θ, and that each streak of forward reactions

is occasionally broken by a single backward reaction2. This result motivates consideration

of the process with all backward transitions removed.

When all backward transitions are removed the process walks one node at a time in

the forward direction around the loop. The steady state flux is one over the expected time

to complete the loop. This expected time is the sum of the expected times to complete

each step. The expected time to complete each step is one over the forward rate since the

2Note that a similar limiting argument will be used in Section 7.3.3 to consider the behavior of a Markov
process driven by strong rotation on an arbitrary connected network
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backward rates have been removed. Therefore:

J '

[∑
k

Rk exp (−θ)

]−1

=
exp (θ)

R
.

which matches Equation (7.15).

Now that we have solved the problem for purely rotational processes we return to the

original problem for arbitrary nonequilibrium processes. Suppose that the original process

is not purely rotational. Then the fluxes of the purely rotational process match the fluxes

of the original process. The steady states are not the same. The steady state of the original

process is given by rescaling the steady state of the purely rotational process. In the strong

rotation limit:

lim
θ→∞

qk(θ) =
1

Z
q

(eq)
k

Rk

R
=

1

Z
exp (−2φk)

exp (φk + φk+1)

ρk,k+1R
=

1

RZ

exp (φk+1 − φk)
ρk,k+1

.

(7.16)

Therefore the steady state in the strong rotation limit is large at node k when the

rotational forces point to k + 1 and φk+1 >> φk. This conclusion is natural since it means

that probability accumulates at nodes where a large flux needs to be forced uphill against

the scalar potential. It follows that the steady state in the strong rotation limit is large where

the scalar potential changes quickly, not necessarily where it is large or small.

The associated effective potential (negative log of the steady state) is:

φeff k(θ) = log(−qk(θ)) = (φk+1 − φk)− log(ρk,k+1) (7.17)

where ρk,k+1 is the conductivity on edge k. Therefore, in the strong rotation limit, the

effective potential depends on the slope of the scalar potential, and the log conductances.

The effective potential is small at nodes preceding a bottleneck. A bottleneck can be created

417



either by a large resistance (small conductance), or by a strong rotational flow pushing

probability uphill against the conservative edge flow.

In summary, the steady state for an arbitrary system with isolated loops can be derived

by considering the steady state for a purely rotational process on a single loop. This analysis

shows that the strength of rotation acts as a shape parameter for the distribution, which is

near uniform in weak rotation, and converges to the distribution of resistances in strong

rotation. The steady state probability accumulates in nodes preceding a bottleneck. A

bottleneck is a nodes with a large driving force into and out of the node with a large

resistance on the edge leaving the node, or where the rotational forces point upwards against

the scalar potential. In addition the steady state fluxes of the purely rotational system are

proportional to sinh (θ)/RwhereR is the total resistance of the loop, so are an odd function

of the rotational potential, converge to a linear function of θ when θ is small, and diverge

exponentially when |θ| is large.

7.2.3 Linked Loops

Section 7.2.2 provides a complete description of the nonequilibrium steady state and steady

state fluxes of any nonequilibrium Markov process with isolated loops directly in terms of

θ, φ and the resistances. Solving the same problem for more general network topologies

is notoriously challenging. The steady state can be found directly by searching for the

null space of the Laplacian, and the fluxes can be computed from the steady state, but this

approach offers no real insight into how the conductances, scalar potential, and rotational

forces combine to produce a steady state and steady state currents. It is impossible to ask

how the steady states change if the conductances, scalar potential, or rotational forces are

changed without recomputing the Laplacian, then the steady state. In stark contrast, if

the process is an equilibrium process (obeys detailed balance), then the steady state only
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depends on the scalar potential, can be computed directly from the potential using the

Boltzmann equation eq. (6.10), and the steady state fluxes are all zero. Unfortunately this

sort of simple description of nonequilibrium steady states is largely unavailable. Different

authors have provided different characterizations of nonequilibrium steady states [257]. For

example, Schnakenberg provides a characterization in terms of the work over an ensemble

of optimal spanning trees [5]. The goal of this section is to illustrate the principal algebraic

difficulty that makes finding a simple closed form for nonequilibrium steady states in

terms of the conductances and edge flow close to impossible for general networks. These

difficulties motivate the limiting approach taken in Section 7.3.

Consider the simplest network with a pair of linked loops - a pair of triangles sharing

an edge (see Figure 3.3). As usual we can always scale out any equilibrium dynamics so

that the process is purely rotational. So, without loss of generality, assume that the scalar

potential is zero everywhere. Then the edge flow is determined entirely by the rotational

potential on each loop. Let θI , θII denote the rotational potential on each triangle.

Suppose that θI = −θII = θ. Then the edge flow on the edges in the outer loop all

have the same magnitude, and the edge flow on the shared edge is 2θ. Orient the network

so that the shared edge is vertical, and the edge flow points down the edge. Then the

flow on the left triangle circulates clockwise, and the flow on the right triangle circulates

counterclockwise. The two bottom edges of each triangle flow away from the shared edge,

and the two top edges flow back into the shared edge (see Figure 7.2).

Assume that all the conductances are equal and set to one. On an isolated loop the

steady state is uniform if the conductances are all the same and the scalar potential equals

zero. Therefore it is reasonable to guess that the steady state should be uniform since there

are no edges with large resistance to form bottlenecks. This assumption also corresponds to

the intuition that the rotational forces should drive flux, not the accumulation of probability,
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so a purely rotational system without any differing conductances should have a uniform

steady state distribution.

Under the assumption that all the conductances are the same the transition rates in the

forward direction of the edges in the boundary are all exp(θ) = α, and the backward rates

are 1/α. The forward rate on the shared edge is exp(2θ) = α2 and the backward rate is

1/α2. Herin lies the obstacle. The forward transition rate along the shared edge is the

square of the forward transition rates feeding into and out of the edge, so is greater than the

sum of the pair of edges feeding into, and out of the edge. Thus, if p = 1/4 is uniform,

the rate of probability flux over the shared edge is greater than the sum of the fluxes on the

edges entering the shared edge, and the sum of the fluxes on the edges leaving the shared

edge. As a result the flux has a nonzero divergence, and probability accumulates faster at

the bottom node than it leaves. Therefore the steady state is not uniform.

Thus, the fact that the rotational flow associated with neighboring loops adds on their

shared edges before exponentiation, but the flux leaving their shared edges is the sum of

the exponential of the individual rotational flows, means that, starting from a uniform

distribution, the flux generated on the shared edges is faster than the flux on the sum of

the edges entering or leaving the shared edges, so the steady state is not uniform (see

Figure 7.2). The nonlinearity of the exponential is the principal difficulty which makes

finding a nonequilibrium steady state difficult. Even in the absence of large resistances

to generate bottlenecks the steady state associated with a particular rotational potential is

usually nonuniform, and depends on how the cycles overlap.

In the case of two linked loops it is possible to perform an analysis like the analysis

performed in Section 7.2.2 by starting from the observation that the steady state current

must be rotational, so only has two degrees of freedom. While tractable this analysis is not

particularly insightful, requires much more work than the analysis for a single loop, and
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Figure 7.2: A pair of linked loops. The edge flow on the shared edge is twice the edge flow
on any other edge, but the edge flow is exponentiated, so the net flux into and out of the
shared edge does not equal the net flux across the edge if the distribution of probability is
uniform.

is limited to pairs of linked loops. Therefore we adopt a different approach for studying

nonequilibrium dynamics. In Section 7.3 we study nonequilibrium steady states and steady

state fluxes in a variety of limits. These limits simplify the problem. When the rotational

component, or overall flow, is small then the exponential can be linearized. When the

rotational component, or overall flow, is large then timescale separation arguments can be

used to simplify the problem.

7.3 Limiting Dynamics

In this section we consider the behavior of the steady state distribution and fluxes in a

variety of limits. Throughout we consider transition rates parameterized by:

l(β)ij = ρij(β) exp (βfij) (7.18)

where β is analogous to an inverse temperature, 1/(kBT ) in a physical system, the con-

ductances ρ(β)ij = ρ(β)ji are the geometric average of the forward and backward rates,

and the flow fij = −fji is the log geometric difference in the forward and backward rates.
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Limits are considered by making β large or small. The limits considered are:

1. The weak forcing limit (see Section 7.3.1), in which ρij(β) are assumed to be constant

in β and β is small. This models systems whose edge flow is small, and whose

forward and backward transition rates are close to symmetric. This models a system

dominated by diffusion - so would apply to physical systems at high temperature, or

to discretizations of stochastic differential equations whose diffusion term is larger

than their drift term.

2. The weak rotation limit (see Section 7.3.2), in which f is purely rotational, ρij(β) are

assumed to be constant in β, and β is small. This limit can be used to study the steady

state of any nonequilibrium Markov process with a small rotational component if the

scaling introduced in Section 7.2.1 is used to transform an arbitrary nonequilibrium

process into a purely rotational process. Thus this limit generalizes the results of the

weak forcing limit to allow for an arbitrarily large conservative component.

3. The strong forcing limit (see Section 7.3.3), in which ρij(β) are assumed to be

constant in β and β is large. This models a system whose forward transition rates

are much larger than its backward rates, where the average time spent in most states

converges to zero, and where the skeleton process becomes close to deterministic.

4. The strong rotation limit (see Section 7.3.3), in which f is purely rotational and

β is large. We consider cases where the conductances are fixed in β, and where

the conductances change with β to ensure that the expected waiting time at each

node converges to a constant. This limit can be used to study the steady state of

any nonequilibrium Markov process with a large rotational component if the scaling

introduced in Section 7.2.1 is used to transform an arbitrary nonequilibrium process
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into a purely rotational process. Thus this limit generalizes the results of the strong

forcing limit to allow for an arbitrarily small conservative component.

5. The near deterministic limit (see Section 7.3.3), in which β is large, and ρij(β) are

chosen so that the expected waiting time in each node converges to a finite, nonzero

constant as β goes to infinity. In this limit the skeleton process becomes close to

deterministic, while the expected rate of motion remains finite. This is analogous to

the coarse graining of a stochastic differential equation in the small noise limit.

In general when β is small the process is dominated by diffusion, while if β is large the

transitions become highly directed so the process is dominated by drift. When the process

is dominated by diffusion the HHD controls the shape of the steady state distribution. If

the process is drift dominated then an alternative class of potentials based on evaluating

the work over optimal paths is required. These are analogous to the quasipotential used

to analyze SDE’s in the small noise limit [23], however the actual form of the steady state

depends on the assumed limiting behavior of the conductances which control the expected

time spent in each state. Multiple strong forcing limits are considered since the strong forc-

ing limit depends heavily on what is assumed about the conductances. This discussion lays

the groundwork for a more general comparison of the HHD and quasipotential frameworks

which is saved for future work.

7.3.1 Weak Forcing Limit

Suppose that the edge flow f scales with some small parameter β and the conductances

are fixed. In a thermodynamic setting fij is the work wij to move from j to i divided by

the temperature kBT , so β = 1
kBT

. Then small β is analogous to a high temperature limit.
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Parameterize the transition rates:

lji = ρij exp (βfij)

where ρij = ρji are the conductances and fij = −fji is the edge flow as defined in

Section 6.4. Then when β is small the forward and backward rates on each edge pair

are similar, so the process is dominated by diffusion rather than by drift. If β = 0 then L is

symmetric. If L is symmetric then the corresponding master equation is purely diffusive,

and, in a continuum limit, would converge to an SDE with no advective term.

When β is small:

lji(β) = ρij(1 + fijβ +O(β2))

lii(β) = −
∑
j∈Ni

ρij(1 + fijβ +O(β2)).
(7.19)

More generally let:

L(β) =
∑
n=0

L(n)βn. (7.20)

Then:

l
(n)
ji = ρij

(fij)
n

n!
, l

(n)
ii = −

∑
j∈Ni

ρij
(fij)

n

n!
. (7.21)

This expansion converges since the Taylor series for the exponential converges everywhere.

Let q(β) denote the steady state distribution. Then expand q(β):

q(β) =
∞∑
n=0

q(n)βn. (7.22)
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Stationarity of the steady state requires L(β)q(β) = 0, so, matching orders of β:

L(0)q(0) = 0

L(0)q(1) + L(1)q(0) = 0

...

L(0)q(n) + . . . L(n)q(n) = 0.

Rearranging each equation produces a recursive sequence of correction equations which

define the correction to q(n) up to order n:

L(0)q(0) = 0

L(0)q(1) = −L(1)q(0)

...

L(0)q(n) = −
n∑
j=1

L(j)q(n−j).

(7.23)

The zeroeth order approximation to L(β) is L(0) = −GᵀWG where W is a diagonal

weight matrix with diagonal entries equal to the conductances on each edge. The first order

correction, L(1), has ij entries ρijfij . This matrix is antisymmetric since ρij = ρji and

fij = −fji. Its diagonal entries are the first order correction to−
∑

j∈Ni lji(β) which is the

same as the sum of the first-order correction of the off-diagonal entries. The correction can

be written L(0) = −GᵀWFH where G is the gradient, W is the weight matrix with edge

weights equal to the conductances, F is the diagonal E × E matrix with diagonal entries

equal to the edge flow on each edge, and H is the same as the gradient but with all nonzero

entries set to +1.

To see that GᵀWFH produces the correct matrix consider L(1)
ij = [G]ᵀiWF [H]j . This
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is a weighted inner product between the ith column of G and the jth column of H since W

and F are diagonal. These correspond to nodes i and j and have rows corresponding to the

edges. Each column is zero everywhere except at edges that connect to the corresponding

nodes. Thus, if i 6= j the only shared nonzero entry corresponds to the edge k with

endpoints i and j. If i(k) = i and j(k) = j then Gki = −1 and Hkj = 1 so the

weighted inner product is −WkkFkk = −ρijfij . If j(k) = i and i(k) = i then Gki = 1

and Hkj = 1 so the weighted inner product is WkkF = ρijfij . The columns all sum to

zero since 1ᵀGᵀWFH = [G1]ᵀWFH = 0ᵀWFH = 0ᵀ. Therefore the diagonal entries

must equal the sum of the off-diagonal entries. Therefore, −GᵀWFH is a V × V matrix

with off-diagonal entries ρijfij and diagonal entries equal to the (negative) sum of their

respective columns. The first order correction L(1) has the same form, so:

L(0) = −GᵀWG

L(1) = −GᵀWFH

(7.24)

and, substituting into the first two correction equations:

−GᵀWGq(0) = 0

−GᵀWGq(1) = GᵀWFHq(0).

(7.25)

The matrix L(0) = −GᵀWG is the Laplacian for a weighted simple random walk

with weights ρ (see Section 7.2.1). Since it is symmetric the corresponding steady state

is uniform. Let q(0) = 1/V . Then L(0)q(0) ∝ −GᵀWG1 = 0 since the gradient of any

constant equals zero. Therefore:

q(0) =
1

V
1. (7.26)

The fact that the steady state converges to a uniform distribution as β goes to zero is
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natural since, when β = 0, the process is entirely diffusive.

Substitute the uniform distribution into the right hand side of Equation (7.25) to com-

pute the equation defining the first order correction. Since each row of H has exactly two

nonzero entries both equal to +1 the product H1 = 21. Then FH1 = 2f where f is the

edge flow. Then the first order correction equation is:

GᵀWG = − 2

V
GᵀWf (7.27)

which is, exactly, a weighted Poisson equation of the type covered by Theorem 11. In

particular, suppose we defined a pair of generalized potentials φ, θ that are solutions to the

weighted HHD:

−W
1
2Gφ̃+W− 1

2Cᵀθ̃ = W
1
2f. (7.28)

Then q1 = 2
V
φ̃. Alternatively we could have chosen the weighted HHD:

−Gφ̂+W−1Cᵀθ̃ = f (7.29)

or:

−WGφ̂+ Cᵀθ̃ = Wf (7.30)

and we would still have:

q1 =
2

V
φ̂. (7.31)

The fact that we could pick multiple weightings is a natural consequence of the fact that

we can freely multiply the equation from the left by an invertible weight without chang-

ing the decomposition. In general it is helpful to work with multiple versions since the

symmetrized version, Equation (7.28), retains orthogonality but the asymmetric version,
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Equation (7.29), will be easier to interpret (see Section 7.3.2).

The corresponding effective potential is defined:

φeff (β) = − 1

β
log (q(β)). (7.32)

In the large noise limit:

φeff (β) = − lim
β→0

log

Å
1

V
+

2

V
φ̂β +O(β2)

ã
= −2φ̂− 1

β
log (V ) +O(β2).

Therefore:

lim
β→0

1

β
φeff (β) = − 2

V
φ̂− 1

β
log (V ) +O(β2) (7.33)

regardless the conductivies ρij .

Therefore, in the weak forcing limit the steady state behaves like the steady state of a

process that satisfies detailed balance (see Equation (6.10)). The steady state converges to

a uniform distribution exponentially in β, but the deviations from the uniform distribution

take a Boltzmann like form with potential φ̂ defined by the weighted HHD with forces

equal to f and weighted by the conductances.

This result is easy to interpret using the path integral interpretation of the weighted

HHD (see Theorem 12). The difference in φ̂ between two nodes is the average work to

traverse an ensemble of paths between the two nodes against the edge flow f , where the

paths are sampled from a simple random walk with weightsW . This simple random walk is

exactly the β = 0 limit of the original process. So when the forces are weak, the ensemble

of paths used in the path integral interpretation of the scalar potential φ̂ is exactly the

ensemble that would be sampled from the process in the limit. Thus it is not surprising that

the weighted HHD describes the first order correction to the steady state in the weak forcing
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limit. These observations are extended in Section 7.3.2 which considers the weak rotation

limit at length. Since any Markov chain can be rescaled to produce a purely rotational

process (see Section 7.2.1) the in-depth study of weak rotation will also cover all processes

with weak forcing, but will allow for an arbitrarily large conservative component.

7.3.2 Weak Rotation

Suppose that the rotational component of the edge flow frot is small. Then the correspond-

ing Markov process is near to a Markov process which obeys detailed balance. Since

the equilibrium in detailed balance is well understood it is natural to seek a perturbative

theory of steady states near detailed balance. That theory is developed here, using the

same analytic approach developed for the weak forcing limit (Section 7.3.1) after using the

purely rotational transform developed in Section 7.2.1.

Parameterize:

lji(β) = ρij exp(fconij + βfrotij)

where β is a small parameter. Then scale the transition rates by exp(−2φ) to produce the

transformed process with rates:

l̂ji(β) =
1

Rij

exp(βfrotij) (7.34)

where the resistances Rij = Rji are defined to be one over the rate of transition between

nodes in the equivalent conservative process (see Section 7.2.1 and Section 6.3.1).

Let:

qeq
i = exp(−2φi) (7.35)

denote the equilibrium distribution corresponding to the original process without its rota-
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tional component. Assume that φ is shifted so that exp(−2φi) is normalized. Let q̂(β)

denote the steady state for the process scaled by qeq. Then:

q(β)i =
1

Z
qeq
i q̂i(β) (7.36)

for the appropriate choice of the normalization constant Z.

Then, when β is small, the steady state of the scaled process q̂(β) is the steady state

of a process in the weak forcing limit, so must satisfy the recursive sequence of correction

equations:

L̂(0)q̂(0) = 0

L̂(0)q̂(1) = −L̂(1)q̂(0)

...

L̂(0)q̂(n) = −
n∑
j=1

L̂(j)q̂(n−j)

(7.37)

where L̂(β) = L̂(0) + L̂(1)β+ L̂(2)β2 + ... . The columns of L̂(n) sum to zero for any n, and

the off-diagonal entries follow from the Taylor expansion of exp(fij):

l̂
(n)
ji =

1

Rij

frot
n
ij

n!
.

The key to the weak rotation expansion is to rewrite these matrices in terms of the

gradient, resistances, and rotational edge flow. Let R be the diagonal E × E matrix with

diagonal entries equal to the resistances, let Frot be the diagonalE×E matrix with diagonal

entries equal to the rotational component of the edge flow, frot, and let H be the E × V

matrix which is zero in all entries where the gradient has zero entries, and one in all entries

where the gradient is ±1. Then, following Equation (7.24) we will attempt to expand L̂(n)
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with a product of the form:

L̂(n) = −GᵀR−1FrotK
(n)

where K(n) is either G or H , as specified in Equation (7.38) below.

This expansion is motivated by the following two observations. First, any matrix of the

form GᵀA has columns which sum to zero since 1ᵀGᵀA = [G1]ᵀA and the gradient of any

constant, i.e. G1, equals zero. Second, any matrix of the form GᵀWG or GᵀWH where

W is diagonal has the same sparsity pattern off the diagonal as the adjacency matrix of the

original graph, and has nonzero off diagonal entries equal to ±wij . If the matrix is of the

form GᵀWG then it is symmetric, if it is of the form GᵀWH then its off-diagonal entries

are antisymmetric. These two facts were shown in Section 7.3.1 and Section 7.2.1.

The matrices L̂(n) are symmetric if n is even since frot
n
ij is nonnegative if n is even. The

off-diagonal entries of L̂(n) are antisymmetric if n is odd since frotij = −frotij and frot
n
ij has

the same sign as frotij . Therefore:

L̂(n) = − 1

n!
GᵀR−1F n

rotK
(n) where K(n) =


G if n even

H if n odd

 . (7.38)

Taken together Equation (7.37) and Equation (7.38) define a sequence of recursive

correction equations:

−GᵀR−1Gq̂(0) = 0

−GᵀR−1Gq̂(n) = −
n∑
j=1

−GᵀR−1FrotK
(j)q̂(n−j).

(7.39)

This sequence of equations is the weak rotation expansion. It can be solved one order at

a time by solving a linear system. Once q̂(0) is known then it is used on the right hand side
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of the recursive equation in (7.39) to solve for q̂(1), which is used on the right hand side to

solve for q̂(2), and so on. By solving this sequence of linear equations out to an order n we

recover the coefficients in the nth order Taylor expansion of q̂(β). Each term, q̂(n) is the

nth derivative of q̂(β) at β = 0 divided by n!.

We will start by exploring the first order correction in Section 7.3.2, where we show

that the first order correction term, q̂(1) is the scalar potential associated with a weighted

HHD. This result follows exactly the same logic as the weak forcing expansion, however

we take the analysis further, and show that the first order correction to the steady state fluxes

is associated with the rotational part of the weighted HHD via a change of weights of the

type discussed in Corollary 11.1. This establishes a trade-off between the efficiency with

which the small rotational component drives steady state fluxes, and the amount the steady

state is perturbed. We show that the efficiency and size of perturbations depend on the

variation in the resistances, since variation in the resistances produce bottlenecks, and that

perturbations to the steady state arise from a balance between diffusion and bottlenecks.

In Section 7.3.2 we show that there is a symmetric positive semi-definite linear mapping

between the driving rotational component, frot, the steady state fluxes, and the steady state

affinities. This mapping is the Onsager matrix. We provide an explicit formula for the

Onsager coefficients, introduce bounds on the coefficients, and show that they are cycle

basis independent. Finally we show that the first order steady state entropy production

is minimized by the first order corrections to the steady state currents. To conclude our

exploration of the first order-corrections we show that the space of possible fluxes generated

by a process in detailed balance is limited to the range of a weighted gradient, and thus we

can use the HHD to solve for a space of observables that are martingales. This observation

is then extended in the weak rotation limit (see Section 7.3.2).

Once the first-order corrections are fully explained we return to the full expansion
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Equation (7.39). We show that much of the interpretation developed for the first order

corrections extends to all orders. In particular, at every order the correction to the steady

state is the scalar potential associated with a weighted HHD, and the correction to the

steady state fluxes at the matching order is the rotational component of the weighted HHD.

This result proves that the HHD is fundamental to steady state dynamics of nonequilibrium

processes near detailed balance, and governs the trade off between current and steady

state at every order (see Section 7.3.2). In Section 7.3.2 we prove that the expansion

always has a nonzero radius of convergence, and conjecture that the expansion converges

as long as β||frot||∞< 1. The conjecture is inspired by numerical experiments on large

percolation networks generated by removing nodes from a high dimensional hypercube.

To conclude our analysis of the weak rotation limit we ask, is there any space of conduc-

tances/resistances such that the steady state is independent of rotation for any frot? We show

that, if there are any cycles with overlapping edges, then there is no set of conductances for

which the steady state is independent of rotation, however it is possible to choose a set of

conductances such that the steady state is independent of rotation up to a particular order

which depends on the number of degrees of freedom in frot (see Section 7.3.2). This result

supports our observation in Section 7.2.3 that the principal difficulty when solving for the

steady states of nonequilibrium processes is overlapping cycles and the nonlinearity of the

exponential.

The First Order Corrections

Focus on the zeroeth and first order correction equations. These mimic the correction

equations derived for weak forcing. The zeroeth order equation reads GᵀWGq̂(0) = 0

which is satisfied when q̂(0) is uniform since the gradient of a constant is zero. Set q̂(0)
i = 1

so that q(eq)q̂(β) is normalized for all β. Setting q̂(0) to 1/V would normalize q̂ but this
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Figure 7.3: The first order approximation to q̂(β) using Equation (7.40) to compute q̂(1) on
a network with three nodes. The steady state probability q̂(β) of the transformed system
is shown in blue. The two dots represent β = ±1. The magenta line is the first order
approximation, and the magenta dot is detailed balance (β = 0). Note that the first order
approximation is tangent to q̂(β) at detailed balance. Also note that, after using the purely
rotational transform, the steady state at β = 0 is uniform. The right hand panel shows the
L1 error between the first order approximation and the scaled steady state. Note that the
error decays with slope 2 since the first order approximation is accurate to order β2.

scaling would ultimately vanish since q(eq)q̂ must be normalized.

Since q̂(0) = 1 the product Hq̂(0) is simply the 21. Therefore the first order correction

equation reads:

GᵀR−1Gq̂(1) = −GᵀR−1FrotHq̂
(0) = −2GᵀR−1frot. (7.40)

This is a weighted Poisson equation, so is the solution to the weighted HHD with weights

R−1 and right hand side 2frot:

−Gq̂(1) +RCᵀθ̂(1) = 2frot. (7.41)

The corresponding linear approximation to the steady state is shown in Figure 7.3
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Let Jij = ljiqi−lijqj = ljiq
(eq)
i q̂i−lijq(eq)

j q̂j = l̂jiq̂i− l̂ij q̂j be the steady state flux across

the edge from j to i. If the process obeys detailed balance then this flux vanishes on every

edge at equilibrium. When the process does not obey detailed balance then the rotational

component of the edge flow typically leads to non-vanishing steady state fluxes. Consider

an arbitrary set of fluxes J [257]. If the divergence of the fluxes at any node is nonzero then

there is a net inflow or outflow of probability at that node. This is impossible at steady state,

since a net inflow or outflow of probability changes the distribution. Therefore GᵀJ = 0

at steady state. It follows immediately from the HHD that the steady state currents must

be of the form J = CᵀθJ for some θJ ∈ RL. Since the steady state and transition rates

both depend on β these currents should be written J(β) = CᵀθJ(β). Then the currents can

be expanded in β. Since the currents vanish in detailed balance J(0) = 0. Therefore the

currents have an expansion of the form J(β) = J (1)β + J (2)β2 + ....

Expand the product Jij(β) = l̂ji(β)q̂i(β)− l̂ij(β)q̂j(β) to order zero in β:

Jij(β) =l̂
(0)
ji q̂

(0)
i − l̂

(0)
ij q̂

(0)
j +O(β).

The zeroeth order term, l̂(0)
ji q̂

(0)
i − l̂

(0)
ij q̂

(0)
j = 0 since the zeroeth order process obeys

detailed balance, so generates no flux at equilibrium. This leaves the first order term. The

first order term can be written:

J(β) =
î
R−1FrotHq̂

(0) +R−1Gq̂(1)
ó
β +O(β2)

where R−1FrotH is the first order term in the matrix that maps from probability to fluxes,

and R−1G is the zeroeth order term in the matrix that maps from probability to fluxes.

These relations come from removing the divergence −Gᵀ from L̂(1) and L̂(2). The Lapla-

cians without the divergence are the mapping from probability to flux since the Laplacians
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map from probability to rate of change in probability, and the rate of change in probability

equals the divergence of the fluxes. Move the factor of R−1 to the outside. The product

Hq̂(0) = 2 since q̂(0) = 1. Then:

J(β) = R−1
î
2frot +Gq̂(1)

ó
β +O(β2) (7.42)

There are two natural ways to interpret this expression. First, notice that the two terms

in square brackets can each be associated with different sets of edge flows. The first set

are the small rotational forces applied to the system, frot, responsible for preventing the

system from reaching steady state at q̂(0). The second arise from the fact that the stationary

distribution is near the equilibrium distribution q̂(0) but not at q̂(0). Therefore L̂(0) drives

fluxes that move the system back towards q̂(0).

Alternatively, note that the first order term, J (1), is the rotational component left over

in the correction HHD (Equation (7.41)) so:

−Gq̂(1) +RCᵀθ̂(1) = −Gq̂(1) +RJ (1) = 2frot (7.43)

where J (1) = Cᵀθ̂(1) is the first order approximation to the steady state currents. Thus, the

first order corrections to the steady state and first order corrections to the steady state fluxes

are the conservative and rotational components of the same weighted HHD, with weights

set to the resistances. Therefore the HHD governs the first order steady state dynamics of

any Markov process near to detailed balance.

Lemma 26 (First order corrections in weak rotation). In the weak rotation limit the first

order corrections to the (scaled) steady state, q̂(1), and steady state fluxes, J (1), satisfy the
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weighted HHD:

−Gᵀq̂(1) +RCᵀθJ = 2frot

where J (1) = CᵀθJ and R is the diagonal matrix with entries equal to the resistances.

Equation (7.43) shows that there is an inherent trade-off in the size of the steady state

fluxes and the amount that the equilibrium distribution is perturbed by rotational forces. If

the fluxes are particularly large then the steady state does not respond significantly to the

rotational forces, but if the fluxes are small then the steady state is highly responsive to the

rotational forces. This exchange can be made more precise by symmetrizing the correction

HHD. Multiply both sides of the equation by R1/2. Then:

−R1/2Gq̂(1) +R−1/2Cᵀθ̂(1) = 2R1/2frot.

The scaled operators, R1/2G and R−1/2Cᵀ, are orthogonal since:

(R1/2G)ᵀR−1/2C = GᵀR1/2R−1/2Cᵀ = GᵀCᵀ = 0.

ThereforeR1/2Gq̂(1) andR−1/2Cᵀθ̂(1) = R−1/2J (k) are orthogonal. Then, by the Pythagorean

theorem:

||Gq̂(1)||2R−1+||J (1)||2R= 4||frot||2R−1 (7.44)

where ||v||2A= vᵀAv denotes the energy norm in A for a symmetric positive definite matrix

A.

The right hand side is fixed by the rotational component of the edge flow and resis-

tances, so is independent of the corrections at order 1. Since both terms on the left hand

side are non-negative both are bounded above by the right hand side, and if one is close in
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magnitude to the right hand side then the other must be small. Therefore the more of the

decomposition is devoted to fluxes the smaller the necessary correction to the steady state,

and visa versa.

This trade-off leads to the hypothesis that the more efficiently a set of rotational forces

drive steady state currents, the less the steady state will deviate from the equilibrium

distribution. The efficiency with which the rotational forces produce current is measured

by the ratio:

η2 =
||J (1)||2R

4||frot||2R−1

. (7.45)

To see that η is an efficiency note that the steady state currents arise from the rotational

forces. The numerator measures the size of the currents, and the denominator measures the

size of the forces, so η is a natural measure of efficiency. Going beyond heuristic arguments,

η > 0 since the numerator is nonnegative and the denominator is positive by assump-

tion. The ratio η is strictly less than or equal to one since since ||Gq̂(1)||2W+||J (1)||2W−1=

4||frot||2W and the square of the energy norm of Gq̃(1) is nonnegative. Moreover η = 1 can

be achieved since if the resistances are uniform (Rij = r for all ij). If the resistances are

all the same, then GᵀR−1frot = rGᵀCᵀθ = 0 so q̂(1) = 0. Then η = 1. Therefore the

network is most efficient at producing rotation when the resistances are uniform, and when

the network is maximally efficient, rotation does not change the steady state. Finally, η is

dimensionless and compares the actual entropy production of the network to the maximal

entropy production that could be achieved. Entropy will be addressed in more depth in

Section 7.3.2. Here we briefly discuss entropy to motivate the otherwise strange fact that in

the numerator we use an energy norm evaluated with respect to R and in the denominator

we use an energy norm with respect to R−1.

Consider an analogy with an electrical network. On a given edge J is a probability
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current. It would have units of charge per time. On any edge R−1 is analogous to a

resistance, where R would have units of Ohms. The edge flow frot would be analogous

to a change in energy across the edge [5], so would have units of volts, V . Then:

||J ||2R=
∑
ij

RijJ
2
ij.

is the Joule heating of the electrical network. In Section 7.3.2 we will show that this is also

the entropy production of the Markov chain. Therefore it has units of power. On the other

hand:

||frot||2R−1=
∑
ij

V 2
ij

Rij

.

Note that in order for frot to be rotational V should be interpreted as the voltage drop across

a battery on each edge. If the network was an electric circuit, then, when the voltages and

currents are small it would obey Ohms law, V = IR, so this would also be the Joule heating

and would have units of power. Therefore η is a ratio of the actual entropy production of the

network to the maximal possible entropy production, which is achieved when the network

behaves like an electric circuit and obeys Ohms law. Thus η is the thermal efficiency of the

network in the weak rotation limit.

The correction to the steady state is related to the thermal efficiency by:

||Gq̂(1)||2R−1= 4
(
1− η2

)
||frot||2R−1 . (7.46)

Therefore, when the network is maximally efficient the correction to the steady state

vanishes. The less efficiently the rotational forces drive current the larger the change to

the steady state. Let σmin, σmax be the smallest and largest singular values of the weighted

node Laplacian, GᵀR−1G. Then the size of the correction to the steady state is bounded
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by:

4
1− η2

σmax
||frot||2R−1≤ ||q̂(1)||2≤ 4

1− η2

σmin
||frot||2R−1 . (7.47)

Equation (7.47) shows that the steady state is more reactive to the rotational forces when

the rotational forces do not efficiently drive current. Conversely, when the steady state is

reactive to the rotational forces the currents must be produced inefficiently. To understand

this exchange it is helpful to return to the weighted Poisson equation defining the correction

to the steady state:

GᵀR−1Gq̂(1) = −2GᵀR−1frot.

First consider the product R−1frot. The rotational flow frot are unitless while the resis-

tances R have units of time. Therefore −2R−1frot has units one over time, the same units

as probability flux. If there is no correction to the steady state the correction HHD gives

J (1) = 2R−1frot, therefore 2R−1frot can be interpreted as the maximal probability fluxes.

Note that, from the expansion of the fluxes, the maximal fluxes are the fluxes which arise

from applying L(1) to the zeroeth order steady state q̂(0).

The maximal fluxes need not be divergence free. When they are not divergence free

the actual fluxes are smaller since the rotational flow does not drive current with perfect

efficiency. Suppose the maximal fluxes are not divergence free. Then at some nodes there

will be more maximal flux entering the node than leaving it, and at others there will be

less maximal flux entering the node than leaving it. This pulls probability away from

nodes where the divergence of R−1frot is positive and towards nodes where the divergence

of R−1frot is negative. Probability bottlenecks where the divergence is negative because

more probability is pushed in than is removed. Therefore −2GᵀR−1frot is the rate at

which probability would accumulate in each node under the maximal fluxes alone. The

rate is large when there are bottlenecks: nodes where more flux enter than leaves. These
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bottlenecks couple the steady state distribution to the rotational component frot.

The accumulation of probability in bottlenecks is balanced by the inherently diffusive

nature of random processes. The diffusion is captured by the left hand side of the discrete

Poisson equation, and corresponds to the flux generated by the product of L(0) with q̂(1).

The more probability builds up in a given node the more it diffuses to its neighbors. The

left hand side of the Poisson equation is the rate of change in probability due to diffusion.

Therefore the Poisson equation can be interpreted as the steady state equation for a diffusive

process with sources 2GᵀR−1frot. The singular values that appeared in Equation (7.47)

represent the maximal possible rate and minimal possible rate at which diffusion spreads

probability between the nodes. Since the flow of probability due to diffusion increases as

q̂(1) becomes farther from uniform it eventually balances the accumulation of probability in

bottlenecks. It is this balance that determines the steady state. The maximal fluxes R−1frot

are not always divergence free, leading to bottlenecks that accumulate probability. The

accumulation is balanced by the inherently diffusive nature of random walks, leading to a

steady state that is large near nodes where the maximal fluxes bottleneck, and small where

GᵀR−1frot is negative.

It follows that the size of the correction to the steady state should depend on both the

size of the optimal fluxes, and their tendency to bottleneck. To characterize the tendency to

bottleneck we seek a bottlenecking coefficient, which, when multiplied with the magnitude

of the maximal currents, characterizes the size of the correction to the steady state.

Define the bottlenecking coefficient, γ:

γ2 =
||GᵀR−1frot||2(GᵀR−1G)†

4||frot||2R−1

. (7.48)

where (GᵀR−1G)† is the pseudo-inverse of the weighted node Laplacian, L̂(0), responsible
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for diffusion of probability. The choice to use an energy norm in the pseudo-inverse

of GᵀR−1G may seem strange. The choice is natural since bottlenecks lead to larger

changes in the steady state when they occur at nodes which probability diffuses from

slowly. Like the thermal efficiency the bottlenecking coefficient is a dimensionless quantity.

It is independent of both the average size of R and frot since both appear in the numerator

and denominator to the same order. It is large when the GᵀR−1frot is uncharacteristically

large compared to R−1frot. This occurs when the maximal fluxes tend to converge or

diverge. That is, when the maximal fluxes bottleneck. It is small when the maximal fluxes

are close to divergence free, and vanishes when the maximal fluxes are divergence free.

This last property is essential since, when the maximal fluxes are divergence free they do

not bottleneck, so the coefficient should be zero.

The bottlenecking coefficient, is intimately related to the efficiency, η, with which the

frot produces current. In fact:

Lemma 27 (Bottlenecking and efficiency). The bottlenecking coefficient, γ, defined by

Equation (7.48) and the thermal efficiency, η, defined by Equation (7.45) satisfy:

γ2 + η2 = 1. (7.49)

Proof. To prove Equation (7.49) expand the energy norm in the numerator of the bottle-

necking coefficient:

||GᵀR−1frot||2(GᵀR−1G)†=
1

4
||GᵀR−1Gq̂(1)||2(GᵀR−1G)†=

1

4
||Gq̂(1)||2R−1= (1− η2)||frot||2R−1 .

Then γ2 = 1− η2, γ2 + η2 = 1, and η2 = 1− γ2.

Lemma 27 shows that there is an exact exchange between the degree to which frot
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introduces bottlenecks and the efficiency with which frot drives current. The more bot-

tlenecking the less efficiently current is driven, and the more efficiently current is driven

the less bottlenecking. Equation (7.49) also shows that, like the thermal efficiency, the

bottlenecking coefficient is bounded above by one. The bottlenecking coefficient equals

one when the rotational forces fail to produce any current (to first order).

The size of the first order correction steady state can then be bounded by the bottle-

necking coefficient by substituting Equation (7.49) into Equation (7.47):

4
γ2

σmax
||frot||2R−1≤ ||q̂(1)||2R−1≤ 4

γ2

σmin
||frot||2R−1 . (7.50)

Thus the larger the bottlenecking coefficient, the larger the change to the steady state

distribution due to rotation.

Suppose now that the resistances are all constants so that R = rI . Then there are no

bottlenecks since GᵀR−1frot = r−1GTfrot = 0. If GᵀR−1frot = 0 then the bottlenecking

coefficient is zero, so the first order correction to the steady state is zero, and the thermal

efficiency is one. Therefore, if Rij = r for all connected pairs of nodes ij then q̂(1) = 0,

β = 0, η = 1, and J (1) = 1
r
frot on every edge. In Section 7.3.2 we will show that when

the resistances are all equal then the nonequilibrium steady state is independent of rotation

to third order in β (q̂(2) = 0), but at third order and higher still depends on rotation. In

Section 7.3.2 we study conditions for rotation independent steady states and find that the

coupling to rotation at higher orders arises from to the nonlinearity of the exponential where

loops overlap discussed in Section 7.2.3.
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Onsager and Linear Thermodynamics

Linear thermodynamics is the study of nonequilibrium physical processes that are in the

weak rotation limit (near to equilibrium) [257, 258]. In this section we show that some of

the key results of linear thermodynamics regarding fluxes and entropy production can be

recovered directly from the first order terms in the weak rotation expansion.

Consider the first order approximation to the steady state currents, J (1). The first order

approximation to the steady state currents are the rotational component of the weighted

correction HHD −Gq̂(1) + RJ (1) = 2frot where frot = Cᵀθ. Take the curl on both sides.

Then, since the curl of the gradient is zero:

CRJ (1) = 2Cfrot (7.51)

or:

CRCᵀθJ = 2CCᵀθ (7.52)

where CᵀθJ = J (1). It is always possible to find a rotational potential so that CᵀθJ =

J (1) since J (1) are steady state currents, so must be divergence free. Alternatively, the

currents are necessarily divergence free since J (1) = R−1[2frot + Gq̂(1)] so GᵀJ (1) =

2GᵀR−1frot + GᵀR−1Gq̂(1) which equals zero by the discrete Poisson equation (Equa-

tion (7.40)). Therefore the vorticities θJ describing the steady state current are related to the

rotational potential θ by the change of weights formula used to switch from an unweighted

to a weighted HHD.

Equation (7.52) defines a mapping from the rotational component of the edge flow to

the steady state currents:

J (1) = CᵀθJ = 2Cᵀ[CRCᵀ]−1CCᵀθ = 2Cᵀ[CRCᵀ]−1Cfrot. (7.53)
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This relation can be extended to understand the steady state production rate of observ-

ables. Suppose S[X(t)] is an observable that only changes when X(t) transitions, where

the change associated with a transition depends only on the transition made, and is reversed

if the transition is made in reverse. Then S[X(t)] can be expressed as a path integral over

the trajectory X(t) against an edge flow s and the long term production rate of S[X(t)] is:

lim
t→∞

1

t
S[X(t)] = Jᵀs (7.54)

where J is the steady state flux. Then, since J must be divergence free, J = CᵀθJ for some

vorticity θJ , so Jᵀs = θᵀJCs. Since s is an edge flow s = scon + srot so Cs = Csrot and

θᵀJCs = Jᵀsrot = θᵀJCC
ᵀθs. Then the long term production rate of the observable is:

lim
t→∞

1

t
S[X(t)] = sᵀrotJ = θᵀs [CJ ]. (7.55)

Therefore, the long term production rate of any observable is determined by the curl

of steady state fluxes. Like the flux itself, the curl of the steady state flux is related to the

driving rotational edge flow and θ by a linear relation in the weak rotation limit:

CJ (1) = CCᵀθJ = 2CCᵀ[CRCᵀ]−1CCᵀθ = 2Mθ. (7.56)

Thus the long term production rate of any observable defined by a path integral is ex-

pressable as an inner product with CCᵀ[CRCᵀ]−1CCᵀθ. The matrix, M , is the matrix of

Onsager coefficients. The Onsager matrix maps from the driving rotational potential to

the net flux on each cycle [5]. A similar matrix, 2Cᵀ[CRCᵀ]−1C can be introduced which

maps from the driving rotational edge flow to the flux on each edge. These two matrices are

central to thermodynamics near detailed balance since they govern the relationship between
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the external affinities which drive rotation, and the change in observables due to rotating

probability current.

Consider the steady state affinities, Aij(q) in the weak rotation limit. The steady

state affinities are the change in free energy required to move an infinitesimal amount of

probability along any edge. In general the affinity on edge ij given the distribution p is

defined (see Chapter 6):

Aij(p) = log

Å
l(β)ijpj
l(β)jipi

ã
.

Therefore, at steady state:

Aij(q|β) = log

Å
l(β)ijq(β)j
l(β)jiq(β)i

ã
Expanding in small β yields:

Aij(q|β) = log

(
l
(0)
ij q

(0)
j + β[l

(0)
ij q

(1)
j + l

(1)
ij q

(0)
j] +O(β2)

l
(0)
ji q

(0)
i + β[l

(0)
ji q

(1)
i + l

(1)
ji q

(0)
i] +O(β2)

)
.

To simplify note that l(0)
ij q

(0)
j = R−1

ij = l
(0)
ji q

(0)
i . Therefore multiplying the numerator

and denominator by Rij gives:

Aij(q|ε) = log

(
1 + βRij[l

(0)
ij q

(1)
j + l

(1)
ij q

(0)
j] +O(β2)

1 + βRij[l
(0)
ji q

(1)
i + l

(1)
ji q

(0)
i] +O(β2)

)
.

Separating into a difference of logarithms and Taylor expanding each logarithm in small

β gives:

Aij(q|ε) = βRij

î
l
(0)
ij q

(1)
j − l

(0)
ji q

(1)
i + l

(1)
ij q

(0)
j − l

(1)
ji q

(0)
i

ó
+O(β2).
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The bracketed term is J (1)
ij so:

A(q|β) = βRJ (1) +O(β2). (7.57)

and:

A(1)(q) = RJ (1) (7.58)

Therefore the steady state affinities are all proportional to the steady state currents, and

the steady state currents are the affinities divided by the resistances [5]:

βJ (1) = R−1A(1)(q) (7.59)

This linear relationship between the fluxes and affinities is one of the key results of

linear thermodynamics. It follows immediately that the curl of the steady state affinities is:

A
(1)
ext = CA(1)(q) = CRJ (1) = 2CCᵀθ.

which corresponds exactly to the general rule:

CA = C

Å
2f + log

Å
pj
pi

ãã
= 2Cf = 2CCᵀθ.

The entropy production P is the inner product P ᵀJ [20] so, to lowest order:

P (2) = ||A(1)||2R−1= ||J (1)||2R (7.60)

Therefore the steady state entropy production is, to lowest order in β, the energy norm

of the steady state affinities with respect to R−1, or the energy norm of the steady state

447



fluxes with respect to the resistances R. Note that the latter energy norm was the numerator

in the thermal efficiency η2 (see Equation (7.45)). This fact motivates the name thermal

efficiency, since η2 is the ratio of the entropy produced to the maximum possible entropy

produced.

Lemma 28 (Affinities, Flux, and Entropy Production in Weak Rotation). In the weak rota-

tion limit the first order correction to the steady state fluxes and affinities are proportional

where J (1) = R−1A(1), so to lowest order the steady state entropy production is:

P (q|β) = β2||J (1)||2R+O(β4). (7.61)

Lemma 28 is interesting since J (1) is the circulating component of the weighted cor-

rection HHD, with weights R. Then the least squares interpretation of the weighted HHD

(see Section 2.4.2) implies that ||J (1)||2R is minimized by the first order correction to the

steady state. Thus, in the weak rotation limit, the steady state and steady state fluxes mini-

mize the entropy production. Other maximum power, maximum efficiency, and minimum

dissipation properties of the weak rotation limit are discussed in [259].

The entropy production is an observable, and at steady state is defined as an inner

product with the steady state fluxes. It follows that the entropy production can be computing

directly from frot or θ using the Onsager matrix M .

P (1) = A(1)ᵀJ (1) = A(1)ᵀCᵀθJ = AᵀextθJ = 2θᵀCCᵀθJ

= 2θᵀCJ (1) = 2θᵀMθᵀ = 2||θ||2M .

That is, to first order the entropy production is twice the energy norm of the rotational

potential with respect to the Onsager matrix M .

The Onsager matrix is the mapping from θ to the cycle fluxes CJ (1). This mapping
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equals:

M = CCᵀ[CRCᵀ]−1CCᵀ. (7.62)

The Onsager matrix can be simplified by expressing the product Cᵀ[CRCᵀ]−1C as a

projector. Symmetrize the correction HHD by multiplying on the left by R−1/2. Then:

−R−1/2Gq̂(1) +R1/2J (1) = 2R−1/2frot

where J (1) = CᵀθJ . Let G̃ = R−1/2G and C̃ = CR1/2. Then the weighted operators

are orthogonal so R1/2J (1) equals the orthogonal projection of 2R−1/2frot onto the range

of R1/2Cᵀ. Let PC̃ denote the orthogonal projector onto the range of R1/2Cᵀ. Then

R1/2J (1) = 2PC̃R
−1/2frot = 2PC̃R

−1/2Cᵀθ. Therefore:

J (1) = 2R−1/2PC̃R
−1/2frot

CJ (1) = 2CR−1/2PC̃R
−1/2Cᵀθ = 2Mθ

(7.63)

and:

M = CCᵀ[CRCᵀ]−1CCᵀ = CR−1/2PC̃R
−1/2Cᵀ. (7.64)

The coefficients of the Onsager matrix, mlh, represent the coupling between the ro-

tational potential θ on loop h, and the observed cycle current on loop l. If mlh is large

then introducing a rotational potential on loop h will lead to a large current around loop h.

This formula for the Onsager matrix differs from Schnakenberg’s formula for the Onsager

matrix since Schnakenburg uses a curl operator which evaluates the curl of a flow on a

fundamental cycle basis by evaluating the flow on each chord, rather than summing the

flow around the each cycle [5].

For example, consider a single loop with |C| vertices. Then C is the 1× |C| row vector
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of all ones. Then CRCᵀ =
∑

ij Rij is the total resistance of the cycle. Then [CRCᵀ]−1

is one over the total resistance of the loop. At the same time CCᵀ = |C| so the Onsager

coefficient for the scaled system is |C|/R̄ where R̄ is the total resistance. This result differs

from the result derived in Section 7.2.2 because the result derived there assumed that the

initial process was purely rotational, while in this section we assumed that we were working

with a nonequilibrium process that is scaled to arrive a purely rotational process. Since

we wanted to avoid introducing a normalization constant Z we set q(0) = 1 instead of

1/V = 1/|C|. This distinction introduces a factor of |C| since the steady state of a purely

rotational process on a cycle in the limit that θ goes to zero is 1/V = 1/|C|.

The Onsager coefficients satisfy a number of interesting properties. These are summa-

rized below:

Lemma 29 (Onsager Matrix). Let M be the matrix of Onsager coefficients defined by

Equation (7.64). Then M depends only on equilibrium (β = 0) quantities and has the

following properties:

1. Symmetry: M is symmetric so mlh = mhl for all loops h and l.

2. Positive Semi-Definite: M is positive semi-definite so:

mll ≥ 0

mhl ≤
1

2
(mhh +mll)

mhl ≤
√
mhhmll.

(7.65)

3. Bounded: ||M ||2≤ ||CR−1Cᵀ||2 where ||A||2 denotes the induced two-norm. The

upper bound scales in the inverse of the average resistance.
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4. Cycle Basis Independent: Each Onsager coefficient depends only on the pair of

cycles it maps between, and does not depend on any of the other cycles included in

the set of cycles that defines the curl. If C and C ′ are two different cycle sets, sharing

a pair of cycles, then the Onsager coefficient corresponding to that pair of cycles is

the same for both C and C ′, and is well defined for any set of cycles whether or not

they form a cycle basis.

Proof. By construction M only depends on the network topology and the resistances R,

which equal the rate at which probability is exchanged between neighbors at equilibrium.

The symmetry of the Onsager matrix M is clear from Equation (7.64):

Mᵀ =
Ä
CR−1/2PC̃R

−1/2Cᵀ
äᵀ

= CR−1/2P ᵀ
C̃
R−1/2Cᵀ

since R is diagonal. The projector PC̃ is an orthogonal projector, so it is symmetric, thus

Mᵀ = M .

The Onsager matrix is positive semi-definite since:

vᵀMv = (R−1/2Cᵀv)ᵀPC̃(R−1/2Cᵀv) = uᵀPC̃u ≥ 0

where the inequality follows from the fact that the projector is positive semi-definite. Since

M is positive semi-definite the inner product (CJ (1))ᵀθ = θᵀMθ ≥ 0, so the steady state

fluxes generated by θ tend to point in the same direction around the basis loops as θ.

Let Cl be a loop in the cycle basis. Then mll = eᵀlMel ≥ 0 where el is the lth column

of a L× L identity matrix. It follows that all of the diagonal entries of M are nonnegative.

Thus, driving rotation around a loop with a rotational potential θ drives current in the same

direction. The coupling between the rotational potential on a loop and the cycle flux on that

451



same loop is a diagonal coefficient of M .

The fact that M is positive semi-definite also bounds the off-diagonal entries of M

given the diagonal entries. Let Cl and Ch be two different cycles in C then let v = el − eh.

Then vᵀMv = mhh +mll − 2mhl ≥ 0 so:

mhl ≤
1

2
(mhh +mll).

That is, the off-diagonal entries of the Onsager matrix are less than or equal to the

average of the corresponding pair of diagonal entries. This means that the coupling between

the rotational potential on loop l, and the current induced by that potential on loop h is

always less than the average of the coupling between loop l and itself and loop h and itself.

Therefore any flux introduced by coupling between distinct loops is weaker than the flux

induced on the loops themselves.

The same inequality is true if a geometric average is used instead of an arithmetic

average. Write M as a block matrix of the form:

M =

 m11 m̄1
ᵀ

m̄1 M̄

 .
Then define:

T =

 1 0

−m̄1/m11 I

 .
Then:

TMT ᵀ =

 m11 0

0 M̄ − 1
m11

m̄1m̄
ᵀ
1

 .
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Let v = T ᵀek with k > 1. Then:

vᵀMv = mkk −
m2

1k

m11

≥ 0.

It follows that m2
1k ≤ m11mkk. Since the choice of blocking was arbitrary:

mjk ≤
√
mjjmkk.

Therefore the off-diagonal elements of M are less than or equal to the arithmetic and

geometric averages of the corresponding diagonal elements.

The norm of the Onsager matrix is bounded since:

||M ||2 = ||CR−1/2PC̃R
−1/2Cᵀ||2≤ ||CR−1/2||2||PC̃ ||2||R

−1/2Cᵀ||2

= ||CR−1/2||2||R−1/2Cᵀ||2= ||CR−1/2||22= ||CR−1Cᵀ||2

where the first inequality follows from the definition of the induced two-norm, the second

equality follows from the fact that the largest singular value of a orthogonal projector equals

one, and the last two equalities follow from the fact that the largest singular value of a

matrix equals the largest singular value of its transpose, and the singular values of the

product of a matrix and its transpose are the singular values of the original matrix squared.

If the resistances are scaled by a constant factor then ||CR−1Cᵀ||2 is scaled by one over

the same factor. Thus, if r̄ denotes the average resistance, and δrij = (rij − r̄)/r̄ is the

deviation in the resistances relative to their mean, then if r̄ changes while δr stays fixed

then ||CR−1Cᵀ||2∝ r̄−1. Therefore the Onsager matrix is bound above by a bound that

scales in one over the average resistance. Naturally, increasing the resistances decreases

the loop currents.
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To show that the entries of the Onsager matrix only depend on the corresponding pair

of loops, and not on any other loops included or excluded from C when defining the curl C

consider:

mlh = [CR−1/2PC̃R
−1/2Cᵀ]lh = Cl[R

−1/2PC̃R
−1/2]Cᵀh

where Cl is the lth row of the curl. The lth and hth row of the curl only depend on loops

Cl and Ch, and are independent of all other loops in C. The bracketed term is entirely

cycle basis independent since the resistances R don’t depend on the cycle basis, and the

orthogonal projector PC̃ equals the identity minus the orthogonal projector onto the range of

the scaled gradient G̃, which only depends on the resistances not the cycle basis. Therefore

mlh only depends on Cl and Ch, not the set of cycles.

The conclusions of Theorem 29 are worth interpreting. The symmetry of the Onsager

coefficients is the most famous and most surprising conclusion. The symmetry of the

Onsager coefficients is called Onsager reciprocity [5, 260, 261]. Onsager won the 1968

Nobel Prize for Chemistry for his seminal work on reciprocity. As innocent as reciprocity

may appear in algebra, mlh and mhl have totally different interpretations. The first is the

current induced on loop l by a unit rotational potential on loop h. The second is the current

induced on loop h by a unit rotational potential on loop l. Thus reciprocity states that the

current induced on loop l by driving rotation on loop h is the same as the current induced on

loop h by driving rotation on loop l, no matter how much the loops may differ in size, net

resistance, or significance. If one loop represents a cycle in one state variable or observable,

and the other represents a cycle in a different state variable or observable, then reciprocity

implies that driving rotation in the first state variable leads to the same cyclic flux in the

second state variable as driving rotation in the second state variable leads to flux in the
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first. Thus the flux of totally different physical quantities is reciprocal near equilibrium

[260, 261]. Examples even include the exchange of information and energy [262].

For an ecological example, suppose the Markov process models multiple populations

interacting in multiple geographic patches. Then there may be some cycles associated with

individuals dispersing between habitat patches, and some cycles that represent changes in

the number of individuals in each patch due to internal demographic processes (births and

deaths). Then a rotational potential in dispersal will lead to cyclic fluxes in population sizes

within patches, and an equivalently sized rotational potential in demographic rates within

a patch will result in the same flux in dispersal between patches.

The fact that the Onsager matrix is positive semi-definite is intuitive since it implies

that, when a rotational potential is introduced, the resulting loop currents circulate, on

average, in the same direction as the driving potential. Moreover it ensures that if rotation

is introduced on a loop, then the resulting current on that loop must go in the same direction.

This result is a weaker version of Hill’s cycle flux theorem [6], which guarantees that the

direction of flux around any loop is the same as the direction around the loop in which the

work to complete one cycle is positive, and which was guaranteed by Equation (6.39). The

fact that the off-diagonal entries of the Onsager matrix are bound above by the arithemtic

and geometric averages of the corresponding diagonal entries is also natural since it implies

that the flux produced on loop l by a rotational potential on loop l will necessarily be larger

than the flux produced on a different loop h if the flux produced on loop h by driving

current on loop h is less than the flux produced on loop l by driving current on l.

The upper bound on the norm of the Onsager matrix is important since it shows that

less current is induced when the resistances increase.

The fact that the Onsager coefficient coupling a pair of loops is independent of all other

loops in the cycle basis, or set of cycles used to define the curl, is essential since the choice
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of cycle basis, or possible larger set of cycles, is an arbitrary choice of representation. If

the Onsager coefficients depended on the entire set of cycles chosen then they would be

properties of how we choose to represent the system, not inherent properties of the loops

themselves. The Onsager coefficients are inherent properties of pairs of loops since they

do not depend on the inclusion or exclusion of other loops in the cycle set.

In fact, since PC̃ = I − PG̃ where PG̃ is the orthogonal projector onto the range of

G̃ = R−1/2G, the Onsager coefficients for a pair of loops can be computed without ever

forming a cycle basis or a curl. Let Cl and Ch be a pair of loops. Let C(C) be the curl

associated with set of loops C. Then the corresponding coefficient is:

M(Cl, Ch) = C(Cl)[R−1/2(I − PG̃)R−1/2]C(Ch)ᵀ. (7.66)

Equation (7.66) can be used to compute the Onsager coefficients for a cycle formed by

the sum of two cycles. Suppose cycles Cl and Ch share a boundary. Then:

M(Cl + Ch, Ck) = [C(Cl)± C(Cl)][R−1/2(I − PG̃)R−1/2]C(Ch)ᵀ

= M(Cl, Ck)±M(Ch, Ck)
(7.67)

where the two are subtracted if Cl and Ch cross their shared boundary in the same direction,

and added otherwise. Thus, if the matrixM is computed for a cycle basis, then the Onsager

coefficients for any other pair of loops can be computed by linear combination of the entries

of M .

It follows immediately that, given two cycle bases C, C ′ whose curls are related by the

linear transform T such that C(C ′) = TC(C), then the Onsager matrix on the transformed

cycle basis is M(C ′):

M(C ′) = TM(C)T ᵀ. (7.68)
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In summary, by using the HHD to study nonequilibrium processes near to detailed

balance we can easily recover a number of crucial results from linear thermodynamics. The

fluxes and affinities are proportional, the entropy production at steady state is minimized

(under constraints on the steady state flux), and the steady state loop currents are related to

the driving rotation by a symmetric positive definite matrix whose entries are inherent to

the pairs of loops considered.

Observables and Fluxes in Detailed Balance and Weak Rotation

In the Section 7.2.1 we developed a new way to write the Laplacian for processes that obey

detailed balance. Given L that obeys detailed balance, the resistances are defined 1/Rij =

ρij exp (−[φi + φj]). Let R−1 be an E ×E diagonal matrix with entries set to one over the

resistances. Then define a diagonal matrix Q with diagonal entries set to exp (−2φ) = q

where q is the stationary distribution for the process. Then the transition matrix L could be

rewritten L = −[GᵀR−1G]Q−1 = Gᵀ[−R−1GQ−1]. where [−R−1GQ−1] is the matrix that

maps from probability to the probability flux.

Given L = Gᵀ[−R−1GQ−1], d
dt
p = GᵀR−1GUp = −GᵀJ(p) where J(p) are the fluxes

across the undirected edges. This linear mapping follows immediately from the definition

of R, G and Q (see Section 6.3.1):

[R−1GQ−1p]ij =
1

Rij

[pi/qi − pj/qj] = ρij exp (−[φi + φj])[exp (2φi)pi − exp (2φj)pj]

= wij[exp (φi − φj)pi − exp (φj − φi)pj] = ljipi − lijpj = Jij(p).

Therefore, the fluxes J(p) are always in the range of the operator −R−1GQ−1. Both of

the scaling matrices R−1 and Q−1 are diagonal and invertible, so the range of −R−1GQ−1

is R−1range{G}. Notice that the range of G always has dimension V − 1. Therefore the
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fluxes are restricted to a V − 1 dimensional subspace of the space of all possible fluxes.

In contrast the space of all possible fluxes has dimension E − 1 since probability must be

conserved. Therefore the space of fluxes that could be generated by a process that obeys

detailed balance is a subspace of the space of all possible fluxes if E > V . It also follows

that the fluxes are always orthogonal to the range of RCᵀ. That is CRJ(p) = 0 for any

p. Note that CRJ evaluates the curl of the fluxes weighted by the resistance on each edge,

so this is equivalent to Kirchoff’s second law, which requires that the voltage drop across

all the edges is curl free. This is a strong restriction on the fluxes of a system that obeys

detailed balance.

The fact that the fluxes are always orthogonal to CR implies that there exists a space of

observables that are conserved by processes that obey detailed balance. Define an observ-

able S to be a function on trajectories S[X] such that S[x1, x2, ...xn] − S[x1, x2, ...xn−1]

is given by an antisymmetric function s defined on the edges. That is, if xn = i and

xn−1 = j then S[x1, x2, x3, ...xn] = S[x1, x2, x3, ...xn−1] + sij and sij = −sji. Then S is

an action functional evaluated over paths. The work over trajectories is a familiar example.

Notice that this definition also extends naturally to observables whose logarithm is a path

integral. This occurs when the update to the observable after a given transition is a product

of the original value of the observable with some non-negative function on the undirected

edges, and the update when the reverse transition occurs is given by dividing by the same

non-negative function.

Let S(t) = S[X(t)]. Then S(t) is a random variable, and is a transform of the trajectory

X(t). The stochastic process S(t) is a martingale (conserved in a probabilistic sense) if

E[S(t+ ∆t)] = S(t) for any ∆t ≥ 0 [244]. Martingales are observables that are conserved

in expectation.
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The rate of change in the observable is given by:

d

dt
E[S(t)] =

∑
ij

sijJij(t) = sᵀJ(t) (7.69)

where Jij(t) is the probability flux over the edge ij. Therefore, if X(t) obeys detailed

balance, then the inner product sᵀJ(t) = 0 if s ∈ range{RCᵀ}. Thus range{RCᵀ} defines

a space of martingales.

Lemma 30 (The Space of Martingales in Detailed Balance). Given X(t) governed by

Laplacian L which obeys detailed balance any realization S(t) of an observable S[X]

where S[X] is a path integral over the trajectory X against s is a martingale (conserved

in expectation) if:

s ∈ range{RCᵀ} = null{R−1G}. (7.70)

whereR−1 is the diagonal weight matrix with diagonal entries equal to the rate of transition

across each pair of directed edges at equilibrium of L.

For any S, s is an edge flow so there exists a pair of potentials φs, θs such that:

s = −Gφs +RCᵀθs. (7.71)

Then, by the linearity of the path integral, any action functional S[X] defined as a path

integral over an edge flow can be decomposed into Scon[X] and Srot[X] such that:

S[X] = Scon[X] + Srot[X] (7.72)

where Scon[X] is defined by evaluating path integrals over−Gφs while Srot[X] is defined by

evaluating path integrals over RCᵀθs. By construction the rotational action Srot[X] defines
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a martingale. Therefore:
d

dt
E[S(t)] =

d

dt
E[Scon(t)]. (7.73)

Any action functional defined by a conservative field scon = −Gφs obeys S(t) =

φs(X(0))− φs(X(t)). Therefore:

d

dt
E[S(t)] =

d

dt
φs(X(t)). (7.74)

And, more strongly:

E[S(t)] = φs(X(0))− E[φs(X(t))]. (7.75)

Therefore, if p(t) approaches an equilibrium q in the long time limit then any observable

of the form S(t) evaluated over trajectories drawn from a process obeying detailed balance

satisfy limt→∞ E[S(t)] = φs(X(0)) − Eq[φs(X)] where the expected value is evaluated

over the equilibrium q. This also leads to a stronger version of Lemma 30:

Theorem 31 (Observables in Detailed Balance). Suppose X(t) is governed by Laplacian

L which obeys detailed balance, and S(t) = S[X(t)] where S[X(t)] is a path integral

over the trajectory X against the edge flow s. Then there exist unique potentials (up to the

addition of a constant) φs, θs such that:

s = −Gφs +RCᵀθs

and the observed trajectory S(t) obeys:

E[S(t+ h)] = E[φs(X(t))]− E[φs(X(t+ h))].
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Therefore S(t) is a martingale if and only if φs(X(t)) is a martingale. If X(t) is a

martingale for any initial condition then φs is constant, so, without loss of generality, is

zero everywhere.

Proof. The fact that S(t) is a martingale if and only if φs(X(t)) is a martingale was proved

above. If X(t) could start at any node, and is a martingale for any initial condition then

it must be a martingale for X(0) = xj for any j ∈ V . Then E[φs(X(0))] = φs(xj).

Since the Markov chain has a unique steady state distribution approached from any initial

condition E[φs(X(t))] must approach the expected value of φs(X) where X is drawn from

the steady state. It follows that if the process is a martingale for any initial condition then

φs(xj) equals the expected value of φs(X) whenX is drawn from q for all possible j. Then

φs(xj) = Eq[φs(X)] = φs(xi) for all pairs of node ij, so the potential is constant. If the

potential is constant then Gφs = 0 so Scon = 0, so, without loss of generality, φs is zero

everywhere.

Now suppose that L does not obey detailed balance, but is in the weak rotation limit.

Then the results discussed above can be extended to weak rotation by introducing order β

perturbations to the subspace of possible fluxes.

In the weak rotation limit the fluxes are given by removing the divergence from L(0)

and L(1):

J(p, ε) = R−1 [−G+ βFrotH]Q−1p+O(β2). (7.76)

As before, our goal is to find the subspace of possible fluxes. Since the fluxes are related

linearly to the probability distribution, which has dimension V , they are always restricted

to, at most, a V dimensional subspace. Notice that in detailed balance this subspace was
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V − 1 dimensional. The difference in dimension was a result of the special symmetry of

detailed balance. In general the fluxes are restricted to the range of whatever E × V linear

operator maps from probability to fluxes. In detailed balance this operator is −R−1GQ−1,

which has a one dimensional nullspace corresponding to the equilibrium distribution, so has

rank V − 1. Near detailed balance this operator is, to first order, R−1[−G + βFrotH]Q−1,

which may have rank V .

Consider a simple example. Suppose the network consists of three nodes arranged in a

triangle, with the edges oriented clockwise around the triangle. Then let θ = 1 and β = 1/2

so frot = [1/2, 1/2, 1/2]. Then:

−G+ βFrotH =


1 −1 0

0 1 −1

−1 0 1

+
1

2


1 1 0

0 1 1

1 0 1

 =
1

2


3 −1 0

0 3 −1

−1 0 3


which has rank 3 = V . Therefore, outside of detailed balance, the space of fluxes may have

dimension V not V − 1.

Since the linear operator mapping to fluxes from probability always has a range with

dimension at most V the subspace of fluxes only spans the space of possible edge flows

when E ≤ V . If E ≤ V and the network is connected then either the network is a tree

with E = V − 1 or the network contains one cycle. Otherwise there is always always an

E − V = L− 1 dimensional subspace orthogonal to the subspace of fluxes. As in detailed

balance, this subspace defines a vector space of martingales. Notice that this subspace has

dimension greater than zero if and only if the network has at least two loops, or has one

loop and FrotH maps into the range of G. We start by studying the perturbation under the

assumption that the space of martingales has dimension L instead of L − 1. Typically the

resulting subspace will have one extra dimension that does not correspond to a martingale.
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By including the extra dimension we can develop a perturbation theory for a subspace

which encloses the space of martingales. We then show that the extra dimension introduces

a contradiction if it is assumed that all edge flows in the subspace produce martingales,

identify the extra dimension, and discard it to produce the true subspace of martingales.

The subspace of martingales must be contained in the range of an operator that maps

from L values to the space of edge flows. Denote this operator M(β) since it maps to

the space of martingales. In detailed balance M = RCᵀ. Our goal is to find a first order

perturbation to this operator that defines the space of martingales in the weak rotation limit.

Expand M(β) = R [Cᵀ + βBᵀ] + O(β2). Then, the range of M(β) is automatically

orthogonal to the range of possible fluxes in the limit β vanishes if the matrix B satisfies:

BG = CFrotH

or, equivalently:

GᵀBᵀ = HᵀFrotC
ᵀ. (7.77)

The matrix B is L × E and the matrix Gᵀ is V × E. Therefore this is set of V L

equations in EL unknowns. Since E > V for all cases of interest, B is not uniquely

specified by Equation (7.77). Equation (7.77) does not uniquely define B since there are

always infinitely many matrices with the same range, so we should only expect B to be

restricted to a subspace of possible matrices.

A natural way to solve for a unique B is to restrict B to be minimal in some norm.

For example, suppose that we look for a matrix B that satisies the orthogonality constraint

exactly, while having the smallest possible Frobenius norm. then each row of B is the

solution to a constrained optimization problem. Let bl denote the lth row of B. Then,

to minimize the Frobenius norm of B, bl must minimize ||b||2 subject to the constraint
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Gᵀb = [HᵀFrotC
ᵀ]l where [HᵀFrotC

ᵀ]l denotes the lth column ofHᵀFrotC
ᵀ. The divergence

maps from the space of edges to the space of nodes. The space of edges is either larger in

dimension than the space of nodes (provided the graph is not a tree), or equal in dimension

to the space of nodes. This means that the constraint equation has more unknowns than

equations, so will typically be satisfied anywhere inside an affine subspace. The subspace

satisfying the constraint can be written b∗ ⊕ null{Gᵀ} where b∗ is a particular solution to

the constraint equation, provided b∗ exists. To show that b∗ exists we must show that there

is at least one solution to the orthogonalist constraint equation.

The orthogonality constraint has a solution if [HᵀFrotC
ᵀ]l is in the range of the diver-

gence, Gᵀ for all l. This requires that it does not have a projection onto the null space of

G for any l. The null-space of G is the range of the vector of all ones 1, so, in order for

the orthogonality constraint to be satisfied the inner product 1T [HᵀFrotC
ᵀ]l = 0. That is,

the sum of the entries of [HᵀFrotC
ᵀ]l must equal zero for all l. That is, all the columns of

HᵀFrotC
ᵀ must sum to zero. For now we assume this is possible, and show how to solve

for B accordingly. In fact this is not possible, since the sum of the columns of HᵀFrotC
ᵀ is

the same as the sum of the rows of CFrotH which equals CFrotH1 = 2Cfrot 6= 0. We will

show that this is the extra direction which is in the space of martingales in detailed balance,

but must be removed to find the space of martingales near detailed balance.

Suppose it were possible to solve for B. If B solves the constrained minimization

problem then the rows of B must be in the range of G. Any solution to a constrained

minimization problem occurs at points where the gradient of the cost function is zero when

projected back onto the subspace defined by the constraint. This implies that the gradient

of the cost function must be orthogonal to the subspace defined by the constraint at the

minimizer. Since our cost function is ||b||22, the gradient of the cost function is 2b. Given

any b that satisfies the constraint, the constraint subspace can always be expressed as b +
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null{Gᵀ}. This implies that the solution to the minimization problem occurs at the point b

such that Gᵀb satisfies the constraint, and b is orthogonal to the nullspace of the divergence,

Gᵀ. The nullspace of the divergence is the range of the curl transpose, therefore the vector

space orthogonal to the nullspace of the divergence is the range of the gradient.

It follows that the matrix B with minimal Frobenius norm that defines the space of

martingales in the weak rotation limit has rows:

bl = −GφB(l)

GᵀGφB(l) = −[HᵀFrotC
ᵀ]l.

(7.78)

where ΦB ∈ RL×V and Bᵀ = −GΦB.

Equation (7.78) implies that, for B with minimal Frobenius norm, the perturbation

βR−1B is orthogonal with respect to R−2 to M(0):

lim
ε→0

1

β
M(0)ᵀR−2(M(β)−M(0)) = −CRR−2RGΦB = −CGΦB = 0.

Therefore the choice of minimization in the Frobenius norm is natural since it ensures that

the perturbation B contains entirely new information (in the metric R−2) about the vector

space of martingales in weak rotation relative to the vector space of martingales in detailed

balance.

Notice that Equation (7.78) transforms the problem of finding B into a sequence of L

discrete Poisson equations. So, despite venturing far afield from the original setting of the

HHD we recover, yet again, a concrete link between dynamics of a process near detailed

balance and HHD type equations.

To make sense of the right hand side of the discrete Poisson equation, Equation (7.78),

consider the i, l entry of HᵀFrotC
ᵀ. Here i indexes a particular node and l indexes a partic-
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Figure 7.4: Schematic showing the ij entry of CFrotH . The product CFrotH forms the
right hand side of the discrete Poisson equation for the perturbation to the subspace of
martingales. Here i is shown for two possible nodes, and j for a single loop. The edges
where Hki 6= 0 are shown in blue, and the edges where Cjk 6= 0 are shown in red. The
edges where these two sets overlap are shown in purple. The right hand side is given by
summing frot over these edges.

ular basis loop. The corresponding entry is given by a sum over the edges. Specifically:

[Hᵀdiag(frot)C
ᵀ]il =

V∑
k=1

HkiClkfrotk.

The entries of H are all either one or zero, and hki = 1 if and only if the kth edge is

adjacent to node i. Therefore, multiplication byHᵀ is equivalent to restricting the sum over

edges to the edge neighborhood of i. Denote the set of all edges neighboring i: E(i). Then:

[Hᵀdiag(frot)C
ᵀ]il =

∑
k∈E(i)

Clkfrotk.

Thus the right hand side of the lth discrete Poisson equation is a vector with an entry

for every node, with that entry set to the path integral of frot along the segment of the lth

basis loop passing through node i. This is large at a particular i, l if the flow of frot around

the lth loop is large in the neighborhood of node i.

So, given a system near detailed balance, if we could solve for B it would be possible

to find a perturbation to the operator M(β) that maps to a subspace containing the space

of martingales in small β by solving a sequence of discrete Poisson equations with right
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hand side that depends on the rotational component of the edge flow, before scaling by the

resistances. However, as noted at the start of this analysis, the subspace spanned by M(β)

has an extra dimension, so will typically include edge flows which are not martingales in

its range.

Suppose that the probability distribution p is set to the stationary distribution q(β).

Then, to first order, the steady state fluxes are:

J(β) = βR−1
Ä
Gq̂(1) + 2frot

ä
+O(β2).

Then, to first order:

M(β)ᵀJ(β) = β[C + βB]RR−1[Gq̂(1) + 2frot] = β[CGq̂(1) + 2Cfrot] +O(β2).

The product CG vanishes since the curl and gradient are orthogonal, leaving:

M(β)ᵀJ(β) = 2βCfrot +O(β2). (7.79)

The curl of the rotational field is never zero if the process is outside of detailed balance,

otherwise the rotational potential associated with the HHD would not be uniquely defined.

Therefore, regardless of our careful choice of the first order perturbation B, there exists a

current, the steady state current J(β), such that the product M(β)ᵀJ(β) is still first order

in β. This implies that there exists a edge flow in the subspace spanned by M(β) that does

not correspond to a martingale to first order in β. This contradicts the claim that the range

of M(β) corresponds to the subspace that is orthogonal to the range of currents up to first

order in β. Perhaps even more surprisingly, this contradiction holds for any choice of B,

since B does not appear in the first order terms of the expansion shown above.
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To see what went wrong it is helpful to write the expansion in more concise notation.

Let M(β) = M (0) +M (1)β+O(β2) and let the operator mapping from p to J (probability

to fluxes) be denoted N(β) = N (0) + βN (1) +O(β2). Then, applied to a distribution p:

M(β)ᵀN(β)p = M (0)ᵀN (0)p+ β(M (0)ᵀN (1) +M (1)ᵀN (0))p+O(β2).

Setting each order to zero for all p gives the usual equations M (0)ᵀN (0) = 0 and

M (1)ᵀN (0) = −M (1)ᵀN (1). The previous analysis solved for M (0) and M (1) satisfying

these constraints given the particular forms of N (0) and N (1) that arise in the weak rotation

limit.

Replace p with the steady state q(β). Then:

M(β)ᵀN(β)q(β) = M (0)ᵀN (0)q(0) + β
î
(M (0)ᵀN (1) +M (1)ᵀN (0))q(0) +M (0)ᵀN (0)q(1))

ó
+O(β2).

By definition q(0) is the equilibrium distribution of the system in the limit that β goes to

zero. Therefore N (0)q(0) = 0. We enforced M (0)ᵀN (0) = 0 to find the space of martingales

in detailed balance. This leaves:

M(β)ᵀN(β)q(β) = βM (0)ᵀN (1)q(0) +O(β2).

It is easy to check that this remainder is precisely the term that survived when taking the

inner product with the steady state currents. The remainder is independent of M (1), which

was determined by the perturbation B, so is independent of the choice of the perturbation

to the matrix that maps to the space of martingales. Therefore the product is O(β) unless

M (0)ᵀN (1)q(0) = 0.
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This introduces an additional constraint on M (0) that we had not enforced before.

Originally we solved for M (0) such that M (0)ᵀN (0) = 0. Since N (0)ᵀ had a nullspace

with dimension L it was possible to find a matrix M (0) with rank L, namely Cᵀ, such

that M (0)ᵀN (0) = 0. We then solved for a first order perturbation to this matrix, M (1),

by enforcing M (1)ᵀN (0) = M (0)ᵀN (1). However, since the dimension of the space of

martingales should have beenL−1 as soon as β 6= 0, the range ofM (0)+βM (1) included an

extra dimension. If, however, we had enforced the additional constraint, M (0)ᵀN (1)q(0) =

0, then, provided the constraint is unique from the constraints M (0)ᵀN (0) = 0, then any

mapping satisfying the contraints must have range L− 1 instead of L.

To remove the extra dimension set:

M (0) = RCᵀZ (7.80)

where Z is L× L− 1, has orthonormal columns, and satisfies:

ZᵀCfrot = 0. (7.81)

Then Z must be an orthonormal basis for the set of functions on the loops that are

orthogonal to Cfrot. Then, if we let B be a E × L − 1 matrix, the new orthogonality

constraint reads:

GTBT = HTFrotC
TZ (7.82)

which has a solution provided the columns of HTFrotC
TZ sum to zero. The columns

sum to zero if the rows of ZTCFrotH sum to zero, which requires ZTCfrot = 0, which

is necessarily true by the construction of Z. Thus, by restricting M (0) with Z there is a

necessarily a solution to the orthogonality constraint on each row of B. Then each row is
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the solution to the Poisson equation:

bl = −GφB(l)

GᵀGφB(l) = −[HᵀFrotC
ᵀZ]l.

(7.83)

Therefore, the space of martingales is the range of M(β), which, to first order in β,

equals:

M(β) = R−1 [CᵀZ + βBᵀ] +O(β2). (7.84)

The product with Z ensures that the operator M(β) is E × L − 1, and has rank L − 1

rather than L. The introduction of Z to the operator spanning the space of martingales is

easy to understand qualitatively. Suppose we had not added Z. Then we could have defined

an observable with field s set to Cᵀθ. Then the zeroeth order term in the observable would

have beenR−1frot so the steady state production of the observable would have been ||frot||22.

This production occurs because the steady state currents tend to move in the direction of

frot. Therefore, if the field also aligned with frot the observable would tend to increase

with time. To ensure that the observable is a martingale the field cannot align with this

small circulating current, therefore Z needs to be introduced to restrict the range of Cᵀ to

rotational fields orthogonal to frot.

In summary, the space of martingales is the range of the mapping M(β), which up to

first order in β, can be computed by:

1. Solve for the scalar potential, associated equilibrium and R

2. Solve the frot and for a basis Z ∈ RL×L−1 such that Zᵀ[CCᵀ]θ = 0.

3. One row at a time solve the discrete Poisson equation for B (Equation (7.78))

4. Then set M(β) = R [CᵀZ + βBᵀ] +O(β2).
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The Weak Rotation Expansion: Convergence and the Weak Rotation Regime

The full weak rotation expansion is defined by the recursive sequence of equations:

L̂(0)q̂(0) = 0

L̂(0)q̂(1) = −L̂(1)q̂(0)

...

L̂(0)q̂(n) = −
n∑
j=1

L̂(j)q̂(n−j)

where:

L̂(n) = −GᵀR−1F n
rotK

(n) given K(n) =


G if n even

H if n odd


and where q̂(β) is the steady state of the nonequilibrium process scaled by the equilibrium

distribution of the corresponding conservative process. Then, at any order n, the corre-

sponding correction to the steady state obeys a weighted Poisson equation of the form:

GᵀR−1Gq̂(n) = −Gᵀ
n∑
j=1

1

j!
R−1F j

rotK
(j)q̂(n−j) (7.85)

where the right hand side can be interpretted as the divergence of an edge flow defined

by a sum over the lower order corrections. Removing the divergence from the Laplacian

produces the mapping from probabilities to fluxes so the steady state fluxes are:

J (n) = R−1

[
Gq̂(n) +

n∑
j=1

1

j!
F j

rotK
(j)q̂(n−j)

]
(7.86)

which is the difference between the edge flow on the right hand side of Equation (7.85)

and its approximation with the gradient of q̂(n). Therefore the nth order corrections to the
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steady state and fluxes satisfy the same weighted HHD as the first order corrections, only

with a different right hand side that is defined recursively:

−Gq̂(n) +RCᵀθ
(n)
J = −Gq̂(n) +RJ (n) =

n∑
j=1

1

n!
F j

rotK
(j)q̂(n−j). (7.87)

Equation (7.87) shows that the Taylor expansion of the steady state and the steady state

fluxes is a recursive sequence of weighted Helmholtz-Hodge decompositions. The left

hand side is the same at all orders, so the bulk of the theory developed for the first order

corrections extends to all order corrections with frot replaced by
∑n

j=1
1
n!
F j

rotK
(j)q̂(n−j).

As in the first order case, at the nth order the scalar part of the HHD is associated with

the correction to the stationary distribution and the rotating part is associated with the

correction to the steady state fluxes. At every order there is a trade-off between driving

circulation and perturbing the steady state. The more efficiently current is driven the less

the steady state changes at all orders. Thus the fundamental exchange between producing

current and perturbing the steady state is true at all orders, not just first order.

A key difference at higher orders is that fnrot is rarely divergence free for n > 1 even

though frot is divergence free. Suppose two loops overlap in the same direction. Then, on

the shared edge fnrot = (θI +θII)
n will grow faster than the sum of θnI +θnII , often producing

a bottleneck at the lee end of the shared boundary. Therefore there may be bottlenecks

where the divergence of the right hand side is nonzero even if all the resistances are the

same. Note that this mirrors the difficulty identified in Section 7.2.3 that makes finding the

nonequilibrium steady state hard to solve.

It is important to note that the weighted HHD equation/weighted Poisson equations

only define q̂(n) up to a constant. In order to solve for a unique q̂(n) we require that q̂(β) is

normalized for all β. If q̂(β) is normalized for all β then dn

dβn

∑V
i=1 q̂i(β) = 0 for any β. In
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Figure 7.5: The first eight approximations to the steady state of the scaled (purely
rotational) system as a function of β for a nonequilibrium process on a triangular network
with θ = 1. The exact steady states are shown in blue, and the approximations are shown
in magenta. The central magenta dot represents the steady state at β = 0. The blue outer
dots represent the exact solutions for β = ±1. The corresponding magenta dots (which are
not visible at all orders with this axis scaling) are the approximations at β = ±1.

particular, if β = 0, then the nth derivative is the nth term in the expansion so
∑V

i=1 q̂
(0)
i = 1

and
∑V

i=1 q̂
(n)
i = 0 for all n > 0. Therefore, for n > 0 the correction q̂(n) is chosen so that

it solves the weighted Poisson equation and so that the sum of q̂(n) equals zero. This can

be accomplished by first solving for a particular solution to the weighted Poisson equation,

computing the sum of the solution, and subtracting it off.

Performing the recursive sequence Equation (7.87) out n steps gives the nth order

Taylor expansion of the steady state q̂(ε), and the steady state currents J .

A series of approximations of this type are shown in Figure 7.5 for a three state loop

with scalar potential φ = [−1, 2, 3]/4 and conductances ρ = [1, 0.1, 1]. The exact steady

states are shown in blue, and the approximations are shown in magenta. The central

magenta dot represents the steady state at β = 0. The blue outer dots represent the exact
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Figure 7.6: Convergence of the first eight approximations to the steady state of the
approximation shown in Figure 7.5. The blue curve represents the first order approximation
and the red curve represents the eighth order expansion. The slope of each matches the
expected rate of convergence. For example, the eighth order expansion converges O(β9)
so has slope 9 on the convergence plot.

solutions for β = ±1. The corresponding magenta dots are the approximations at β = ±1.

Notice that the approximation at β = ±1 cycles periodically about the exact steady state.

The convergence of the approximation at each order are shown in Figure 7.6.

The convergence experiment was performed out to order 25, and for every order the

error in the approximation decayed proportional to βn+1 for β < 1. It is unreasonable to

expect the expansion to converge for all β since the distribution always has to be normal-

ized. The expansion expresses the steady state at each vertex as a power series in β. Since

the distribution must be normalized and nonnegative at all vertices the power series must

remain bounded for β → −∞ and β →∞.

In order to show that the recursive expansion is valid we need to show that it converges

to q(β) for some β > 0. Since the expansion is a power series it suffices to show that the

radius of convergence of the power series is greater than zero. An essential goal is to find

474



a nonzero lower bound on the radius of convergence of this expansion. The weak rotation

regime is the space of frot such that the weak rotation expansion converges.

Theorem 32 (The Weak Rotation Expansion). If L(β) is an arbitrary Laplacian for a

Markov process obeying microscopic reversibility on a finite network where lji(β) equals

ρij exp
(
fconij + βfrotij

)
then, after scaling to a purely rotational process via the transform

defined in Theorem 25, the nth order terms in the Taylor expansion of the steady state and

steady state current are solutions to the recursive sequence of HHD’s:

q̂(0) = 1, −Gq̂(n) +RCᵀθ
(n)
J = −Gq̂(n) +RJ (n) =

n∑
j=1

1

n!
F j

rotK
(j)q̂(n−j).

The expansion has a finite radius of convergence, and converges if β||frot||1≤ 2/3 or

β||frot||∞≤ 1
V d+1/2

where d is the maximum degree of any vertex in the network.

Proof. The expansion is of the form:

q̂(β) =
∞∑
k=0

q̂(k)βk

which converges if:

||q̂(β)||∞≤
∞∑
k=0

||q̂(k)||∞βk <∞. (7.88)

Therefore we will attempt to derive an upper bound ||q̂(k)||∞≤ ak. Convergence in

the infinity norm implies convergence at all vertices j. The power series
∑∞

k=0 q̂
(k)
j βk

converges if it converges absolutely. It converges absolutely if
∑∞

k=0|q̂
(k)
j |βk converges.

By definition of the infinity norm |q̂(k)
j |< maxj{|q̂(k)

j |} = ||q̂(k)||∞ so:

∞∑
k=0

|q̂(k)
j |βk ≤

∞∑
k=0

||q̂(k)||∞βk.
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Therefore convergence of the power series with coefficients ||q̂(k)||∞ implies convergence

of the weak rotation expansion at every node. This can be generalized to the other induced

matrix norms by noting that ||q̂(k)||∞ is less than or equal to ||q̂(k)||1 and ||q̂(k)||2. Thus

convergence of the power series with coefficients ||q̂(k)||1,2,∞ implies that convergence of

the weak rotation expansion at every node.

The kth order term in the expansion satisfies the weighted HHD:

Gq̂(k) +RCᵀθ̂(k) =
k∑
j=1

1

k!
F k

rotK
(k)q̂(k−j) = f (k).

With the constraint
∑

i q̂
(k)
i = 0 if k > 0. Therefore ||q̂(k)||∞≤ maxi,j|q̂(k)

i − q̂
(k)
j |

where the maximum runs over all pairs of nodes in the network (this includes pairs that

are not connected by one edge). Since the correction q̂(k) satisfies a weighted HHD the

difference in q̂(k)
i and q̂(k)

j is the average work over all paths from i to j, sampled according

to a simple random walk with weights R−1 (see Theorem 12). As usual the set of paths can

be restricted to paths without loops since there always exists a set of L + 1 simple paths

(no loops and no backtracking) such that a weighted average of the work over these paths

gives the difference in q̂(k)
i and q̂(k)

j . Then, since the work is a sum of ±f (k) over paths of

length less than or equal to E:

||q̂(k)||∞≤ ||f (k)||1. (7.89)

To bound ||f (k)||1 use the triangle inequality and definition of the induced matrix norm:

||f (k)||1≤
k∑
j=1

1

j!
||F j

rot||1||K(j)||1||q̂(k−j)||1.

To simplify, note that ||q̂(k−j)||1≤ V ||q̂(k−j)||∞. The matrix F k
rot is diagonal, so ||F k

rot||1

is ||frot||k∞. The one norm of a matrix is equal to its maximum absolute column sum. The
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absolute value of G (entrywise) is H so ||K(k)||1= ||H||1. The columns of H correspond

to particular nodes, and the ij entries are equal to one if i and j are neighbors. Therefore

||H||1= d where d is the maximum degree of all the nodes in the network.

Therefore:

||q̂(k)||∞≤
k∑
j=1

V d

k!
||frot||k∞||q̂(k−j)||∞. (7.90)

Define the recursive sequence:

ak =
k∑
j=1

V d

j!
||frot||j∞ak−j, a0 = 1/V.

Then:

||q̂(k)||∞≤ ak.

To simplify, define the coefficients:

bk(V d)
||frot||k∞
V

= ak.

Then:

bk(V d) =
k∑
j=1

V d

j!
bk−j(V d), b0(V d) = 1.

Since:

bk(V d) =
V

||frot||k∞
ak =

V

||frot||k∞

k∑
j=1

V d

j!
||frot||j∞ak−j =

V

||frot||k∞

k∑
j=1

V d

j!
||frot||j∞bk−j(V d)

||frot||k−j∞
V

=

V

||frot||k∞
||frot||k∞
V

k∑
j=1

V d

j!
bk−j(V d) =

k∑
j=1

V d

j!
bk−j(V d).

Let x = V d. Notice that x > 1 since V > 1 and d > 1 for any network with a loop.
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Then the collection of coefficients bk(x) is a recursive sequence of polynomials in x defined

by the recursion:

bk(x) = x

k∑
j=1

bk−j(x)

j!
, b0(x) = 1. (7.91)

Notice that bk(x) is a monic polynomial of order k in x. The terms of the polynomial

bound the perturbation in the steady state:

||q̂(k)||∞≤
bk(x)

V
||frot||k∞. (7.92)

Therefore, the nth order expansion of the steady state can be bounded above by:

||
n∑
k=0

q̂(k)βk||∞≤
n∑
k=0

||q̂(k)||∞βk ≤
n∑
k=0

bk(x)

V
||frot||k∞βk. (7.93)

The expansion converges absolutely if the power series
∑n

k=0
bk(x)
V
||frot||k∞βk converges

as n goes to infinity. Therefore the radius of convergence for the expansion of the steady

state is greater than or equal to the radius of convergence of the power series defined by∑n
k=0

bk(x)
V
||frot||k∞βk. To find the radius of convergence of the power series use the ratio

test. This requires taking the limit:

lim
k→∞

bk+1(x)

V
||frot||k+1

∞ |β|k+1

bk(x)
V
||frot||k∞|β|k

= lim
k→∞

bk+1(x)

bk(x)
||frot||∞β.

A lower bound on the radius of convergence requires an upper bound on the limit of the

ratio of bk+1(x) and bk(x). From the recursion:

bk+1(x)

bk(x)
= x

∑k+1
j=1 bk+1−j(x)/j!

bk(x)
= x

k∑
j=0

bk−j(x)

(j + 1)! bk(x)
= x

[
bk(x)

bk(x)
+

k∑
j=1

bk−j(x)

(j + 1)! bk(x)

]
.
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Substitute in the recursion for bk(x):

bk+1(x)

bk(x)
= x

[
1 +

1

x

∑k
j=1

1
(j+1)!

bk−j(x)∑k
j=1

1
j!
bk−j(x)

]
.

Then:

lim
k→∞

bk+1(x)

bk(x)
= x+ lim

k→∞

∑k
j=1

1
(j+1)!

bk−j(x)∑k
j=1

1
j!
bk−j(x)

. (7.94)

This is easily bounded by noting that 1
(j+1)!

bk−j(x) < 1
(j)!
bk−j(x) so the ratio is strictly

less than one. More strongly, since j starts from one, 1
(j+1)!

bk−j(x) < 1
2

1
(j)!
bk−j(x) There-

fore:

lim
k→∞

bk+1(x)

bk(x)
≤ x+

1

2
. (7.95)

It follows that the limit of the original ratio is (plugging in x = V d):

lim
k→∞

bk+1(x)

V
||frot||k+1

∞ |β|k+1

bk(x)
V
||frot||k∞|β|k

≤
Å
V d+

1

2

ã
||frot||∞β.

To guarantee convergence this ratio must be less than one, so:

β <
1

(V d+ 1
2
)||frot||∞

. (7.96)

For a given Laplacian β = 1 so Equation (7.96) requires:

||frot||∞<
1

V d+ 1
2

. (7.97)

Then Equation (7.97) implies the radius of convergence of the weak rotation expansion,
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R, is bounded below by:

R >
1

V d+ 1
2

> 0. (7.98)

so the weak rotation expansion has a nonzero radius of convergence, and is absolutely

convergent to q̂(β) for β||frot||∞ sufficiently small.

Unfortunately this lower bound on the radius of convergence is likely an extreme un-

derestimate when V is big. For example, in the numerical test presented earlier V = 3 and

d = 2 so the radius of convergence had to be greater than 1/7, but we observed convergence

for β ≤ 1. Thus the radius of convergence is likely much larger than the lower bound given

by Equation (7.98). The factor of V entered the analysis when bounding ||q̂(k−j)||1 above

by ||q̂(k−j)||∞. It is possible that it could be eliminated by starting with ||q̂(β)||1 or ||q̂(β)||2.

Consider ||frot||1 instead of ||frot||∞. Using ||frot||1 avoids the direct dependence on V ,

and leads to a more elegant conclusion. That said, it still requires that ||frot||∞ be small

relative to 1/E, so whether or not this is a tighter bound will depend on the distribution of

degrees of the nodes.

In the previous analysis we introduced a bound for the one-norm of F k
rotK

(k)q̂(k−j). We

used the induced one norm for matrices to derive the bound ||F k
rotK

(k)q̂(k−j)||1 is less than or

equal to ||fkrot||∞d||q̂(k−j)||1. The factor of V was introduced to change back into the infinity

norm. This factor of V can be avoided by noting that ||FrotK
(k)q̂(k−j)||1 is a sum over the

edges of fkrot on the edge times either the sum or the difference of q̂(k−j) at the endpoints of

the edge. This sum or difference is always strictly less than 2||q̂(k−j)||∞. Therefore:

||FrotK
(k)q̂(k−j)||1≤ 2||fkrot||1||q̂(k−j)||∞. (7.99)

To finish:
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||fkrot||1=
∑
ij

|fkrotij|≤

(∑
ij

|frotij|

)k

= ||frot||k1. (7.100)

Now:

||q̂(k)||∞≤
k∑
j=1

1

k!
||frot||k1||q̂(k−j)||∞. (7.101)

This leads to the same recursion as before, only x = 1 instead of V d and ||frot||∞ is

replaced with ||frot||1. Therefore the weak rotation expansion converges provided:

β||frot||1≤
1

1 + 1/2
=

2

3
. (7.102)

At face value the bound established using the one norm appears tighter since it does

not appear to depend on V or d. However, to compare to the original bound in terms

of the infinity norm we need to set an upper limit on ||frot||∞ not ||frot||1. This is typically

preferable since it means that the weak rotation expansion converges provided the rotational

force at each edge is small, not that the sum of the rotational forces over all the edges is

small. This sum will depend on the number of edges, so for a fixed average rotational

force, but growing network, a bound on ||frot||1 may not be enough to prove convergence.

Therefore, in terms of the average rotational force f̄rot = ||frot||1/E Equation (7.102)

requires:

βf̄rot ≤
2

3E
. (7.103)

Now, E = V d̄ where d̄ is the mean degree of the network. Therefore Equation (7.102)

requires:
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βf̄rot ≤
2

3V d̄
. (7.104)

The original bound required that the largest rotational force was less than one over V

times the maximum degree plus one half, while this bound requires that the mean rotational

force is less than two over three times V times the mean degree.

Both bounds can be tighted using essentially the same algebra if we consider the power

series with coefficients ||q̂(k)(β)||2. The first step is to bound ||q̂(β)||2. This can be

accomplished as follows. Symmetrize the weighted HHD so that it is of the form:

R−1/2Gq̂(k) +R1/2Cᵀθ̂(k) = R−1/2f (k).

Then, since R−1/2G is orthogonal to R1/2Cᵀ:

||R−1/2Gq̂(k)||22+||R1/2Cᵀθ̂(k)||22= ||R−1/2f (k)||22.

It follows that:

||R−1/2Gq̂(k)||22≤ ||R−1/2f (k)||22. (7.105)

Then, since ||R−1/2Gq̂(k)||22> minij{R−1
ij }||Gq̂(k)||22 and ||R−1/2f (k)||22≤ ||R−1/2||22||f (k)||22

which equals maxij{R̃−1
ij }||f (k)||22:

||Gq̂(k)||22≤
minij{Rij}
maxij{Rij}

||f (k)||22= κ(R−1)||f (k)||22 (7.106)

where κ(R−1) is the condition number of the resistances.

The ratio:
||Gq̂(k)||22
||q̂(k)||22

=
q̂(k)ᵀGᵀGq̂(k)

q̂(k)ᵀ q̂(k)
(7.107)
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is the Rayleigh quotient of a real symmetric matrix, so it is minimized by the smallest

eigenvalue of GᵀG. We required that q̂(k) had mean zero, so it has no projection along the

null space of GᵀG. Therefore the quotient is minimized at smallest nonzero eigenvalue of

the node Laplacian. The node Laplacian, GᵀG, is symmetric so this eigenvalue equals the

smallest (nonzero) singular value σV−1 of the Laplacian. Therefore:

||q̂(k)||2≤
 

1

σV−1

||Gq̂(k)||2≤
 
κ(R−1)

σV−1

||f (k)||2. (7.108)

Then, plugging in for f (k) and using the triangle inequality we arrive at the recursion:

||q̂(k)||2≤
 

2dκ(R−1)

σV−1

k∑
j=1

||frot||j∞
j!

||q̂(k−j)||2. (7.109)

This recursion is of exactly the same form as the recursion derived for the infinity norm,

only now x =
√

2dκ(R−1)
σV−1

. Therefore the associated power series converges if:

β||frot||2≤
1√

2dκ(R−1)
σV−1

+ 1
2

. (7.110)

It follows that the radius of convergence of the power series is greater than or equal to:

R ≥ 1√
2dκ(R−1)
σV−1

+ 1
2

. (7.111)

Equation (7.111) is a significantly more complicated bound that balances the variation

in the resistances, measured through the condition number of R, with the maximum degree

and smallest singular value of GᵀG. If the variation in the resistances is small then this

bound has some advantages. First, it depends on the square root of the maximum degree,

not on the maximum degree. Second, in some important cases
√

1/σV−1 is much smaller
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than V , in which case this bound may be much larger than the bound derived using either

the infinity norm or the one norm.

For example, suppose that the network is an n dimensional lattice with side lengths

a1m, a2m, ...anm, where a1 > a2 > ...an. Then V = [
∏n

j=1 aj]m
n and d = 2n. Then the

smallest nonzero singular value is (see Section 3.3.3):

σV−1(m) = 4 sin2

Å
π

2a1m

ã
'
Å

π

a1m

ã2

.

For large m the bound using the infinity norm is:

β||frot||∞≤
1

dV + 1
' 1

[
∏n

j=1 aj](2m)n

which implies that the weak rotation regime is vanishing in (2m)n, which implies that if m

is large, then the weak rotation regime is very small. However, using the two norm bound:

β||frot||∞≤ β||frot||2≤
1√

2dκ(R−1)
σV−1

+ 1
' π√

κ(R−1)a1m2n/2
.

It follows that the weak rotation regime only vanishes proportional tom2n/2. Therefore,

as m goes to infinity the weak rotation regime may be vanishes no slower than 1/m. This

bound also reduces the rate at which the weak rotation regime vanishes in n to 2−n/2 instead

of (2m)−n. Both of these are huge improvements in the bounds. Suppose n = 4 and

m = 102, as might be the case for a model representing a system of 4 competing species

each with populations ranging from 1 to 100. Then the original bound requires that the

rotation is weaker than (1/16)× 10−8 while the new bound requires that rotation is weaker

than πκ(R−1)−1/2×(1/4)×10−2. For moderate κ(R−1) this is a much larger upper bound,

so the weak rotation regime is orders of magnitude larger than suggested by our original
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bound.

While Equation (7.111) is a significant improvement on the original bound, it still

wildly underestimates the radius of convergence for real networks. For example, suppose

we start with a hypercube and randomly prune a fixed fraction of the nodes. Then pick the

largest connected component and study the convergence of the weak rotation expansion on

that network.

Results for a sample network are described below. Pruning 40 percent of the nodes of

a 7 dimensional hypercube left a connected component with 76 nodes, 152 edges, and 77

loops. Using randomly sampled conductances, φ and θ the square root condition number of

the inverse resistances matrixR−1 was less than 151.7. The smallest nonzero singular value

of the node Laplacian was 0.572 and the maximum degree was 7. Therefore the radius of

convergence was, at least:

R >
π

151.7

0.57√
14
≈ 0.003. (7.112)

In practice the expansion was observed to converge for all β||frot||∞< 1. The same

experiment was repeated 1000 times for percolation networks built by randomly removing

nodes from high dimensional hypercubes, and in each case convergence was observed at

the expected rates up to β||frot||∞< 1. This numerical observation inspires the conjecture

that the weak rotation expansion converges for any ||frot||∞< 1.

Rotation Independent Steady States

So far we have characterized the steady state for arbitrary φ, ρ and weak θ. We showed

that the general problem of solving for the steady state can always be reduced to finding

the steady state for a purely rotational process, and derived the exact steady state for an

isolated loop or pair of loops. Here we seek conditions under which the steady state is
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independent of frot. In particular, if q(β) is constant in β with rotational forces βfrot then

the steady state is independent of frot. Since q(β) is always uniform if β = 0 we conclude

that q(β) is independent if and only if it is uniform for all β. This extends nicely to the case

when the purely rotational process is derived from a rescaling of a process that is not purely

rotational. If the steady state of the purely rotational process is independent of frot then it

is uniform, so the steady state of the full process is equal to the equilibrium distribution for

the corresponding process in detailed balance.

Before launching into a general analysis we will consider a couple simple cases that

will establish our expectations for the general theory.

First consider the case when the resistances Rij are equal to a constant r. Then the first

order correction to the steady state vanishes, and the first order correction to the fluxes is

R−1frot. What about the higher order corrections?

The second order equation is:

Gq̂(2) +RCᵀθ̃(2) = FrotHq̂
(1) − 1

2
F 2

rotGq̂
(0).

If Rij are constant then q̂(1) = 0 so the first term on the right hand side vanishes.

Moreover, q̂(0) is always constant so Gq̂(0) = 0. Therefore the right hand side is zero and

q̂(2) = 0, θ̃(2) = 0. Therefore the steady state distribution is the equilibrium distribution to

third order in ε, and the steady state currents are βR−1frot to third order in β.

The third order equation is:

Gq̂(2) +RCᵀθ̃(2) = FrotHq̂
(2) − 1

2
F 2

rotGq̂
(1) +

1

6
F 3

rotHq̂
(0) =

1

3V
f 3

rot.

Even though frot is divergence free there is no guarantee that f 3
rot is divergence free. For

example, if we consider two loops sharing an edge, with θ = 1 on the first and θ = 2 on
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the second, then the divergence of 1
3v
f 3

rot is +2/v and −2/V at the junction nodes on either

end of the edge where the loops meet. It follows that q̂(3) is not necessarily zero.

Next consider k-connected components. A k-connected component of a graph is a

connected subgraph that can be separated from the rest of the network by removing k

edges [34]. At steady state the total flux into and out of any set of nodes must be equal to

zero. Therefore, at steady state the total flux into any k-connected component must equal

the total flux out. If k is small, say two or three, then this flux balance is easy to write and

solve. This leads to simple rules for k connected components when k is small.

First, suppose k = 1. Then there is only one edge to consider. If k = 1 then there is

no loop that includes the connecting edge so frot is zero on the edge. Therefore, the flux

balance requires:

ρij(qi − qj) = 0

where qi, qj are the steady state probabilities on either side of the edge. Notice that this re-

quires qi = qj , so any 1-connected component always has uniform steady state probability

on either end of the edge.

Now let k = 2. Then there are two edges connecting the component to the rest of the

network. Number these edges 1 and 2. Since no loop can use the same edge twice, any loop

passing over one of the edges must pass over the other in order to escape the component.

This means that frot is the same on both edges. Let a be the shared rotational force. If

the steady state is uniform then qi = 1/V at all nodes. Then, the flux balance for the

component reads:

1

V
(ρ1(exp (a)− exp (−a)− ρ2(exp (a)− exp (−a)) =

sinh (a)

V
(ρ1 − ρ2) = 0

which is only zero if ρ1 = ρ2. Therefore, for any biconnected component, the steady state is
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independent of rotation only if the conductances on the two connecting edges are identical.

This rule is easy to apply, and can be used to exclude many simple examples from the set

of networks whose steady state is independent of rotation. This is a familiar requirement,

since it corresponds to avoiding bottlenecks in the first order corrections. A biconnected

component is illustrated in Figure 7.7.

Now consider a triconnected component. Then there are, at most three different values

of frot on the three edges connecting the component to the rest of the network. Label these

f1, f2, f3. These are in the span of the curl transpose, so can be rewritten in terms of

a rotational potential. Any loop entering the component must leave on one of the other

edges, so there are at most three unique ways for a loop to pass through the component.

Either the loop uses edges 1 and 2, 2 and 3, or 3 and 1. Therefore the action of the curl

transpose on the three edges is always of the form f1 = a − b, f2 = b − c, f3 = c − a

for some values a, b, c. A triconnected component is illustrated in Figure 7.7. Now the flux

balance equation has the form:

1

V
[ρ1 sinh (a− b) + ρ2 sinh (b− c) + ρ3 sinh (c− a)] = 0.

Without loss of generality assume that a ≥ b ≥ c so that the first two terms are

nonnegative, and the last term is non-positive 3. Clearly this equation is independent of

V , so can be rewritten:

ρ1 sinh (a− b) + ρ2 sinh (b− c) + ρ3 sinh (c− a) = 0

3This is the general case because we can always reorder the edges/loops to make sure the vector potential
runs in decreasing order as the edge index increases
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Figure 7.7: A biconnected and triconnected component. The rotational flow on the
connecting edges is represented with arrows. The conductances on each of the connecting
edges is labelled, and the value of the roational flow is marked with a, b, and c.

which is satisfied on the intersection of the plane:

ρ3(ρ1, ρ2, a, b, c) =
sinh (a− b)
sinh (a− c)

ρ1 +
sinh (b− c)
sinh (c− a)

ρ2 (7.113)

with the positive octant. This intersection is non-empty since both of the ratios of hyper-

bolic sines are positive, so, since ρ1, ρ2 are always greater than zero, ρ3 > 0 can be chosen

so that the steady state is uniform. When does the intersection of the plane with the positive

octant include uniform weights?

If all the conductances are uniform then a, b, c must satisfy:

sinh (a− b) + sinh (b− c) + sinh (c− a) = 0.

Let x = a− b and y = b− c. Then c− a = −(x+ y) so we need:

sinhx+ sinh y = sinh (x+ y).
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This equation is only satisfied on the lines x = 0, y = 0 and x = −y.4 These lines

correspond to a = b, b = c or c = a. But if any pair are equal then frot is zero on the

corresponding edge, in which case the flux on the edge is automatically zero for a uniform

distribution, and in which case the flux balance equation is the same as in the biconnected

case. Therefore, if the network has any triconnected components, uniform weights on

the three connected edges only leads to a uniform steady state if the rotational edge flow

vanishes on at least one of the edges. Otherwise uniform weights never lead to a uniform

steady state.

This analysis shows four important things. First, if there are any singularly connected

components we can analyze each component separately since the flux over the connecting

edge is automatically zero for a uniform distribution. Second, if the network contains

biconnected components then it is only rotation independent if the resistances match on

each pair of connecting edges. Third, if the network contains triconnected components

then uniform resistances on the three connecting edges only lead to uniform steady state

probabilities if the rotational flow is zero on one of the three edges. Fourth, a triconnected

component may admit a uniform steady state if the resistances on the three connecting

edges are chosen from the intersection of a plane with the positive quadrant, where the

coefficients defining the plane depend on the rotational forces. This suggests that, while

uniform resistances may not always lead to a uniform steady state, there may never the less

be a space of resistances and rotational forces that admit a uniform steady state regardless

the size of the rotational edge flow.

In general, for a uniform steady state the flux balance equation reads:

GᵀR−1 sinh (βfrot) = 0. (7.114)

4Taylor expand both sides to third order, then the first order and second order terms vanish leaving x2y =
−y2x. This gives the lines, which satisfy the exact equation.
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Rotation independence requires that this equation is satisfied for all β. This is equivalent

to requiring that all terms in the Taylor expansion of the left hand side are independently

zero since the Taylor expansion of sinh converges everywhere. Then rotation independence

requires:

GᵀR−1f 2k+1
rot = 0 (7.115)

for all k.

It is not obvious that this can be satisfied for arbitrary k, let alone all k up to a given

order. More precisely, we would like to know to how many orders in β the steady state is

independent of frot, that is, to what order the flux balance equation satisfied.

Consider the recursive equation for the Taylor expansion of the steady state:

−GᵀR−1Gq(k) = GᵀR−1

k∑
j=1

1

j!
F j

rotKjq
(k−j).

Since we require that the overall distribution is normalized all q(k) for k > 1 are

orthogonal to the one dimensional nullspace ofGᵀWG. Therefore each correction q(k) = 0

if and only if the right hand side of the equation is zero.

For the first order term, setting the right hand side to zero requires:

GᵀR−1frot = 0. (7.116)

Fixing R−1 defines a linear subspace of frot where the steady state is rotation indepen-

dent to first order, and fixing frot defines a linear subspace of resistances where the the

steady state is rotation independent to first order.

In order for the steady state to be second order in β the first order equation must be
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satisfied. Suppose q(1) is zero. Then right hand side of the second order equation reads:

1

2
GᵀR−1F 2

rotGq
(0) (7.117)

But q(0) is uniform so Gq(0) = 0. Therefore, if the first order condition is satisfied, the

second order correction is also zero.

Then, assuming independence up to second order, third order independence requires:

GᵀR−1F 3
rotHq

(0) =
1

3
GᵀR−1f 3

rot = 0. (7.118)

The same process can be continued to arbitrary order. Then all terms on the right hand

side that depend on corrections of order one or higher are assumed to vanish, so the only

remaining term is GᵀR−1F j
rotKjq

(0). When j is even Kj = G, so the right hand side

is automatically zero if the steady state is independent of rotation up to order j − 1. If

j = 2k + 1 is odd then rotation independence requires:

GᵀR−1f 2k+1
rot = 0. (7.119)

This is exactly the condition we derived from the flux balance, but we can now relate

the steady state to the largest k such that GᵀR−1f 2k+1
rot = 0.

Lemma 33. If GᵀR−1f 2k+1
rot = 0 for all k ≤ n then the steady state is independent of

rotation to order 2n+ 3: q(β) = O(β2n+3), and the steady state is independent of rotation

if and only if GᵀR−1f 2k+1
rot = 0 for all k.

Lemma 33 provides a simple criteria for testing rotation independence. Can we use this

criteria to produce examples where the steady state is independent of rotation?
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Suppose that frot is zero, one, or negative one on all edges. Then f 2k+1
rot = frot so, if

the resistances are chosen so that GᵀR−1frot = 0 then the steady state is independent of

rotation at all orders. This requires R ∈ null{GᵀFrot} ∩ RE+ where RE+ is the positive

quadrant of the space of edges. Since this case reduces to the first order case set all of

the resistances equal to a constant. Then the steady state is independent of rotation to all

orders.

A more general analysis begins by fixing frot. Then the steady state is rotation indepen-

dent up to order 2n+ 3 if for all k ≤ n:

GᵀR−1f 2k+1
rot = 0.

Let:

F (n) =


frot1 frot2 . . . frotE

f 3
rot1

f 3
rot2

. . . f 3
rotE

...
... . . . ...

f 2n+1
rot1 f 2n+1

rot2 . . . f 2n+1
rotE

 . (7.120)

Then the steady state is rotation independent up to order 2n+ 3 if:

F (n)R−1G =


0 0 . . . 0

0 0 . . . 0

...
... . . . ...

0 0 . . . 0

 (7.121)

where the matrix of zeros on the right hand side is n by V . Equation (7.121) requires

range{G} ⊆ null{F (n)R−1}. The dimension of the range of G is always V − 1, so this is

only possible if the dimension of the nullspace of F (n)W is greater than or equal to V − 1.
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The resistances are all nonzero, so the diagonal matrix R−1 is invertible. Therefore the

dimension of the null{F (n)R−1} is the same as |null{F (n)}|. Therefore, if |null{F (n)W}|<

V − 1 then the steady state q(ε) is, at most, independent of rotation to order 2n + 1. That

is q(β) ≥ O(β2n+1).

Thus we can bound the order to which the steady state is independent of rotation simply

by studying the nullity of F (n). The matrix F (n) is similar to a Vandermonde matrix [51,

263]. Define the Vandermonde matrix:

V (n) =


1 f 2

rot1
. . . f 2n

rot1

1 f 2
rot2

. . . f 2n
rot2

...
... . . . ...

1 f 2
rotE

. . . f 2n
rotE

 (7.122)

then:

F (n) = V (n)ᵀFrot. (7.123)

The rank and nullity of Vandermonde matrices are well characterized since Vander-

monde matrices are important in polynomial fitting [51, 264]. To take advantage of the

Vandermonde matrix, rephrase the problem in terms of the rank of F (n). F (n) is an n× E

matrix so:

|null{F (n)}|= E − rank
Ä
F (n)ᵀ

ä
= E − rank(FrotV

(n)). (7.124)

Next note that removing rows from Frot and V (n) that correspond to edges with rota-

tional force zero does not change the rank of the matrix FrotV
(n) since a row of all zeros

produces a zero entry no matter what the matrix is multiplied with. Also notice that if

f 2
rot takes on the same value on some subset of the edges then the corresponding subset of
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rows of FrotV
(n) will all be identical. A series of redundant rows can be replaced with a

single row containing the same values without changing the rank, since these rows are not

independent.

Define V̂ (n) and F̂rot to be V (n) and Frot with all zero rows removed, and duplicated

rows replaced with a single row. Let m be the number of distinct nonzero values taken on

by f 2
rotij

. Then F̂rot is a diagonal m×m matrix with nonzero entries, so it is invertible and

does not change the rank. Therefore:

|null{F (n)}|= E − rank(V̂ (n)) (7.125)

where V̂ (n) is a m × n Vandermonde matrix with distinct rows. The rank of a m × n

Vandermonde matrix with all distinct rows is min{m,n} therefore:

|null{F (n)}|= E −min{m,n} (7.126)

Therefore:

Lemma 34. Let E be the number of edges, V the number of nodes, and L = E − (V − 1)

the number of loops in the network. Let m be the number of distinct nonzero values of f 2
rot.

If m > L, then the steady state cannot be independent of rotation to all orders and, at most

q(β) isO(β2L+1). If m ≤ L then it is possible that q(β) is independent of frot to all orders.

Lemma 34 provides an upper bound on the number of distinct values of f 2
rot, which, if

exceeded, guarantees that the steady state is never rotation independent. In that case the

steady state is never independent of rotation to order higher than 2L + 1. Alternatively, if

there are sufficiently few distinct nonzero values of f 2
rot then the conditions GᵀR−1f 2k+1

rot

can become redundant for large enough k, so it is possible that the steady state is entirely
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independent of rotation.

As a corollary, if any two loops overlap then it is possible that there are more distinct

nonzero values of f 2
rot than there are loops in the network. In that case it is always possible

that m > L. If m > L then the steady state is never independent of rotation to all orders.

Therefore, if the loops in the network are not disjoint, there is never a set of resistances

that guarantee rotation independence for all frot. This rules out the possibility that uniform

resistances always lead to rotation independence. In short, there is no rule for generating

resistances that guarantee rotation independence. Instead, for some frot there is a space of

resistances that can guarantee independence. The next lemma addresses the dimension of

this space.

Fix frot. Let wij = 1/Rij be a set of weights corresponding to the reciprocal of the

resistances. In order for the steady state to be independent of rotation up to order 2n + 1

the weights must satisfy the linear equations:


GᵀFrot

GᵀF 3
rot

...

GᵀF 2n+1
rot

w =


0

0

...

0

 . (7.127)

Therefore, the space of weights such that the steady state is independent of the rotational

forces up to order n is the intersection of RE+ with a linear subspace:

{w|q(ε) is O(ε2n+3)} = null
{[

GFrot GF 3
rot . . . GF 2n+1

rot

]ᵀ}
∩ RE+

These spaces are nested, since at each order we introduce new conditions (columns to the

block matrix) that w must satisfy. It is natural to ask, for a given n, what is the dimension
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of this subspace of weights? Does it always decrease when n increases? If so, how fast?

Using the fundamental theorem of linear algebra [26]:

|{w|q(ε) is O(ε2n+3)}|= E − rank
([

FrotG F 3
rotG . . . F 2n+1

rot G

])
.

The matrix
[
FrotG F 3

rotG . . . F 2n+1
rot G

]
is E × nV . Each block has, at most, rank

V − 1 since G has rank V − 1. At most, all the blocks are independent, in which case the

rank of the whole matrix is always less than min{E, n(V − 1)}. Therefore:

|{w|q(ε) is O(ε2n+3)}|≥ E − n(V − 1) (7.128)

if it is non-empty.

This gives a lower bound on the dimension of the space of weights such that the steady

state is independent of rotation up to order n. This bound can be tightened if f 2
rot takes on

only a few nonzero values.

Let B be a basis for the range of G that is full (all its entries are nonzero). Now, let bj

be the jth column of B. Then we can replace G with B without changing the rank of the

block matrix. Next, rearrange the columns of the block matrix so that it has the form:

[
FrotKn(F 2

rot, b1) FrotKn(F 2
rot, b2) . . . FrotKn(F 2

rot, bV−1)

]
.

where Kn(A, b) is the Krylov matrix:

[
b Ab A2b . . . Anb

]
. (7.129)

Permuting columns does not change the rank.
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At most, each of the V − 1 blocks are linearly independent so:

rank
([

FrotG F 3
rotG . . . F 2n+1

rot G

])
≤

V−1∑
j=1

rank(FrotKn(F 2
rot, bj)).

The jth block has form:

FrotKn(F 2
rot, bj) = FrotV

(n)diag(bj). (7.130)

Since B was chosen so that it was full, diag(bj) is invertible and does not change the rank.

The rank of FrotV
(n) is min{m,n}. This bound is independent of j so:

rank
([

FrotG F 3
rotG . . . F 2n+1

rot G

])
≤ min{m,n}(V − 1). (7.131)

Therefore:

Lemma 35. The space of weights w = 1/R such that the steady state is independent of

rotation up to order 2n + 3 is the intersection of a linear subspace with RE+. This defines

a space that is either empty (does not intersect the RE+), or has dimension equal to the

dimension of the subspace. Therefore, the space of weights such that the steady state is

independent of rotation up to order 2n+ 3 has dimension:

|{w|q(β) is O(β2n+3)}|≥ E −min{m,n}(V − 1) (7.132)

if it is non-empty. If m < b E
V−1
c then the space of weights such that q(β) is independent of

rotation to all orders has dimension E −m(V − 1) if it non-empty.

To summarize, Lemma 33 establishes the exact condition for rotation independence,
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Lemma 34 gives an upper bound on the number of distinct nonzero values of f 2
rot, m, past

which the steady state is never rotation independent, and Lemma 35 gives a threshold on

m, where, if m is less than the threshold, then the dimension of space of weights such that

the steady state is rotation independent has a nonzero lower bound. Therefore the number

of distinct nonzero values of f 2
rot is the essential number, which, if sufficiently small, allows

for rotation independent steady states.

Dependence on m may seem a little strange, but it is natural given the nature of the flux

balance conditions. Each order only differs by changing the power of frot used. Every time

we increase the order we add a new set of equations equivalent to a block of the previous

equations scaled by an additional factor of f 2
rot. If a block of equations is independent

of the previous block then the space of possible weights/resistances shrinks every time

we increase the order of independence. Since the space is finite, if enough independent

blocks are added then the space of weights vanishes. However, if f 2
rot only takes on m

distinct nonzero values then multiplication by f 2
rot only produces new equations up to m

times. Therefore we have at most min{m,n}(V − 1) linearly independent equations. For

n > m adding higher orders does not change the space, so, if m is sufficiently small we

can guarantee that the space is nonempty, and of a certain minimal size. Alternatively, if m

is too large then the space of weights such that the steady state is rotation independent to

order 2n + 1 keeps shrinking each time n increases until it is empty. This takes, at most,

2L+ 1 steps, so the steady state is, at most, independent of rotation to order 2L+ 1.

7.3.3 Strong Forcing Limits

In a strong forcing limit the components of the edge flow, f are all assumed to be large. If

the components of the edge flow are large then the forward transition rates on each edge

are much faster than the backward transition rates. As a consequence, the sequence of
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states visited becomes highly directed, and, depending how the limit is taken, increasingly

predictable. A strong forcing limit is achieved by scaling the edge flow by a large number.

Here we consider three different strong forcing limits, since the behavior of the steady

state depends on how the limit is performed. In all cases the steady state is described

by an object that mimics a potential constructed by evaluating the work over some set

of optimal paths. The set of paths, and the definition of optimal depends on the limit

taken. These are analogous to the quasipotential used to analyze SDE’s in the small noise

limit. If the noise is sufficiently small then the steady state of an SDE is described by

a quasipotential, which is defined by evaluating the work required to reach each point in

space from a stable equilibrium of the deterministic process along the most likely trajectory

from the equilibrium [23].

Strong Forcing

As when considering weak forcing limits, start by introducing a scaling β that is analogous

to inverse temperature, and where the transition rates are parameterized by:

lij(β) = ρij exp(βfij).

In the strong forcing limit β diverges to +∞ instead of 0.

Notice that if fij > 0 then lij(β) diverges as β diverges, and, since fji = −fij , lji(β)

converges to zero as β diverges. Therefore, in the strong forcing limit, the ratio of the

forward to backward transition rate diverges on every edge. This makes expansion of L(β)

in β difficult. Troublingly, if fij > fkh then the ratio lkh(β)/lij(β) converges to zero as β

diverges, even if lkh(β) diverges as β diverges. Not only do half the nonzero elements of

L(β) diverge, they all diverge at asymptotically different rates.
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For these reasons we do not attempt to solve for the stationary distribution by expanding

L(β). Instead we start with an exact expression for the stationary distribution in terms of

the transition rates, and consider its limit. The following construction was borrowed from

[5].

Denote the set of spanning trees of the network T . Index all the distinct spanning trees

in T so that the index ν corresponds to a specific tree: Tν ∈ T . Pick a spanning tree Tν .

Now pick a specific node i. Define the directed tree Tν(i) that consists of all directed edges

whose undirected edges are elements of Tν , and point along the paths in Tν back to i. That

is, Tν(i) is the union of all paths from the leaves of Tν to i, along the branches of Tν . Index

all the undirected edges in the graph. Let Kν be the set of edge indices corresponding to

edges in Tν . Let s(k|ν, i) be 1 if the directed edge in Tν(i) corresponding to undirected

edge k points in the forward direction, and −1 if it points in the reverse direction.

Then, the stationary distribution at node i is [5]:

qi(β) =
1

Z(β)

∑
ν

(∏
k∈Kν

ρk

)
exp

(∑
k∈Kν

βs(k|ν, i)fk

)
(7.133)

where Z(β) is the necessary normalizing constant.

Let ρ(ν) be the total conductance of the tree Tν :

ρ(ν) =
∏
k∈Kν

ρk (7.134)

and let w(ν, i) denote the total work needed to move from the leaves of the directed tree to

node i:

w(ν, i) =
∑
k∈Kν

s(k|ν, i)fk. (7.135)
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Then:

qi(β) =
1

Z(β)

∑
ν

ρ(ν) exp (βw(ν, i)). (7.136)

To avoid working with the limit of the partition function pick a reference node j and

measure the stationary distribution at i relative to the distribution at j. Then:

qi(β)

qj(β)
=

∑
ν ρ(ν) exp (βw(ν, i))∑
ν ρ(ν) exp (βw(ν, j))

(7.137)

Next consider the limit as β goes to infinity. Provided |w(ν, i)|> 0 the exponential term

exp (βw(ν, i)) either converges to zero or diverges. Depending on the value of w(ν, i) the

exponential diverges to infinity or converges to zero at different asymptotic rates. Therefore

the sum over exp (βw(ν, i)) will be dominated by the tree Tν that maximizes w(ν, i).

Define:
W (i) = max

ν
{w(ν, i)}

M(i) = argmaxν{w(ν, i)}.
(7.138)

Note that M(i) is the set of trees which maximize w(ν, i), so may include more than

one tree. Also note that, since the path dependent part of the work to move between two

points only depends on frot, the optimal spanning trees are determined exclusively by the

rotational part of the edge flow.

Then:

∑
ν

ρ(ν) exp (βw(ν, i))

= exp (βW (i))

 ∑
ν∈M(i)

ρ(ν) +
∑

ν /∈M(i)

ρ(ν) exp (β(w(ν, i)−W (i)))

 . (7.139)

Since W (i) maximizes w(ν, i) the last term, (w(ν, i) − W (i)), is strictly negative.
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Therefore ρ(ν) exp (β(w(ν, i)−W (i))) vanishes exponentially fast as β goes to infinity.

Define:

εi(β) =
1∑

ν∈M(i) ρ(ν)

∑
ν /∈M(i)

ρ(ν) exp (β(w(ν, i)−W (i))). (7.140)

Then:

qi(β)

qj(β)
= exp (β(W (i)−W (j)))

∑
ν∈M(i) ρ(ν)∑
ν∈M(j) ρ(ν)

ï
1 + εi(β)

1 + εj(β)

ò
. (7.141)

To study the limiting behavior of the steady state consider the effective potential. The

effective potential is the negative log of the steady state distribution, scaled by the inverse

temperature:

φeff (β) = − 1

β
log (q(β)) (7.142)

The effective potential would equal the scalar potential if the system obeyed detailed bal-

ance.

Then, the difference in effective potential at a pair of nodes is the log-ratio of the steady

states:

φeff j(β)− φeff i(β) =
1

β
log

Å
qi(β)

qj(β)

ã
.

Substituting Equation (7.141) for the ratio of the steady states yields:

φeff j(β)− φeff i(β) = (W (i)−W (j)) +
1

β
log

Ç∑
ν∈M(i) ρ(ν)∑
ν∈M(j) ρ(ν)

å
+

1

β
[log (1 + εi(β))− log (1 + εj(β))] .

As β diverges ε(β) converge to zero exponentially, so:

lim
β→∞

[log (1 + εi(β))− log (1 + εj(β))] = lim
β→∞

εi(β)− εj(β).
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The vanishing terms, ε(β), converge to zero exponentially fast as β diverges. Therefore:

εi(β)− εj(β) vanishes faster than 1/β. So for large β:

[φeff j(β)− φeff i(β)] ∼= (W (i)−W (j)) +
1

β
log

Ç∑
ν∈M(i) ρ(ν)∑
ν∈M(j) ρ(ν)

å
+O(exp (−β)).

(7.143)

Equation (7.143) states that, in the strong forcing limit the difference in the effective

potential (log of the steady state divided by the large parameter β) between two vertices

converges to the difference in maximal work to move to each node on an optimal spanning

tree. The difference in the two spanning trees defines an ensemble of trajectories from i

to j. Thus, in the strong forcing limit the effective potential converges to an object that

is similar, but not identical, to the quasipotential. Instead of evaluating the work over one

optimal trajectory between two points we evaluate work over a set of optimal trajectories

formed by the difference between two optimal spanning trees. An example is illustrated in

Figure 7.8

Notice that−W (j) is the work it takes to move away from node j andW (i) is the work

it takes to move to node i. If M(i) = ν = M(j) then both trees are the same. Therefore

all the edges of the directed tree Tν(i) and Tν(j) are oriented in the same direction, except

the edges on the path from j to i in Tν . To see this fact separate the tree Tν into three sets

of edges. The first set is the path from i to j. This acts like a bridge. Imagine removing

the bridge from the tree. Removing the bridge separates the tree into two or more disjoint

components. The first component is a tree branching out from node i, and the second is a

tree branching out from node j. Any additional components branch off of the path. Now,

orient the edges in the first component to point to node i. Since the bridge connecting i and

j is the only way to move from the first component to node j orienting the edges in the first

component towards node i is the same as orienting the edges to node j. Furthermore any
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Figure 7.8: The difference between an optimal spanning tree directed towards node j
(shown in purple in the upper left), and an optimal spanning tree directed towards node
i (shown in green in the upper right), forms an ensemble of paths from i to j (the large
network shown in the bottom center).

edges in components branching off the path must be oriented towards the path. Therefore

the contribution to the work W (i) from all edges not on the path from j to i is equal to the

contribution to W (j), so cancels out when taking W (i)−W (j). This just leaves twice the

work to move from j to i along the path in Tν . So, in the special case when M(i) = M(j)

the difference in effective potential between i and j is twice the work it takes to move from

i to j along a path in a shared optimal spanning tree.

It also follows that if there exist a set of nodes that can be separated from i and j by

removing one edge then the trees associated with i and j must be identical on these nodes,

so the steady state ratio between i and j is independent of the transition rates between those

nodes.

In the next two sections we will develop an alternative procedure for analyzing strong

forcing limit. This procedure is based on studying the dynamics of the skeleton process,
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the sequence of states visited by the full process X(t), and allows for a more general

treatment of the conductances. This more general treatment includes limiting processes

where the transition rates don’t diverge, even if the ratio of forward and backward rates

diverges. This generalization is important since the usefulness of a limit usually depends

on how well it approximates examples that arise in applications, and the limit analyzed

in this section produces strange Markov processes with time scale separation between all

rates. It also leads to an alternative quasipotential-esque construction which is more useful

for comparison to the quasipotential in the continuum.

Strong Rotation

How does the steady state behave when rotation is strong?

Here we consider three different strong rotation limits. In all cases the transition rates

are of the form:

lij(β) = ρij(β) exp (βfrotij)

where β is an parameter that is used to increase the strength of rotation. In applications β

may be a function of physical parameters which influence the transition rates (for example,

effective population size). Let α = {α1, α2, ...} be a sequence of parameters. Then

suppose:

lij(α) = ρij(α) exp (β(α)frot(α)ij)

and consider a limit in which β(α) diverges to infinity and frot(α) converges to a constant.

The model and limiting value of α determine the (scaled) rotational flow, and whether the

conductances ρij(α) may converge or diverge. The generalized treatment in terms of β is

motivated by assuming that we fix some sequence of parameters {α1, α2, ...} so that β is

diverging monotonically, and the scaled rotational forces approach their limit. Since β(αj)
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is assumed to increase monotonically we use the shorthand ρij(β). This leaves the behavior

of ρij(β) up to the parameter dependence and limiting sequence of parameters. Therefore,

if we seek a general theory for strong rotation limits it is important to consider different

limiting behavior in the conductances. We will organize our investigation by introducing

three different constraints on the possible behavior of the conductances when β is large.

The three limits of interest correspond to different assumptions about the behavior of

the conductances as β becomes large. The limits lead to three qualitatively different classes

of Markov processes that can be approximated with a large rotation limit.

The three limits we consider are specified by the following three constraints:

1. The geometric mean of each pair of forward and backward transition rates (ρij(β))

converge to finite nonzero constants in β.

2. The arithmetic mean of each pair of forward and backward transition rates converges

to finite nonzero constants in β.

3. The expected waiting time in any node converges to a finite nonzero constant in β.

We will show that when β is large these processes converge to Markov chains with the

following properties:

1. Under all three assumptions the ratio of forward to backward transition rates diverges

on all edges where the rotational forces are not zero. This leads to processes where

most, if not every, transition becomes close to irreversible.

2. Under the first or third constraint the neighbors of every node can be partitioned into

two sets. The first set is the set of neighbors i ∈ Nj for which frotij is maximized.

The second is the complement of the first. Then the probability that we observe a
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transition from j to i converges to zero if i is in the second set, and converges to a

constant that only depends on ρij(β) if i is in the first set and β is large. If there

is a unique neighbor that maximizes frotij then the skeleton process converges to a

deterministic process.

3. Under the first condition the rate of the forward transition diverges exponentially in

β on all edges with nonzero rotational forces. This means that the process moves

faster and faster as β increases. Moreover, provided frot varies in size across the

network, the relative rate of transition on any pair of transitions for which frot differs

will also diverge. This leads to a large time scale separation between all sets of

transitions corresponding to different values of frot. This is the rotational limitation of

the limit studied in Section 7.3.3. It is worth considering the purely rotational version

of the strong forcing limit since any nonequilibrium Markov chain that satisfies

microscopic reversibility can be transformed into a purely rotational process via

the transform described in Section 7.2.1. Then, by studying the strong rotational

limit independently we can find the limiting behavior of processes which are strongly

rotational but could have a small conservative component.

Since we are interested in using these limits to approximate models arising from ap-

plications it is important to have this qualitative characterization to help pick which limit

most closely matches the model of interest. These limits are appropriate when the model

of interest is purely rotational, or has been transformed into a purely rotational model,

and has close to irreversible transitions. The first limiting scenario is appropriate when

the corresponding skeleton process is close to deterministic and there is large time scale

separation between the rates that corresponds to the values of frot. The third limiting

scenario is appropriate when the skeleton process is close to deterministic, but there is not
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large time scale separation between the waiting times in each node. The second limiting

scenario is appropriate when the skeleton process is not close to deterministic and the

forward transition rates do not depend primarily on frot.

We will focus primarily on the first and third limits (the case when the skeleton process

converges towards a deterministic process) since these offer the most useful comparisons

to the quasipotential in the continuum, and are the most tractable. The second limiting case

converges to a set of Markov processes that are not well described by the decomposition

into conductances and edge flows, so are best treated with other methods. When the

skeleton process convergences towards a deterministic process the asymptotic analysis is

simpler.

Consider the first limiting scenario (ρij(β) converge to constants). Then the transition

rates are approximated by lij(β) = ρij exp (βfrotij) where ρij and frotij are set to their

limiting values. Let q(β) be the corresponding steady state distribution. We would like to

approximate q(β) when β is large. As before, finding the asymptotic behavior of q(β) in

a strong rotation limit is trickier than in the weak rotation limit (when β is small) because

lij(β) cannot be approximated with a Taylor expansion in ε with β = 1/ε or a Laurent

expansion in β. As a consequence, the operator L(β) cannot be trivially expanded to yield

a recursive sequence of correction equations.

Here it is helpful to consider the skeleton process. The full process is the continuous

time process X(t). Note that any trajectory of the full process can be broken into a list of

states X = {X0, X1, ...} and a list of the time spent in each state T = {T0, T1, ...}. The

waiting times Tj are independent of all Xi except Xj and are drawn from an exponential

distribution with rate
∑

i∈Nj lij(β). The sequence of states is independent of the waiting

times. It follows that the list of states can be drawn without drawing T . The skeleton

process is the discrete time process corresponding to the sequence of statesX = X0, X1, ..,
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where time is recorded in the number of transition events.

The skeleton process is a discrete time Markov chain with transition probabilities:

l̂ij(β) =
lij(β)∑

k∈Nj lkj(β)
. (7.144)

Let τj denote the expected waiting time to a transition out of node j. Then τj =

E[Tn|Xn = j] =
Ä∑

k∈Nj lkj(β)
ä−1

. Note that, since we assumed the full process was

connected and satisfied microscopic reversibility, the skeleton process is irreducible. The

skeleton process may or may not be aperiodic, so that it may not have a unique steady state.

If it is not aperiodic then the distribution converges to a periodic sequence of distributions

whose phase depends on the initial condition. In that case define the steady state to be

the average distribution across a full period. Let q̂(β) be the steady state of the skeleton

process. The steady state of the full process can be recovered from the steady state of the

skeleton process by:

qi(β) =
τi(β)

τ(β)
q̂i(β) (7.145)

where τ(β) =
∑

i τi(β)q̂i(β) is the expected waiting time in any node at the steady state

distribution. Equation (7.145) can be easily checked by plugging back into the steady state

equation Lq = 0 since lijqj ∝ l̂ij q̂j .

Unlike the full process, whose forward transition rates diverge to infinity at asymptot-

ically different rates in β, the transition probabilities of the skeleton process converge to

finite values. Thus it is easier approximate q(β) by estimating q̂(β) and then scaling by

τi(β) than it is to approximate q(β) directly.

For each node i define the maximal edge set:

Mi = argmaxj∈Nj{frotij}. (7.146)
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Then let:

∆fij = frotMi − frotij (7.147)

be the difference between the largest flow leaving node i and the flow on edge ij. For all

j /∈Mi, ∆fij > 0. Define the small quantity:

εij(β) =
ρij
ρMi

exp (−β∆fij). (7.148)

Since ∆fij > 0 for all j /∈Mi, εij(β) converges to zero exponentially fast in β. That is:

εij(β) = O(exp (−β∆fij)). (7.149)

Now let:

εi(β) =
∑
j /∈Mi

εij(β). (7.150)

and let:

∆fi = min
j /∈Mi

{∆fij}. (7.151)

Then, εi(β) is vanishing exponentially fast in β and:

εi(β) = O(exp (−β∆fi)). (7.152)

The small parameters ε can be used to build an approximation to the steady state in the

large β limit. Note that the small parameters are all exponential in −β and the asymptotic

rate at which they converge to zero depends on the difference between the largest and

second largest rotational flow leaving each node.

In order to simplify the analysis we introduce two assumptions. These limit the scope
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of the analysis, but are introduced to rule out edge cases. They are not overly limiting

since they are each satisfied on an E dimensional space of possible flows and fail on lower

dimensional subspaces of the set of possible flows. Therefore the two assumptions can be

thought of as defining a general case, and fail in special cases when some of the edge flows

leaving a node are exactly equal.

1. Assumption 1: For all i there exists an j such that frotij 6= 0.

2. Assumption 2: For each i there is a unique j that maximizes frotij . That is, |Mi|= 1

for all i.

The first assumption ensures that the skeleton process becomes irreversible in the large

rotation limit. Combined the two assumptions ensure that the skeleton process converges

to a deterministic process in the large rotation limit.

Since frot is purely rotational Gᵀfrot = 0. Therefore, the sum of frot on all edges

surrounding any node is zero. It follows that, either frot is zero on all edges neighboring a

particular node, or that frot < 0 on some of the edges and frot > 0 on some of the remaining

edges. If we require that, for all i there exists an j such that frotij 6= 0, then the first case

is impossible. Therefore the first assumption ensures that, for all i there is some edge ij

such that frotij > 0. It follows that frotMi > 0 for all j. Moreover, since frotij = −frotji , if

j ∈Mi then i /∈Mj . Otherwise either frotMi < 0 or frotMj < 0 which is impossible.

Define the directed graph G∞ with the same nodes as the original graph, but which only

includes the edge i → j is j ∈ Mi. Then, under the first assumption, every edge in G∞ is

irreversible. That is, if there is an edge from i to j there cannot be any edge back in G∞.

The second assumption ensures that every node has exactly one edge leaving it in G∞. It

follows that G∞ has as many directed edges as nodes.
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Figure 7.9: The directed graph G∞ corresponding to the paths taken by the skeleton process
in a strong rotation limit. In this example the original network was a square lattice, the
directed graph is connected. The cycle is shown in orange, and the spanning forest in blue.

Consider a connected component of G∞. Each connected component has as many edges

as it has nodes, so has one more edge than its spanning tree. Since there is at most one

directed edge in G∞ per undirected edge in G the edge left out of the spanning tree must be

a chord. It follows that every connected component of G∞ must contain exactly one cycle.

Since every node has an outgoing edge the edges on the cycle must all point along the same

direction. Moreover, every other edge in the connected component must be directed so that

following the edges in order will lead onto the cycle. An example is illustrated in Figure 7.9

Enumerate the connected components of G∞ from 1 to k, and enumerate the corre-

sponding cycles Cj accordingly. For each cycle let the forest Tj , be the collection of trees,

directed towards the cycle Cj , who span the corresponding connected component.

Since every node in G∞ has exactly one outgoing edge, we can define a deterministic

process which walks in the direction of the outgoing edge leaving each node. If we start

at some node i then this process defines a relaxation trajectory xj(i) where x0(i) = i and

xj(i) = Mxj−1(i). This process is the relaxation process, and the trajectories it produces are

relaxation trajectories. A transition along a directed edge in G∞ is a relaxation step. Any

transition along an edge not in G∞ is an activation step, and any consecutive sequence of

513



activation steps is an activation trajectory. Then, any trajectory X can be separated into a

series of relaxation and activation trajectories.

Our objective is to show that, in the large rotation limit, the skeleton process converges

to the relaxation process in the sense that the probability of observing more than n consec-

utive relaxation steps converges to 1 as β goes to infinity for any n, and the probability of

observing fewer than m consecutive activation steps converges to one as β goes to infinity

for any m. It would follow that, for sufficiently large β, the wait time between consecutive

activation trajectories would diverge, and the length of the average activation trajectory

trajectory would converge towards one.

To start, rewrite the skeleton transition probabilities:

l̂ij(β) =


1

1 + εj(β)
if i = Mj

εij(β)

1 + εj(β)
if i 6= Mj


'


1−

∑
k 6=Mj

εkj(β) if i = Mj

εij(β) if i 6= Mj

 =


1−O(exp (−β∆fj)) if i = Mj

O(exp (−β∆fij)) if i 6= Mj

 .

(7.153)

Therefore, if the system is in state j the probability of observing a relaxation step is 1−

O(exp (−β∆fj)) and the probability of observing any activation step isO(exp (−β∆fj)).

Therefore the probability of observing a sequence of at least n consecutive relaxation steps

starting from node i is:

P [n consecutive relaxation steps|X0 = i] '
n−1∏
j=0

(
1− εxj(i)(β)

)
(7.154)

which clearly converges to 1 for any fixed n regardless the initial i.

Next let An(i) be the space of activation trajectories of length n leaving node i. Let
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y = {y0 = i, y1, ...yn−1} be a trajectory. Then the probability of observing any activation

trajectory of n or more steps is:

P [n consecutive activation steps|X0 = i] '
∑

y∈An(i)

n−1∏
j=0

εyj+1,yj(β)

=
∑

y∈An(i)

exp

(
−β

n−1∑
j=0

∆fyj+1,yj

)

=
∑

y∈An(i)

exp (−βW [y])

(7.155)

where W [y] =
∑n−1

j=0 ∆fyj+1,yj is the work to traverse the activation trajectory. Note that

the work is defined relative to ∆f rather than f . Also note that since ∆fyj+1,yj > 0 for

all activation steps the work is strictly positive. Therefore the probability of observing any

particular activation trajectory is vanishing O(exp (−βW [y])).

In a network where each node has finite degree there are always a finite number of

activation trajectories of length n leaving any node i. This number is independent of β so

the sum must vanish exponentially quickly in β. In the large rotation limit:

P [n consecutive activation steps|X0 = i] ' O
Å

exp

Å
−β min

y∈An(i)
{W [y]}

ãã
→ 0

(7.156)

so the probability of observing fewer than n consecutive activation steps converges to 1 for

any fixed n and i.

It follows that the skeleton process converges to the relaxation process in the large rota-

tion limit. This makes analysis of the steady state of the skeleton process straightforward,

provided the G∞ is connected.

Assume that G∞ is connected. Then G∞ contains a unique cycle C containing |C| nodes.

All relaxation trajectories relax onto the cycle, and once on the cycle never leave. Therefore
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the cycle is absorbing in the strong rotation limit so:

lim
β→∞

q̂i(β) =


1

|C|
if i ∈ C

0 else

 . (7.157)

Therefore the stationary distribution for the skeleton process converges to a uniform

distribution on a cycle C in the large rotation limit provided: the weights ρij(β) converge to

constants, every node neighbors an edge with nonzero rotational flow, there is a unique edge

leaving every node with maximal flow, and the directed graph G∞ constructed from these

edges is connected. These are all easy conditions to check, and except the first, depend

exclusively on the rotational flow.

If G∞ is not connected then the limit is singular since, for any finite β the skeleton

process admits a unique stationary distribution, but for infinite β the skeleton process is

the relaxation process, whose long time average depends on which connected component

the process starts in. For large β this implies that each connected component of G∞ is

nearly absorbing, and the quasisteady state on that component is converging to the uniform

distribution on the corresponding cycle. The full steady state converges to an weighted

average of the uniform distribution on all the cycles, where the probability of being on any

individual cycle is fixed by the mean first passage times between the cycles. This is similar

to a network with multiple deep potential wells (cf. [23]). Further discussion of this case is

saved for future work.

To find the steady state for the full process, rescale the steady state for the skeleton

process by the expected waiting time of each node (recall Equation (7.145)):

lim
β→∞

qi(β) = lim
β→∞

τi(β)

τ(β)
q̂i(β). (7.158)
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We know that limβ→∞ q̂i(β) = 0 if i /∈ C which would suggest limβ→∞ qi(β) = 0 if i /∈

C, however, as β goes to infinity the waiting times all converge to zero. Therefore, if τ(β)

converges to zero faster than τi(β) the ratio of waiting times may diverge. It is possible,

then, that the product τi(β)
τ(β)

q̂i(β) does not converge to zero, even while q̂i(β) converges to

zero. This leads to the possibility that, in the large rotation limit, the support of the steady

state of the full process may not be a subset of the support of the steady state distribution

of the skeleton process. In fact, depending on the rates at which τi(β), τ(β), and q̂i(β)

converge to zero it is possible that, in the large rotation limit, the steady state of the full

process and the steady state for the skeleton process are disjoint!

The support of the two distributions may differ if, while the process is expected to spend

almost all of its steps on C, it is also spend almost all of its time off of C. To see why this

is possible consider a network consisting of one cycle and a single node connected to the

cycle by a pair of edges. Then it is possible that, in the large rotation limit, the system is

expected to make 1000 consecutive complete cycles per fluctuation off the cycle. Then the

steady state probability of occupying the single node off the cycle on a given step is on the

order of 1/1000th the probability of occupying a node on the cycle. However, if the rate at

which the system cycles is also 1000 times faster than the rate at which it leaves the outer

node, then the steady state for the full process will be approximately uniform. The process

visits the nodes on the cycle 1000 times for every fluctuation of the cycle, but visits each

node in the cycle for 1/1000th the time it spends on the fluctuation. Clearly if the rates

scale differently it is possible that, in the large rotation limit, the system spends all of its

steps on the cycle, but none of its time there.

An example of this kind is presented in [265] in response to numerical results presented

by [266, 267]. In [265] example Markov chains are constructed whose skeleton converges

to a deterministic process, but where long numerical runs do not capture the steady state
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dynamics of the full process. Long numerical runs based on direct simulation [242], or

using the first reaction method [243] proceed one transition at a time, so “long" simulation

runs are “long" in the sense that many transitions are observed, not necessarily a long time.

If the rate of transitions is fast that observing many transitions may not amount to observing

a long enough time to observe convergence to steady state.

Therefore, analyzing the strong rotation limit of the steady state distribution of the full

process requires good estimators of the asymptotic rates at which τi(β), τ(β), and q̂i(β)

converge to zero. By comparing the relative rates we can determine whether or not the

steady state of the full process reflects the steady state of the skeleton process.

First, separate the expected steady state wait time into a sum over the nodes in the cycle

and nodes not in the cycle:

τ(β) =
∑
i∈C

τi(β)q̂i(β) +
∑
i/∈C

τi(β)q̂i(β)

Then:

qj(β) =
τj(β)q̂j(β)∑

i∈C τi(β)q̂i(β) +
∑

i/∈C τi(β)q̂i(β)

=

ñ
1 +

∑
i∈C,i 6=j τi(β)q̂i(β)

τj(β)q̂j(β)
+

∑
i/∈C,i 6=j τi(β)q̂i(β)

τj(β)q̂j(β)

ô−1

Then, since both of the sums are strictly positive there are three possibilities:

lim
β→∞

qj(β) =



0 if
τj(β)q̂j(β)∑

i∈C,i 6=j τi(β)q̂i(β)
→ 0 or

τj(β)q̂j(β)∑
i/∈C,i 6=j τi(β)q̂i(β)

→ 0

1 if
τj(β)q̂j(β)∑

i∈C,i 6=j τi(β)q̂i(β)
→∞ and

τj(β)q̂j(β)∑
i/∈C,i 6=j τi(β)q̂i(β)

→∞

some number between 0 and 1 otherwise


.

(7.159)
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Let’s find sufficient conditions to ensure that:

lim
β→∞

q̂i(β) = 0 (7.160)

for all i /∈ C. Define the numerical support of a distribution:

suppε(p) = {x|p(x) >= ε}. (7.161)

Then we are looking for a sufficient condition to guarantee:

lim
β→∞

suppε(q(β)) ⊆ lim
β→∞

suppε(q̂(β))

for any ε > 0. If the system satisfies this condition then it is rare-fluctuation stable, since

in the limit rare fluctuations in the skeleton process do not contribute undue weight to the

steady state of the full process. If the support of the full process contains the support of

the skeleton the the process is rare-fluctuation neutral since rare fluctuations contribute as

much to the steady state as the relaxation process does. If the support of the full process is

disjoint from the support of the skeleton then the process is rare-fluctuation unstable since

rare fluctuations contribute the majority of the steady state.

A system is rare-fluctuation stable if and only if limβ→∞ q̂j(β) = 0 for all j outside of C.

This requires that, for all j outside of C either τj(β)q̂j(β)∑
i∈C,i 6=j τi(β)q̂i(β)

→ 0 or τj(β)q̂j(β)∑
i/∈C,i 6=j τi(β)q̂i(β)

→

0. Therefore it would be sufficient if τj(β)q̂j(β)∑
i∈C,i 6=j τi(β)q̂i(β)

→ 0 for all j outside of the cycle.

This is also necessary, since there must be some set of j outside the cycle such that

τj(β)q̂j(β) goes to zero slower than, or as slow, as on all other nodes outside the cycle,

in which case it is impossible that τj(β)q̂j(β)∑
i/∈C,i 6=j τi(β)q̂i(β)

→ 0 for all j /∈ C. Therefore, a system
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is rare-fluctuation stable if and only if, for all j /∈ C:

τj(β)q̂j(β)∑
i∈C τi(β)q̂i(β)

→ 0. (7.162)

This is a natural condition. A system is rare fluctuation stable if the expected time spent

on any fluctuation off the cycle can be made arbitrarily small relative to the expected time

spent on the cycle by picking β sufficiently large. Now, for all i on the cycle q̂i(β)→ 1/|C|.

Therefore 1/q̂i(β) converges to |C|. Then, the limit of the ratio converges to zero if and

only if |C| τj(β)∑
i∈C τi(β)

q̂j(β) → 0. The convergence to zero is clearly independent of |C| so

rare-fluctuation stability requires:

τj(β)∑
i∈C τi(β)

q̂j(β)→ 0. (7.163)

In the large β limit:

lim
β→∞

τj(β) = O(exp (−βfrotMj ))

lim
β→∞

∑
i∈C

τi(β) = O(exp (−βmin
i∈C
{frotMi})

(7.164)

Therefore:

τj(β)∑
i∈C τi(β)

q̂j(β) = O
Å

exp

Å
β

Å
min
i∈C
{frotMi} − frotMj

ããã
. (7.165)

If frotMj ≥ mini∈C{frotMi} then the ratio of the waiting times does not diverge, so qi(β)

converges to zero. However, if frotMj < mini∈C{frotMi} then the ratio of the waiting times

diverges, so qi(β) goes to zero if and only if:
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lim
β→∞

exp

Å
β

Å
min
i∈C
{frotMi} − frotMj

ãã
q̂j(β) = 0. (7.166)

This gives a necessary and sufficient condition on the asymptotic rate at which q̂j(β)

must converge to zero in order to guarantee that the full process is rare-fluctuation stable.

Therefore, in order to check if a system is rare-fluctuation stable we will have to develop

bounds on the asymptotic rate at which the steady state probability at all nodes off the cycle

converges to zero.

For any node i /∈ C define the asymptotic rate of convergence to zero to be the limit,

− limβ→∞
1
β

log (q̂i(β)). To work out these asymptotic rates consider the steady state equa-

tion for a discrete time process:

L̂(β)q̂(β) = q̂(β). (7.167)

It follows that, for any n:

L̂(β)nq̂(β) = q̂(β). (7.168)

The product L̂nq̂ can be rewritten in terms of all paths length n. Let Yij(n) be the space

of all paths from j to i of length n. Define the measure on paths:

π(y|β) =

|y|∏
j=1

l̂yj+1,yj(β). (7.169)

Then:

q̂i(β) =
∑
j

 ∑
y∈Yij(n)

π(y|β)

 q̂j(β) (7.170)

That is, the steady state probability at any node is given by the sum over the probability
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of reaching that node from any other node, which can be broken into a sum over all paths

between pairs of nodes. In the large rotation limit the probability of any path converges to

the exponential of the work to traverse the path where work is evaluated against ∆f :

π(y|β) '

 |y|∏
j=1

ρyj+1,yj

ρMyj

 exp (−βW [y]). (7.171)

Fix, i and j and n. Then let:

{yij(n)} = argminy∈Yij(n){W [y]} (7.172)

be the set of the most likely paths from j to i in n steps. Note that there may be more than

one path in this set, but the number of such paths is finite since n is finite. Also let:

∆W [y]ij(n) = W [y]−W [yij(n)] > 0 (7.173)

for some optimal path in the set.

Then, in the large β limit:

π(y|β) ' exp (−βW [yij(n)])



|y|∏
j=1

ρyj+1,yj

ρMyj

if y ∈ {yij(n)} |y|∏
j=1

ρyj+1,yj

ρMyj

 exp (−β∆W [y]ij(n)) if y /∈ {yij(n)}


(7.174)

Since ∆W [y]ij(n) > 0 the distribution of paths from j to i in n steps collapses onto the
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most likely paths from j to i in n steps. Therefore:

 ∑
y∈Yij(n)

π(y|β)

 '
 ∑
y∈{yij(n)}

|y|∏
j=1

ρyj+1,yj

ρMyj

 exp (−βW [yij(n)]) (7.175)

For any i and n let WiC(n) be the minimum work needed to reach i from C in n steps.

Now consider some path y from j ∈ C to i /∈ C. Let j−1 be the previous node in the cycle.

Then the path from j − 1 to j to i along y takes the same amount of work as y itself since

it takes no work to traverse the loop. Therefore, for any path from the cycle to a node not

in the cycle, all paths that consist of cycling the loop for an arbitrary number of steps then

following a specified path take the same amount of work, so have probabilities that decay

at the same asymptotic rate. It follows that WiC(n+ 1) ≤ WiC(n). Therefore the minimum

work from C to i is nonincreasing as we increase the length of the paths. If the network

is finite then this sequence must have an nonzero minimum that is first achieved for some

finite n since any path from C to i that uses more than V − |C| steps must be equivalent

to a shorter path plus a cycle. Since the work is additive and the work to traverse any

edge is nonnegative, adding a cycle to a path never decreases the work to traverse the path.

Therefore, the minimum work to traverse the optimal path from C to i of length longer than

V − |C| must be greater than or equal to the minimum work to traverse the optimal path

from C to i of length less than V − |C|. Let WiC be the minimum work to go from C to i.

Then, if we pick n > V we can guarantee that a path of this work from some j in C to i is

included in the set of paths:

Then, since q̂j(β)→ 1
|C| in the large rotation limit:

q̂i(β) '

∑
j /∈C

ωij(n) exp (−βW [yij(n)])q̂j(β)

+
1

|C|
exp (−βWiC) (7.176)
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where ωij(n) is the ratio of the conductances along any given path to the optimal path. Note

that we do not sum over all j ∈ C because for any n there is a unique j ∈ C that is precisely

n steps away on the optimal path.

Notice that the second half of the equation is now independent of n. The right hand

side, however, depends on n. If n is sufficiently large then it is possible to reach i from j

by following a relaxation path from j to C then by following the optimal path from C to i.

This path also has work WiC since the relaxation steps come for free. This must be the least

work it takes to go from j off the cycle to the cycle, then to i, since any other path either

takes more work to reach the cycle, or more work to reach i from the cycle. For small n

it is possible that there is a path from j to i without reaching the cycle first that takes less

work than WiC . However, if n is sufficiently large (larger than V ) then any path from j to

i without relaxing to C first, must include a cycle that is not C. Since C is the only cycle

in G∞, it must take positive work to traverse any such cycle. There is some combination

of a path from j to i and cycle that leaves and returns to the path, both without reaching

C, that minimizes the work for any given n. However, if we increase n we need to either

take a different path, different cycle, or repeat the same cycle multiple times. Therefore the

minimum work from j to i is greater than or equal to the minimum work to go from j to i

without reaching C plus the smallest work needed to traverse any cycle that is not C times

n. It follows that the work to move from j to i without reaching C first must diverge as n

goes to infinity. Then there is necessarily some n large enough that the cheapest path from

j to i is the path that first relaxes to C. Then:

q̂i(β) '

∑
j /∈C

exp (−βWiC)q̂j(β)

+
1

|C|
exp (−βWiC)
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Then, since q̂j(β) converges to zero as β goes to infinity:

q̂i(β) ' 1

|C|
exp (−βWiC) (7.177)

Therefore the steady state probability of occupying any node that is not on C decays to

zero at rate equal to the minimum work to go from the cycle to i:

− lim
β→∞

1

β
log (q̂i(β)) = min

y∈YiC
{W [y]} = WiC. (7.178)

Lemma 36 (Rare fluctuation stability). A purely rotational network whose geometric mean

transition rates, ρij(β), converge to constants in β, satisfying the three assumptions:

• Assumption 1: For all i there exists a j such that frotij 6= 0,

• Assumption 2: For each i there is a unique j that maximizes frotij ,

• Assumption 3: G∞ is connected,

is rare-fluctuation stable:

lim
β→∞

suppε(q(β)) ⊆ lim
β→∞

suppε(q̂(β)) (7.179)

if and only if the minimal work to move from C to i /∈ C is greater than the difference

between the largest flow leaving the slowest node on the cycle minus the largest flow leaving

i:

min
y∈YiC
{W [y]} > min

j∈C
{fMj

} − fMi
. (7.180)

for all i /∈ C.
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Note that, beyond the first condition, every other assumption and requirement depends

purely on frot. In order to check these requirements follow the following steps:

1. Check that the conductances ρij(β) do not diverge in the strong rotation limit

2. For each node find fMi
= maxj∈Ni{frotij} and Mi = argmaxj∈Ni{frotij}

3. Check whether fMi
= 0 for any i and check whether |Mi|= 1 for all i

4. Given Mi, form the directed network G∞ whose edges correspond to the edges with

max flow leaving each node

5. Determine whether or not G∞ is connected and find the cycle C (this can be accom-

plished by searching downhill from a randomly drawn initial node until completing

a cycle, then using a purely uphill breadth first search starting from the cycle. If this

does not reach every node in the network then the directed network is not connected.)

6. Find minj∈C{fMj
}

7. Define ∆fij = fMj
− frotij and the work over paths W [y] =

∑|y|
j=1 ∆fij

8. Use an optimal tree search (see Appendix D) to find the minimum work to reach all

i /∈ C from some j ∈ C.

9. Compare miny∈YiC{W [y]} to minj∈C{fMj
} − fMi

for all i /∈ C

10. If miny∈YiC{W [y]} > minj∈C{fMj
} − fMi

for all i /∈ C then the network is rare-

fluctuation stable.

If the network is rare-fluctuation stable then it is easy to approximate q(β) for large β.

For all i /∈ C, the steady state qi(β) converges to zero exponentially fast in β. Therefore we
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approximate qi(β) with zero for all i /∈ C. For i ∈ C:

qi(β) ' τi(β)∑
j∈C τj(β)

'
ρ−1
Mi

exp (−βfMi
)

maxj∈C{ρ−1
Mj

exp (−βfMj
)}
. (7.181)

Let mC be the set of j ∈ C that minimizes fMj
. Then:

qi(β) ' rMi

RmC

exp (−β(fMi
− fmC)). (7.182)

where r = 1/ρ are the per capita resistances, RmC =
∑

j∈mC rMj
is the total resistance, and

fmC = minj∈C{fMj
}.

Therefore, if the network is rare-fluctuation stable, then the steady state of the full

process converges to zero everywhere outside C, and on all nodes on C that do not precede

the slowest edge (or edges) on C. The probability on these nodes decays exponentially at

rate fixed by the difference between the flow leaving the node of interest and the weakest

flow on the cycle. If there is a unique edge on the cycle with the smallest outgoing flow, then

the steady state converges to a delta distribution at the preceding node, with exponentially

decaying probability on all other nodes. This is the general large rotation limit when G∞ is

connected since any other limit requires exact equalities between forces on edges. If any

two edges on the cycle have the same outgoing force then the steady state converges to the

distribution of weights on the nodes preceding these edges.

That said, since frot is lower dimensional than the space of edges, there are a variety of

interesting cases when these equalities play an important role. As an extreme example, if

the network is a single loop then frot is necessarily the same on all edges. It follows that,

in the strong rotation limit the steady state distribution converges to the ratio of the inverse
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conductances:

qi(β) ' ri
R
, R =

∑
j

rj, rj =
1

ρj
(7.183)

as we had discovered when studying networks with isolated loops (see Section 7.2.2).

To estimate the steady state for networks that are not rare-fluctuation stable but obey all

the other conditions we note that the steady state distribution is asymptotically proportional

to:

qi(β) ∝ 1

ρMi

exp

Å
β

Å
min
j∈C
{fMj

} − fMi
− min

y∈YiC
{W [y]}

ãã
. (7.184)

Now, the support of the steady state converges to:

lim
β→∞

suppε{q(β)} ⊆ argmaxi{min
j∈C
{fMj

} − fMi
− min

y∈YiC
{W [y]}} (7.185)

with equality achieved for sufficiently small ε > 0. On this set the steady state converges

to the ratio of the resistances:

lim
β→∞

qi(β) ∝ ri. (7.186)

Off this set the steady state probability converges exponentially to zero:

qi(β) = O
Å
−β
Åï
fMi

+ min
y∈YiC
{W [y]}

ò
− argmink{fMk

+ min
y∈YkC

{W [y]}}
ãã

.

Therefore, for large β and i off the asymptotic support:

lim
β→∞

1

β
log (qi(β)) = −

Åï
fMi

+ min
y∈YiC
{W [y]}

ò
− argmink{fMk

+ min
y∈YkC

{W [y]}}
ã
.

(7.187)
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Figure 7.10: Rare-fluctuation stability of three examples. The first is stable, the second is
neutral, and the third is unstable.The solid arrow represent G∞, the dashed arrows represent
activation steps. The red shaded node is node i and the blue shaded circle is C the red edges
represent the optimal activation trajectory.

So, for any network satisfying the first constraint (geometric mean transition rates

converge to finite nonzero constants), and the three assumptions, we can exactly solve

for the large rotation limit of the steady state of the full process and skeleton process, and

solve for the asymptotic rate at which the steady state converges to zero off the support for

both processes. This is a fairly strong characterization, and can be accomplished purely by

studying the rotational forces. In particular, it requires finding the directed graph G∞ and

the optimal spanning tree that minimizes the work to move from the cycle to any node off

the cycle. This can be accomplished using two straightforward search routines.

Three examples are shown in Figure 7.10 corresponding to a rare-fluctuation stable,

rare-fluctuation neutral, and rare-fluctuation unstable processes.
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Note that if node i can be reached from node j by a relaxation trajectory then the

minimal work to reach i is always less than or equal to the minimal work to reach j.

Therefore, the optimal spanning tree will typically consist of a series of activation tra-

jectories that reach a subset of nodes, followed by a series of branches formed by the

relaxation trajectories leaving the activation trajectories and terminating before they arrive

at an alternative activation trajectory. The work to reach any node on these branches is

constant, so the asymptotic rate at which the skeleton steady state converges to zero on

these branches is constant, and in the full process is proportional to the time spent on each.

This is analogous to the circulant left over by the quasipotential (see [23]), since it defines

a set of level sets (or isoclines) in the work to escape an attracting set. These level sets all

share the same work to reach, and the asymptotic probability of occupying any node in a

level set is equal to any other node in the level set (for the skeleton process). Moreover

the rate at which the skeleton steady state converges to zero off the asymptotic support is

exponential in the work on the optimal tree - exactly the behavior of the steady state of an

SDE in the small noise limit relative to the quasipotential.

We can relax the original constraint that the geometric transition rates converge to

nonzero finite constants. If instead we constrain the weights so that the expected time

to remain in any node converges to a finite nonzero constant then, in the limit:

lim
β→∞

τj(β) = τj > 0 (7.188)

so the steady state of the full process converges to:

lim
β→∞

qi(β) =
τiq̂i(β)∑
j τj q̂j(β)

' τi
τC
q̂i (7.189)

where: τC = 1
|C|
∑

j∈C τj . Therefore, under the third constraint on the conductances (finite
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nonzero waiting times in each node), the steady state for the full process is just the steady

state for the skeleton process scaled by the expected waiting times. Since these remain

finite the full process is automatically rare-fluctuation stable.

What about the other assumptions?

The third assumption on frot was that the directed graph G∞ formed by the set of edges

with maximal flow is connected. If G∞ is not connected then the steady state of the skeleton

process is singular in the limit. That is, a unique steady state exists for all finite β, but does

not exist for infinite β. This is because the process converges to a deterministic process

where the long term behavior of the process depends on the initial condition. For finite

β the actual steady state depends on the rate of rare transitions from one cycle to another.

These depend on the probabilities of rare-fluctuations, so, like the probabilities of nodes

off the cycle, are controlled by the work along the most likely path from one cycle to the

basin of attraction of another. We can use these probabilities to work out the expected

rate of transition from any cycle to any other cycle. In the large β limit we are expected

to spend arbitrarily long within each basin, so we can coarse grain the Markov process

on the original state space to a discrete time Markov process on the space of cycles, with

transition probabilities which scale exponentially in the minimum work to move from one

cycle to another. These probabilities converge to zero exponentially fast in β. In general

each transition between connected components occurs at a different time scale, so timescale

separation arguments could be used (see [268]) to estimate the steady state.

What about the second assumption on frot? This assumption was essential since it

allowed us to replace the skeleton process with the relaxation process (plus very occasional

fluctuations) in the limit. If this assumption is not enforced then the skeleton process does

not converge to a deterministic process, so the analysis becomes more difficult. Then the

analysis based on the difference in spanning trees presented in Section 7.3.3 should be used.
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What about the second constraint on the limiting behavior of the conductances? The

second constraint required that the arithmetic mean transition of each pair of forward and

backward rates converged to a finite nonzero value. This constraint makes the analysis con-

siderably more difficult because the skeleton process does not converge to a deterministic

relaxation process. Consider a pair of forward and backward rates lij, lji. In order for the

ratio of the two to diverge in the large rotation limit, but the mean to remain constant, they

must converge to l+, 0 where l+ is the arithmetic mean of the transition rates. Therefore,

the process becomes irreversible in the limit, but the skeleton process does not become any

closer to deterministic. In fact, this limit moves to edge of the space of Markov chains that

can be described by the potential framework since it converges to an irreversible process

with finite mean transition rates. These rates are independent of the size of the edge flow

and only depends on the sign of the forces and the constraint on the arithmetic mean.

Therefore the potential framework does not apply naturally to this limit.

The Near Deterministic Limit and the Network Quasipotential

We have shown that the steady state for an arbitrary Markov process with reversible tran-

sitions can be computed by first scaling by the equilibrium distribution then solving for

the steady state to a purely rotational process. We then developed asymptotic methods

for approximating the steady state for a purely rotational process when rotation is weak

and strong. When it is strong we showed that assumptions about the asymptotic behavior

of the conductances led to different steady states. In particular, if the conductances are

assumed to scale so that the expected waiting time in each node converges to a finite

nonzero constant then the steady state can be effectively approximated from the steady state

for the skeleton process. The steady state for the skeleton process was easy to approximate

under some basic assumptions on the structure of the rotational forces. We showed that if
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it there is a unique edge leaving each node with maximal rotational force then the steady

state could be approximated by computing the probability of rare fluctuations away from

a deterministic relaxation process. We then saw that these asymptotic probabilities obeyed

the same properties as the asymptotic quasisteady state near a stable attractor in an SDE,

and saw that the network quasipotential played the same role as the quasipotential (see

[23]). The quasipotential applies in a small noise limit, whereas the network quasipotential

applied in a joint strong rotation, fixed waiting time limit. Both cases are near-deterministic

limits with expected waiting times that do not converge to zero in the limit. Here we would

like to generalize this approach to strongly forced networks whose waiting times do not

diverge.

When we originally considered the strongly forced limit (Section 7.3.3) we assumed

the conductances, the geometric mean of each forward and backward transition rate, were

fixed. In practice this is a strange limit, since the forward rates diverge to infinity. Then the

rate at which the system moves becomes infinitely fast. As a result, fluctuations away from

the deterministic relaxation process can take arbitrarily longer than relaxation trajectories,

so the steady state does not necessarily reflect the underlying deterministic nature of the

skeleton process. We provided an example of a rare-fluctuation unstable network where

the support of the steady state of the full process was disjoint from the support of the

steady state of the skeleton process in the limit. This difficulty made computing the

steady state in the high temperature limit different from computing the steady state in a

small noise limit. In a small noise limit the rate at which the system moves does not

diverge, since a deterministic ODE has a characteristic rate of evolution. Therefore it is not

surprising that the strong forcing limit considered in Section 7.3.3 did was not governed

by a quasipotential of the same form. Here we will show that the appropriate analogy to

small noise is a strongly forced, nonzero waiting time limit, which we will call the “near
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deterministic" limit, since in the limit the skeleton process becomes close to deterministic

and the corresponding deterministic relaxation process gives good approximation to the

steady state of the full process. We will then show that in this limit the full steady state

is given by a network quasipotential which closely matches the quasipotential used in the

continuum.

In the near deterministic limit the transition rates take the form:

lij(β) = ρij(β) exp (βfij)

where ρij(β) = ρji(β) and are chosen so that:

0 < lim
β→∞

∑
i∈Nj

ρij(β) exp (βfij) = τj <∞ (7.190)

for any pair of edges leaving j such that fij > fkj:

lim
β→∞

lkj(β)

lij(β)
= O(exp (−β(fij − fkj))). (7.191)

and it is assumed that for all nodes neighboring edges with nonzero edge flows there is

a unique edge Mi which maximizes the outgoing forces. Note that we require that the

waiting time is nonzero, but allow it to be arbitrarily long. In a nearly deterministic process

we primarily care about the rate of forward reactions since almost all reactions are close

to irreversible. We would like to avoid the situation in which forward reactions occur

infinitely fast, or waiting times converge to zero, since in that situation rare fluctuations

can carry more weight in the limit than the expected trajectory. Moreover, in a small noise

limit it is entirely possible that the process waits for a long time somewhere (say near a

stable state), however the process should not move infinitely fast when noise is removed.
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Then the near deterministic limit is a limit in which all backward rates vanish, all forward

rates converge to finite constants, and all but one forward rate leaving each node converge

to zero.

The near deterministic limit requires that the conductances scale according to:

ρi,j = O(exp (−βmax{fMj ,j, 0})) (7.192)

to maintain finite waiting times. Let:

lim
β→∞

ρi,j(β) =
1

τj
exp (−βmax{fMj ,j, 0}) (7.193)

where τj is the expected waiting time in node j in the limit.

Under these assumptions the waiting time to stay at node j converges to τj if there is a

forward reaction leaving j and zero otherwise. The transition probabilities for the skeleton

process converge to:

l̂ij(β) '


1− εj(β) if i = Mj

εij(β) if i 6= Mj


where:

εj(β) =
∑
i 6=Mj

εij(β), εij(β) = O(−β(fMj
− fij)).

Then, under the assumption that |Mj|= 1 for all nodes we can define the directed

graph G∞ which has an edge leaving every node neighboring an edge with a nonzero force.

We assume that all nodes neighbor an edge with nonzero force, so that G∞ has one edge

leaving every node. Since the forces need not be purely rotational it is no longer true that

the directed graph contains no reversible transitions. If we extend the definition of a cycle

to include any sequence of directed edges that start and return to the same node then the
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graph still breaks into a set of connected components each consisting of a series of directed

trees that relax onto a cycle. The only difference now is that the cycle might be a 2-cycle

(alternation back and forth between a pair of nodes). Since the waiting times all converge

to finite constants the mixing time to a unique steady state will diverge if there are multiple

disjoint components. In that case the steady state is singular in the deterministic limit,

so each basin of attraction should be studied independently to find the quasisteady state

distributions.

Focus on a particular basin of attraction. Let W [y] be the work to traverse a path y in

the skeleton process (against ∆f as defined in Equation (7.147) instead of f ). Let C be

the cycle, and consider the steady state for the skeleton process. Then, following the same

logic as before, for i ∈ C:

lim
β→∞

q̂i(β) =
1

|C|
(7.194)

and for i /∈ C:

lim
β→∞

1

β
log (q̂i(β)) = − min

y∈YiC
{W [y]} (7.195)

where YiC is the space of all paths from the cycle to the node i not containing any loops.

Then:

lim
β→∞

qi(β) ∝ τi(β) exp (−β min
y∈YiC
{W [y]}) = exp

Å
β

Å
1

β
log(τi(β))− min

y∈YiC
{W [y]}

ãã
(7.196)

for i /∈ C and is proportional to the distribution of waiting times τi on the loop. This is

important if there is a node on the cycle where all the incoming forces are positive, since on

this node the expected waiting time is allowed to diverge. In particular, if max{fMj
, 0} = 0

then 1
β

log(τj(β)) → fMj
. Otherwise τj(β) converges so 1

β
log(τj(β)) → 0. Therefore, in
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the limit:

lim
β→∞

qi(β) ∝ τi(β) exp (−β min
y∈YiC
{W [y]}) ' exp

Å
β

Å
max{fMj

, 0} − min
y∈YiC
{W [y]}

ãã
(7.197)

Suppose the basin of attraction converges to a two-cycle and there is one node in the

two cycle that has no positive flow leaving it. This is equivalent to a stable node in an ODE.

Label this node 1. Let fM1 be the negative flow pushing against the fluctuation from 1 to

M1. Then τ1(β) diverges proportional to exp (−βfM1)
5. This is the only waiting time that

diverges exponentially since all other nodes have an edge leaving them with positive flow.

Then qi(β)/q1(β) is, at best, proportional to τM1
(β)

τ1(β)
q̂i(β) ∝ exp (−βf1,M1)q̂i(β). Therefore

the steady state of the full process is proportional to:

lim
β→∞

qi(β)

q1(β)
∝


1 if i = 1

exp (−βf1,M1) if i = M1

exp (−β(f1,M1 + min
y∈YiC
{W [y]}))

 . (7.198)

Let S(i) be the function:

S(i) =


− f1,M1 if i = 1

0 if i = M1

min
y∈YiC
{W [y]}

 . (7.199)

Then S plays the role of the quasipotential for the system. It is the minimal work to

move to any node i from node 1. The work to move anywhere other than 1 is at least f1,M1 ,

and work is evaluated against the ∆fij = fij −max{fMj
, 0}. Then the effective potential

5remember fM1 < 0
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Figure 7.11: An optimal spanning tree and associated quasipotential for a two dimensional
lattice with x0 = K = [50, 50] and with edge rates set to approximate an OU process with
constant noise variance σ = 8, and with a symmetric drift matrix.

(negative log of the steady state) converges to the network quasipotential:

lim
β→∞

1

β
log(qi(β)) = −Si + min

i
Si. (7.200)

The network quasipotential can be found by applying the optimal spanning tree algorithm

developed in Appendix D. An example is illustrated in Figure 7.11

Therefore, by considering a limit in which the probability of backward transitions

vanishes, forward transitions occur at finite (possibly very slow) rates, and every node has

a unique neighbor that the process is most likely to move to, we arrive at a limit in which

a discrete space Markov chain behaves like an SDE perturbed by small noise. In each case

we can define a quasipotential by minimizing the work along paths between nodes, and in

each case nodes on level sets of the quasipotential have probabilities that converge to zero at

asymptotically equal rates [23]. Both methods can be applied to polystable systems to find

the quasipotential associated with different basins of attraction. A consistent method for

stitching together the quasipotentials to find the asymptotic behavior of the global steady

state is left to future work.
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7.4 Summary

In this chapter we analyzed the dynamics of nonequilibrium Markov processes using the

HHD. We showed that any nonequilibrium process can be transformed into a purely rota-

tional process if scaled by the steady state of the corresponding equilibrium process. An

exact solution for the nonequilibrium steady state of a process with isolated loops was

derived, and an example with linked loops was considered to illustrate how linked loops

makes finding the nonequilibrium steady state a difficult problem. We then focused on

analyzing steady state dynamics in a sequence of limits. These limits can be broken into

two categories: limits in which forward and backward rates converge to an average rate

(weak forcing), and limits in which forward and backward rates diverge (strong forcing). It

was shown that, in the weak forcing limit (diffusion dominated), the steady state dynamics

are governed by the HHD. In the strong forcing limit (drift dominated), the steady state

dynamics are governed by a different type of potential, and that in a near deterministic

limit that potential is analogous to the quasipotential used to analyze SDE’s in the small

noise limit.
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Chapter 8

The Continuum Limit and Comparison

to Quasipotentials

8.1 Preface

In Chapter 6 and Chapter 7 we applied the HHD to discrete-space continuous-time Markov

chains. We showed that, in that setting the HHD has a natural physical interpretation,

and is closely related to dynamics in the weak rotation/weak forcing limits. In the strong

forcing limit, when diffusion is dominated by drift, a different potential was required - a

quasipotential. Quasipotentials are widely used in the analysis of stochastic differential

equations (SDE) in the small noise limit (cf. [23]). The objective of this chapter is

to develop a consistent extension of the discrete HHD developed in Chapters 6 and 7

to the continuum so that the potential associated with the HHD can be compared to the

quasipotential.

In this chapter we briefly review SDEs, and the diffusion approximations commonly
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used to relate discrete-space continuous-time Markov chains to SDEs (see Section 8.2). To

define a decomposition we first need to define what should be decomposed. On networks

we decomposed the edge flow associated with the log ratio of forward and backward rates.

We showed that this edge flow was closely related to a thermodynamic notion of forcing,

the work to traverse paths, and the probability of observing forward and reverse trajectories.

In Section 8.3 we introduce a vector field which is analogous to the edge flow. We show

that it has the same thermodynamic interpretation, is related to steady states and hitting

times, and for an appropriate limiting sequence of discrete-space Markov chains, the edge

flow defined in Chapter 6 converges to the forces.

Next we define three potentials, the Helmholtz potential which is the scalar potential

associated with the Helmholtz-Hodge Decomposition of the forces, the quasipotential, and

the effective potential (see Section 8.4). It is shown that each potential is the solution to a

PDE whose right hand side is associated with the forces. We show that, if the sequence of

networks used to approximate Rn are square lattices, then the discrete potentials converge

to the continuum potentials. The convergence argument leverages the spectral solution

to the HHD on lattices introduced in Section 3.4. The three potentials are compared and

an equivalence theorem is presented in Section 8.5. Path integral interpretations of the

Helmholtz potential and the quasipotential are compared. We show that the Helmholtz

potential is the large noise limit of the effective potential, and the quasipotential is the

small noise limit of the effective potential. We then show that the potentials are not, in

general, equivalent, but that if two of the three potentials are equivalent then all three are

equivalent. We conclude by showing that for an Ornstein-Uhlenbeck process the potentials

can always be chosen so that they are equivalent (see Section 8.5.2).
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8.2 Stochastic Differential Equations: A Review

8.2.1 Stochastic Differential Equations

Let X(t) be a stochastic process that takes values in Rn. Then X(t) is governed by a

stochastic differential equation if it is a realization of the integral equation:

X(t)−X(0) =

∫ t

0

µ(X(s))ds+B(X(s))dW (s) (8.1)

where µ(x) is a vector field in Rn and defines the corresponding deterministic process:

x(t)−x(0) =
∫ t

0
µ(x(s))ds,B(x) is a real, matrix valued function with n rows, andW (t) is

a vector of m independent Wiener processes. A Wiener process is a real-valued continuous

time stochastic process withW (0) = 0, independent increments1, the increments are Gaus-

sian distributed with mean zero and variance equal to the length of the increment2, and has

continuous trajectories. Then dW (t) is white noise and W (t) is the accumulation of white

noise over the interval [0, t]. A Weiner process is an example of Brownian motion. The

white noise term dW (s) is responsible for introducing noise to the SDE Equation (8.1). The

matrix B(x) is responsible for mapping from the white noise term dW (s) to a multivariate

random variable with covariance B(x)B(x)ᵀ. The matrix D(x) = 1
2
B(x)B(x)ᵀ in Rn×n

is the diffusion tensor, and governs the instantaneous variance introduced to X(t) by the

noise term.

If the noise term is dropped then x(t) obeys the ODE:

d

dt
x(t) = µ(x(t)). (8.2)

1W (s1)−W (t1) is independent of W (s2)−W (t2) if t1 ≤ s1 < t2 ≤ s2
2W (t+ s)−W (t) ∼ N (0, s)
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Figure 8.1: Sample trajectories W (t) and X(t) where W (t) is a Wiener process (Brownian
motion), and X(t) is governed by an SDE with constant drift. The blue shaded regions
represent equal one standard deviation intervals.

Thus µ(x) governs the deterministic evolution of the SDE in the limit when the noise

vanishes, so is sometimes called the deterministic skeleton [23], or drift term. When we

refer to drift we mean the advection of probability associated with µ(x), and when we refer

to diffusion we mean the spreading of probability associated with D(x) and dW .

We will usually write the SDE defined by the integral equation Equation (8.1) with the

shorthand:

dX(t) = µ(X(t))dt+B(X(t))dW (t). (8.3)

Note that this integral equation is only defined if we pick a convention for performing the

stochastic integral. Throughout this dissertation we will use the Itô convention, not the

Stratonovich convention which is widely used in physics, since the Itô convention is non-

anticipating. For a discussion of the virtues of the Itô and Stratonovich conventions see

[269] and [270].

Throughout this chapter we will assume that µ(x) and D(x) are Lipschitz continuous,

D(x) is differentiable with Lipschtiz continuous partial derivatives, and D(x) is full rank

for all x on the interior of the region of x ∈ Rn that can be reached by X(t) with nonzero

probability from any initial condition. Let Ω denote this domain.
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Trajectories of an SDE can be approximated using either the Euler-Maruyama method,

or the Milstein method. The Euler-Maruyama method is introduced here to clarify Equa-

tion (8.3). Let ∆t be a finite time interval. Then the Euler-Maruyama approximation to

X(t) is defined by the recursion:

Y (t+ ∆t) = Y (t) + µ(Y (t))∆t+B(Y (t))∆W, ∆W ∼ N (0,∆tI)

where Y (0) = X(0), ∆W is a mean zero multivariate Gaussian random variable with

covariance ∆t I , and where I is n× n the identity matrix. Note that the first two terms on

the right hand side implement the standard forward Euler step for Equation (8.2). The last

term adds a Gaussian distributed multivariate random variable to the Euler update. This

added noise term makes Y (t) a stochastic process. Thus the Euler-Maruyama update can

be interpreted as a forward Euler step plus a noise term. The Euler-Maruyama method

converges with strong order 1/2 in ∆t. That is, in one-dimension the expected error

E
[
|Y (T )−X(T )|1/2≤ C(∆t)1/2

]
for ∆t < 1, any time T , and some constant C [271]. 3

Let p(x, t) be the probability density that X(t) = x. Then if X(t) obeys the SDE

defined by Equation (8.3), the density p(x, t) satisfies the Fokker-Planck equation [240, 24]:

∂tp(x, t) = −
n∑
i=1

∂xi [µi(x)p(x, t)] +
n∑

i,j=1

∂2
xixj

[Dij(x)p(x, t)] (8.4)

where D(x) = 1
2
B(x)B(x)ᵀ is the diffusion tensor. The Fokker-Planck equation is an

3The Milstein method modifies the Euler-Maruyama method, and converges faster in ∆t (first order
convergence instead of convergence to order 1/2) [271]. In one dimension the Milstein update is:

Y (t+ ∆t) = Y (t) + µ(Y (t))∆t+B(Y (t))∆W +
1

2
B(Y (t))

d

dx
B(Y (t))

(
(∆W (t))2 −∆t

)
.

In higher dimensions the Milstein update can be defined similary, where the last term is replaced with a
tensor product between B(x), its first order partials, and the tensor with entries defined by the stochastic
integrals

∫ t+∆t

t
(Wk(t+ s)−Wk(t))dWl(s) [271].
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advection-diffusion equation. The differential operator acting on p(x, t) on the right hand

side of the Fokker-Planck equation is the forward Kolmogorov operator. The forward

Kolmogorov operator is responsible for governing the flow of probability forward in time,

so is analogous to the Laplacian L that governs the flow of probability for the discrete space

processes considered in Chapter 6 and Chapter 7. The Fokker-Planck equation can also be

written as the divergence of a flux by writing:

−
n∑
i=1

∂xi [µi(x)p(x, t)] = −∇ · [µ(x)p(x, t)]

n∑
i,j=1

∂2
xixj

[Dij(x)p(x, t)] =
n∑
i=1

∂xi

((
n∑
j=1

∂xjDij(x)

)
p(x, t) +

n∑
j=1

Dij(x)∂xjp(x, t)

)

and expanding the diffusive term:

n∑
i,j=1

∂2
xixj

[Dij(x)p(x, t)] = ∇ ·

(
n∑
j=1

(∂xjDj(x))p(x, t) +D(x)∇p(x, t)

)

where Dj(x) denotes the jth column of the diffusion tensor. Note that the tensor is sym-

metric so Dj(x) is also the jth row.

Then, grouping terms:

∂tp(x, t) = −∇ · J(x, t)

J(x, t|p) = [µ(x)−∇ ·D(x)] p(x, t)−D(x)∇p(x, t)
(8.5)

where J(x, t|p) is the probability flux, and∇·D(x) is interpreted as the divergence of each

row.

The probability flux is a combination of the two terms. The first (bracketed) term is

advective, and is responsible for the drift of probability. Note that advection is influenced
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both by the deterministic term µ(x), and by the divergence of each row of the diffusion

tensor. If a row of the diffusion tensor is diverging at some x, then the noise has a larger

effect at that x than at neighboring states, so probability distribution tends to move away

from x. The advective term governs the expected motion of X(t). The second term is

diffusive, and governs the spread of probability. If X(0) = x0 is fixed then p(x, 0) =

δ(x − x0) and the instantaneous rate of change in the variance is governed by the second

term.

The Fokker-Planck equation can be used to find the time evolution of any observable of

the process. Here we will use the Fokker-Planck equation to derive the backward equation

that governs the time evolution of the first two moments. This derivation is meant to provide

a clearer appreciation for the roles of µ andD, and to link the drift and diffusion terms to the

instantaneous time evolution of the moments. Similar evolution equations can be derived

in discrete space given the transition rates. Then, by choosing the drift and diffusion terms

appropriately it is possible to construct an SDE with the same time evolution equations for

the first and second moments as a discrete space process. This link will be used to motivate

our definition of forces in continuous space by relating them to the edge flow in discrete

space.

First, let g(x) be a continuously differentiable scalar-valued function of x, and let Ω be

a finite domain. We require that g(x) is defined for all x ∈ Ω. Then:

d

dt
E[g(X(t))] =

d

dt

∫
Ω

g(x)p(x, t)dΩ

=

∫
Ω

g(x) [∂tp(x, t)] dΩ = −
∫

Ω

g(x) [∇ · J(x, t|p)] dΩ
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Then, using Green’s first identity (integration by parts):

d

dt
E[g(X(t))] =

∫
Ω

[∇g(x)] · J(x, t|p)dΩ−
∫

Γ

g(x) [J(x, t|p) · n̂(x)] dΓ

where Γ = ∂Ω is the boundary of the domain. By assumption the process X(t) cannot

leave the domain, so the probability flux through the boundary, [J(x, t|p) · n̂(x)], must

always be zero. Therefore, the time evolution of any observable is given by an integral

over the domain of the gradient of the function that defines the observable dotted into the

probability flux:
d

dt
E[g(X(t))] =

∫
Ω

[∇g(x)] · J(x, t|p)dΩ. (8.6)

Equation (8.6) can be read as the change in the observable due to the accumulated change in

the observable associated with the flux of probability at each point in the domain. The same

equation is valid for a discrete-space continuous-time Markov chain. For a discrete-space

Markov chain:

d

dt
E[g(X(t))] =

∑
x∈Ω

g(x)
d

dt
p(x, t) = −

∑
x∈Ω

g(x)[−GᵀJ(x, t|p)]

= gᵀGᵀJ(p) = [Gg]ᵀJ(p).

where Gg is the gradient of the vector g with entries g(x).

Substitute Equation (8.5) into Equation (8.6). Then:

d

dt
E[g(X(t))] =

∫
Ω

[∇g(x)] · J(x, t|p)dΩ

=

∫
Ω

[∇g(x)] · ([µ(x)−∇ ·D(x)] p(x, t)−D(x)∇p(x, t)) dΩ

= E [∇g(X) · (µ(X)−∇ ·D(X))]−
∫

Ω

[∇g(x)] · (D(x)∇p(x, t)) dΩ.
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To simplify note that [∇g(x)] · (D(x)∇p(x, t)) = [∇g(x)]ᵀD(x) (∇p(x, t)) so equals

[D(x)∇g(x)] · (∇p(x, t)). Then, applying Green’s identity:

∫
Ω

[∇g(x)] · (D(x)∇p(x, t)) dΩ =−
∫

Ω

[∇ ·D(x)∇g(x)] p(x, t)dΩ

+

∫
Γ

(∇p(x, t)) [D(x)∇g(x)] · n̂(x)dΓ

but D(x)∇g(x) must be in the range of the diffusion tensor, which must be orthogonal to

the boundary of the domain, otherwise it would be possible for X(t) to leave the domain.

Therefore the boundary term vanishes leaving:

d

dt
E[g(X(t))] = E [∇g(X) · (µ(x)−∇ ·D(x)) +∇ ·D(X)∇g(X)]

To complete the calculation apply the product rule to the last term in the expectation:

∇ ·D(x)∇g(x) =
n∑
i=1

∂xi

[
n∑
j=1

dij(x)∂xjg(x)

]

=
n∑

i,j=1

(∂xidij(x))(∂xjg(x)) +
n∑

i,j=1

dij(x)∂2
xixj

g(x)

= (∇ ·D(x)) · ∇g(x) + 〈D(x), H(x)〉

where 〈A,B〉 =
∑

i,j AijBij is the matrix inner product, andH(x) is the Hessian (hij(x) =

∂2
xixj

g(x). Then, the inner product between the divergence ofD(x) and the gradient of g(x)

cancels with the matching term in the time derivative of the observable. Therefore, the time
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derivative of the observable is the expectation:

d

dt
E[g(X(t))] = E [µ(X(t)) · ∇g(X(t)) + 〈D(X(t)), H(X(t))〉]

=

∫
Ω

[
n∑
i=1

µi(x)∂xig(x) +
n∑

i,j=1

dij(x)∂2
xixj

g(x)

]
p(x, t)dΩ.

(8.7)

The differential operator acting on g(x) inside the expectation is the backward Kol-

mogorov operator. The backward Kolmogorov operator is the adjoint to the Kolmogorov

operator, and is analogous to the transpose of the Laplacian which appears in the master

equation. It governs the time evolution of the probability that X(t) = x given that X(t +

s) = y for some fixed final state y. In other words, it governs the backwards time evolution

of probability. The forward Kolmogorov operator answers the question, “where will I be?”

The backward Kolmogorov operator answers the question, “where was I?”

It follows immediately from Equation (8.7) that if X(0) = x0 then p(x, t) = δ(x− x0)

so the instantaneous time evolution of any observable given a fixed initial condition is:

d

dt
E[g(X(t))|X(0) = x]|t=0 = µ(x) · ∇g(x) + 〈D(x), H(x)〉

=
n∑
i=1

µi(x)∂xig(x) +
n∑

i,j=1

dij(x)∂2
xixj

g(x)
(8.8)

so the backward Kolmogorov equation also governs the instantaneous rate of change of any

observable given a fixed initial condition.

Equation (8.7) can be used to compute the equations governing the time evolution of

the expected state and covariance. For the expected state set g(x) = xi for each i. For

the covariance set g(x) = xixj for each pair i, j, then subtract off the time evolution of

the expected state squared. Let ḡ(t) = E[g(X(t))] denote the expected value of a function
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g(X) at time t. Then, substituting into Equation (8.7) yields the evolution equations:

d

dt
E[X(t)] = E[µ(X(t))]

d

dt
V(t) = E[(X(t)− x̄(t))µ(X(t))ᵀ + µ(X(t))(X(t)− x̄(t))ᵀ] + E[D(X(t))].

(8.9)

where V = E[(X(t)− x̄(t))(X(t)− x̄(t))ᵀ] is the covariance in X(t).

Therefore the rate of change in the expected state is the expected value of the drift term,

and the expected rate of change in the covariance is a combination of two terms associated

with the covariance in the state and drift term, and the diffusion tensor. The expectation

E[(X(t)−x̄(t))µ(X(t))ᵀ] = E[(X(t)−x̄(t))(µ(X(t)))−µ̄(t))ᵀ] is the covariance between

X(t) and the drift term µ(X(t)) that drives the deterministic version of the SDE.

Since p(x, 0) = δ(x − x0) the instantaneous rate of change in the expected state and

covariance is:
d

dt
E[X(t)]|t=0= µ(x0)

d

dt
E[(X(t)− x̄(t))(X(t)− x̄(t))ᵀ]|t=0= 2D(x0).

(8.10)

Therefore µ(x) can be interpreted as the instantaneous change in the expected state

given an initial condition, and D(x) can be interpreted as the instantaneous covariance

produced given an initial state.

8.2.2 Diffusion Approximations and the Continuum Limit

Stochastic differential equations are widely used to approximate discrete-space continuous-

time Markov processes. Here we review the standard techniques for constructing a dif-

fusion approximation to a discrete-space continuous-time Markov process. We focus on

reaction networks since there is a natural limiting procedure for reaction networks that

converges to an SDE. This limit will establish a link between SDEs and discrete-space
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continuous-time Markov chains that will be used to relate our analysis of SDEs to our

analysis of discrete-space Markov chains.

Suppose that Y (t) is a discrete-space continuous-time Markov process defined by a

reaction network with reactions R, propensity functions λk(x), and stoichiometry vectors

sk. Then the probability that Y (t) = y, written p(y, t), is governed by the master equation:

d

dt
p(y, t) =

∑
rk∈R

(λk(y − sk)p(y − sk, t)− λk(y)p(y, t)).

Assume that the reactions are grouped so that each reaction has a unique stoichiometry

vector. That is, all reactions with the same stoichiometry vector are lumped into a single

reaction with propensity equal to the sum of the propensities. Then the state space can be

represented as a graph with edges associated with each reaction.

The time evolution of any moment can be expressed by the generic equation:

d

dt
E[g(Y (t))] = E

[∑
rk∈R

λk(Y ) (g(Y + sk)− g(Y ))

]
.

Then the expected state and covariance are governed by the evolution equations:

d

dt
E[Y (t)] = E

[∑
rk∈R

λk(X(t))sk

]
= E[Sλ(Y (t))]

d

dt
V(t) = E

[∑
rk∈R

skλk(Y (t))(Y (t)− ȳ(t)ᵀ + (Y (t)− ȳ(t))(skλk(Y (t)))ᵀ + sᵀkskλ̄k(t)

]
(8.11)

where S ∈ Rn×|R| is the stoichiometry matrix with columns equal to the stoichiometry

vectors, and λ(x) ∈ R|R| is the vector with entries equal to the propensities of each reaction,

and λ̄k(t) = E[λk(Y (t))] is the expected propensity of reaction rk.
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Let:

µ(y) = Sλ(y) =
∑
rk∈R

skλk(y)

B(y) = S diag
(»

2λ(y)
)
, D(x) =

1

2
B(x)B(x)ᵀ =

∑
rk∈R

sks
ᵀ
kλk(y).

(8.12)

If X(t) is an SDE governed by dX = µ(X)dt + B(X)dW , then the instantaneous

change to the expected state and covariance given any initial condition is the same as the

instantaneous change to the expected state and covariance in Y (t) given any initial condi-

tion. Matching the instantaneous change to the expected state and covariance produces the

Langevin approximation X(t) to the discrete-space continuous-time process Y (t) [242]:

µ(y) = Sλ(y) =
∑
rk∈R

skλk(y)

B(y) = Sdiag
(»

2λ(y)
)
, D(x) =

1

2
B(x)B(x)ᵀ =

∑
rk∈R

sks
ᵀ
kλk(y)

X(0) = Y (0), dX(t) = µ(X(t))dt+B(X(t))dW (t)

(8.13)

where W (t) is a Wiener process with |R| independent increments, one for each reaction.

When Y (t) represents a reaction system it is often possible to introduce a system size

parameter. For example, if Y (t) is the number of chemical species of certain types in solu-

tion, then the volume of the solution is a system size parameter, and Y (t) can be replaced

with a vector Z(t) representing concentration. Then, in the large system size limit Z(t)

converges to the Langevin approximation to Y (t) rescaled by the system size parameter

[240]. Typically in the large system size limit the diffusion tensor vanishes proportional to

one over the system size, so in the large system size limit the process becomes closer to

deterministic and the noise becomes increasingly small [24]. The Langevin approximation
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can also be derived by using a tau-leaping approximation, in which it is assumed that many

reactions occur per time step tau, but that the reactions have a small impact on the state,

so the propensities do not change significantly over the course of the time interval. Then

the number of reactions of each type is, approximately, a Poisson random variable, which

if approximated with a Gaussian with the same mean and variance, recovers the Langevin

approximation as τ goes to zero [242].

Equation (8.13) establishes a link between the transition rates of a discrete-space continuous-

time Markov chain and the drift and diffusion terms in an SDE. In this context the SDE is

an approximation to the discrete-space process. Diffusion approximations are widely used,

although in some cases there are nontrivial convergence issues (cf. [272, 273]).

The key first step in our analysis of discrete-space continuous-time Markov chains was

to consider the geometric difference and geometric average of each pair of forward and

backward transition rates. The principle of microscopic reversibility guarantees that for any

forward reaction there is a reverse reaction. The reverse reaction may be highly unlikely,

so may be ignored in some models. Suppose that the reverse reactions are not ignored.

Then the reactions can be grouped in pairs. All reactions that have stoichiometry sk are

grouped into a single forward reaction, and all reactions that have stoichiometry −sk are

grouped into the reverse reaction. Let λ+
k (y) denote the rate of the forward reactions and

λ−k (y) denote the reverse rate. Then each pair of reactions corresponds to a class of edges

in the network. Let E be the set of undirected edges connected to each state. Then:

µ(y) =
∑
k∈E

sk(λ
+
k (y)− λ−k (y))

D(y) =
∑
k∈E

sks
T
k (λ+

k (y) + λ−k (y)).

(8.14)

Therefore the drift term is determined by the arithmetic difference in the forward and
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backward rate, and the diffusion term is associated with the arithmetic average of the for-

ward and backward rate. This observation is familiar in the study of birth-death processes,

where the difference in birth and death rates gives the growth rate which determines the

deterministic growth of a population, and the sum of birth and death rates controls the

intensity of demographic stochasticity.

Suppose that the reaction network is modeling a birth-death process involving n differ-

ent populations. Suppose that the only events which change each population are the birth

of a new member, or the death of an existing member. Then each transition changes only

one species, so the stoichiometry vectors are all canonical basis vectors. Let λ+
k (y) be the

birth rate of species k given populations y, and λ−k (y) be the death rate. Then sk = ek and:

µk(y) = λ+
k (y)− λ−k (y)

D(y) = diag(λ+
k (y) + λ−k (y)).

(8.15)

The corresponding network is the square lattice Zn. Therefore, for a birth-death process

the discrete space model is a random walk on a square lattice, and the difference in birth

and death rates in species k determines the kth entry of the drift term µ, and the sum of the

birth and death rates in species k determines the kth diagonal entry of the diffusion term D.

Thus, for a birth-death process, there is simple mapping between the transition rates of the

discrete-space process and the drift and diffusion term.

The fact that µ is usually related to a difference in forward and backward rates, and D

is related to their sum is the key observation that will help us link our analysis of discrete-

space processes to SDEs. We will pay special attention to square lattices since they offer

the easiest link between discrete-space processes and SDEs.
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8.3 Forces

In order to define a decomposition we first have to choose what to decompose. For discrete-

space continuous-time Markov chains, we decomposed the edge flow f where fij was the

log of the ratio of the forward and backward transition rates between states i and j. We

showed that this edge flow was analogous to work, or, if scaled by the edge length, the

average force acting on the system as it crossed the edge. Then the mean rate at which

the system dissipated heat into the environment was controlled by the inner product of the

probability flux with the edge flow (see Section 6.5).

An edge flow on a network is analogous to a vector field in the continuum, so it is

reasonable to start by looking for a vector field that has the same thermodynamic inter-

pretation as the edge flow. Qian et al. propose the vector field D−1(x)µ(x) [20]. This

vector field is analogous to force in a thermodynamic system, and its inner product with the

probability fluxes controls the rate at which the system dissipates heat into the environment

[20]. Qian proposes applying a Helmholtz-Hodge decomposition to separate the forces into

a conservative and circulating component [20, 239, 274]. If this field is conservative then

the corresponding SDE obeys detailed balance, is time-reversible, and does not produce

entropy at steady state [20]. Thus the fieldD−1(x)µ(x) is a natural candidate to decompose.

Before advancing further it is worth asking, why do the forces take this form? The

forces are large at x if the drift term is larger than the diffusion term at x. In particular,

f(x) is large if the probability of sampling a noise vector dW such that BdW matches the

drift term is small. Therefore, the forces are large where the drift term dominates diffusion.

In that case small transitions in the direction of f(x) are close to irreversible. In contrast,

if diffusion dominates drift then small transitions are easily reversed. As shown before,

the probability of forward transitions relative to backward transitions is associated with the
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work needed to make the associated transition. When a particular transition exchanges a

large amount of heat with the environment (requires a large amount of work) it will be

close to irreversible, so the drift in the direction of the transition should be larger than the

diffusive term. In this context the assumption that D(x) is invertible is analogous to the

reversibility assumption used throughout Chapter 6 and Chapter 7.

We will make one important modification to this field. Instead of working withD−1µ(x)

we will work with the vector field:

f(x) = D−1(x) (µ(x)−∇ ·D(x)) . (8.16)

This difference in definition arises from our choice to use the Itô convention. Qian uses

the Stratonovich convention. Note that subtracting ∇ · D(x) from µ(x) is the standard

transformation needed to move between the Itô form of the Fokker-Planck equation and

the Stratonovich form [269]. Therefore these two definitions of the force are consistent up

to the choice of convention for stochastic integration.

The choice to decompose the field f(x) defined by Equation (8.16) can also be mo-

tivated without a thermodynamic interpretation. Consider a discrete-space process again.

If the process obeyed detailed balance then, for the right choice of edge flow, the edge

flow would be conservative, and the corresponding potential would uniquely determine the

steady state distribution via the Boltzmann equation. Conversely, we should choose the

forces so that, if the forces are not conservative, then the system should not obey detailed

balance. Therefore, if we wish to find a vector field which is the natural analog to the

edge flow we studied in Chapter 6 and Chapter 7, then we should seek a vector field that is

conservative if and only if the SDE obeys detailed balance, and whose potential equals the

log of the steady state when in detailed balance.
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To start, consider the one-dimensional case. Then the Fokker-Planck equation (Equa-

tion (8.4)) reads:

∂tp(x, t) = −∂x[µ(x)p(x, t)] + ∂2
x[d(x)p(x, t)] = −∂x (µ(x)p(x, t)− ∂xd(x)p(x)) .

At steady state the distribution p(x, t) must stop changing. Therefore, if q(x) denotes

the steady state it must satisfy:

−∂x (µ(x)q(x)− ∂xd(x)q(x)) = 0.

Therefore there must be some constant C such that µ(x)q(x) − ∂xd(x)q(x) = C. Use

the product rule to move the diffusion term, d(x), outside of the derivative. Then:

(µ(x)− ∂xd(x))q(x)− d(x)∂xq(x) = C.

To find the constant note that the term, (µ(x) − ∂xd(x))q(x) − d(x)∂xq(x), is the

probability flux. The only way for the probability flux to be nonzero, but not changing, is

if there is a constant probability flux for all x. This is impossible if the domain is bounded,

since probability cannot flow through the boundary. If the domain is unbounded, or if the

domain has periodic boundaries then the flux could equal a constant everywhere. We are

looking for a solution in detailed balance, so the flux must be zero at steady state, so C = 0.

Then the steady state equation is the separable differential equation:

d(x)∂xq(x) = (µ(x)− ∂xd(x))q(x).

We assumed that the diffusion tensor is always invertible so d(x) > 0 for all x in the
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domain. Divide across by d(x). Then:

∂xq(x) =
µ(x)− ∂xd(x)

d(x)
q(x) = f(x)q(x)

where f(x) are the forces defined by Equation (8.16).

Let:

S(x) = −
∫ x

x0

f(y)dy (8.17)

for some initial x0. Then −∂xS(x) = f(x) so S(x) plays the role of a potential.4 Then, the

steady state is given by:

q(x) =
1

Z
exp

Å∫ x

x0

f(y)dy

ã
=

1

Z
exp(−S(x)) (8.18)

where Z is the necessary normalization.

Therefore, under the requirement that the steady state flux is zero (detailed balance),

then, in one-dimension, the potential function S(x) defined so that−∇S(x) = f(x) where

f(x) are the forces given by Equation (8.16) satisfies a Boltzmann type relation with the

steady state. Thus, in one-dimension and in detailed balance, f(x) plays the same role as

the edge flow used for discrete-space processes, and S(x) plays the same role as the scalar

potential φ.

The same observation about f(x) and the steady state in detailed balance extends to n

dimensional processes. In detailed balance the steady state flux must be zero everywhere,

which requires:

J(x|q) = (µ(x)−∇ ·D(x)) q(x)−D(x)∇q(x) = 0.

4The potential can be simplified by noting that
∫ x

x0

d′(y)
d(y) dy = log(d(x)/d(x0)). Therefore S(x) =

−
∫ x

x0
µ(x)/d(x) + log(d(x)/d(x0)) and exp(−S(x)) = d(x0)/d(x) exp(−

∫ x

x0
µ(x)/d(x)).
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Rearranging, and multiplying on both sides by D−1(x) yields the steady state equation:

∇q(x) = D−1(x)(µ(x)−∇ ·D(x))q(x) = f(x)q(x).

Now let S(x) = − log(q(x)). Then q(x) = exp(−S(x)) so∇q(x) = ∇ exp(−S(x)) =

[−∇S(x)] exp(−S(x)) or, more succinctly,∇q(x) = [−∇S(x)]q(x). Then the steady state

equation reads:

[−∇S(x)]q(x) = f(x)q(x) (8.19)

so, for x ∈ supp(q(x)), the forces f(x), and steady state q(x), are related by the potential

function S(x) such that:

−∇S(x) = f(x), q(x) ∝ exp(−S(x)). (8.20)

Equation (8.20) shows that, if the process obeys detailed balance (no flux at steady

state), then the steady state distribution obeys a Boltzmann type relationship with the

potential S(x) such that −∇S(x) = f(x). Note that this equation only makes sense

if f(x) is conservative, otherwise there is no S(x) such that −∇S(x) = f(x). As an

immediate consequence, if f(x) is not conservative on the support of the steady state (f(x)

could be rotational off the support if the support is absorbing) then there is no steady

state distribution such that the steady state fluxes are all zero since there is no solution

to Equation (8.19). Thus f(x) plays the same role as the edge flow in our original theory.

If f(x) is conservative, then it is possible to solve Equation (8.19), so there exists a steady

state of the form Equation (8.20) for which there is no steady state flux, thus the process has

a true equilibrium and obeys detailed balance. If f(x) is not conservative, then, provided

there is not an absorbing set where f(x) is conservative, there is no steady state such that
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all of the steady state fluxes vanish, thus the process does not obey detailed balance. For a

more general discussion of the relationship between f(x) and detailed balance see [20].

These conclusions strongly motivate a potential decomposition of f(x). If it is possible

to find a potential such that f(x) = −∇S(x), then the process obeys detailed balance and

the steady state is determined by S(x), and if it is not possible to find such a potential then

the process is a nonequilibrium process. More precisely (see Theorem 1 in [20]):

Lemma 37 (Detailed Balance for SDEs). If X(t) is a stationary stochastic process gov-

erned by the SDE dX = µ(X)dt + B(X)dW , where µ(x) is differentiable, B(x) is twice

differentiable, and D(x) = 1
2
B(X)B(X)T is invertible for all x that could possibly be

reached by X(t), then X(t) obeys detailed balance if and only if the forces f(x) =

D−1(x)(µ(x) − ∇ · D(x)) are conservative. If the forces are conservative then X(t) is

time-reversible [20].

The forces f(x) and associated potential (if it exists) are also closely related to first

passage time problems [23, 275, 276], and problems that involve the backward operator

[24]. We used this fact in [276] to approximate the asymptotic behavior of mean first

passage times to extinctions analytically.

8.3.1 Forces and Edge Flows: The Continuum Limit

It remains to show that the forces defined by Equation (8.16) are consistent with the edge

flow defined by Equation (6.3) that were used throughout Chapter 6 and Chapter 7. We

have shown that the forces have the same thermodynamic interpretation, and, like the edge

flow, control whether or not X(t) obeys detailed balance. We have not shown that the edge

flow converges to the forces in an appropriate continuum limit.
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The section proceeds as follows. First, the generic relationship between the forces and

the edge flow is identified using the observations highlighted at the end of the section on

the Langevin approximation. Then two specific examples are provided where the edge flow

converges to the forces. First, a simple family of biased random walks are introduced, and

it is shown that, as the jump size is shrunk to zero, the edge flow converges to the forces.

Then, it is shown that if a family of discrete processes are chosen to discretize an SDE, then

the edge flow of the discrete approximations converge to the forces of the original SDE.

The key link between the continuum and discrete-space continuous-time processes was

outlined in Section 8.2.2 where we showed that the difference in forward and backward

rates determines the drift term µ(x), and the sum determines the diffusion term D(x). The

geometric difference in forward and backward rates determined the edge flow f , while the

geometric average of the forward and backward rates determined the conductances ρ. So,

speaking roughly, the flow is related to the drift term, and the conductances are related

to the diffusion term. More precisely, suppose we have a pair of rates l+ and l−. Then

l+ = ρ exp(f) and l− = ρ exp(−f), so l+ − l− = 2ρ sinh(f) while l+ + l− = 2ρ cosh(f).

Therefore:
l+ − l−
l+ + l−

= tanh(f).

The numerator is associated with µ and the denominator is associated with D. Thus the

hyperbolic tangent of the edge flow is related to the ratio of drift over diffusion. The forces

were D−1(µ − ∇ · D) so are also a ratio of drift to diffusion. If the edge flow is small

then tanh(f) = f + O(f 3) so the edge flow is approximately equal to the ratio of drift

to diffusion, and thus to the forces. In order for a discrete space process to converge to a

continuum process the edge flow typically needs to converge to zero, as in a hydrodynamic

limit of a random walk with parabolic scaling where the forward and backward rates
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converge to each other as the discretization is refined.

For example, consider a discrete time random walk on a sequence of nodes that dis-

cretize R. Let xi denote the position of the ith node, with xi = i∆x and where i ∈ −Z∪Z.

Let tj = j∆t where j ∈ Z. Then let the time interval and space interval satisfy a parabolic

scaling of the form:

∆t =
∆x2

2d
.

for some positive number d.

Assume that at any time tj the probability that a walker at xi moves to the right is given

by l+ = 1
2
(1 + ε) and the probability that the walker moves left is l− = 1− l− = 1

2
(1− ε).

In addition assume that ε scales with ∆t so that:

ε =
µ∆x

2d
.

for some µ ∈ R.

Let pi,j = p(xi, tj) be the probability that a walker occupies the ith state at time tj .

Then pi,j obeys the difference equation:

pi,j = l+pi−1,j−1 + l−pi+1,j−1 =
1

2
[(1 + ε)pi−1,j−1 + (1− ε)pi+1,j−1]

Subtracting pi,j−1 from both sides and rearranging gives:

pi,j − pi,j−1 =
1

2
[pi−1,j−1 − 2pi,j−1 + pi+1,j−1]− ε

2
[pi+1,j−1 − pi−1,j−1] .

Next, divide both sides by ∆t and substitute in for ε:

1

∆t
[pi,j − pi,j−1] =

d

∆x2
[pi−1,j−1 − 2pi,j−1 + pi+1,j−1]− µ

2∆x
[pi+1,j−1 − pi−1,j−1] .
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Notice that the left hand side is a difference approximation to a time derivative, the

first term on the right hand side is the central difference approximation to a second order

spatial derivative, and the last term is a central difference approximation to a first order

spatial derivative [76]. In the limit that ∆x, and as a consequence ∆t, goes to zero the

first term is a time derivative, the second term is a second order spatial derivative, and the

last term is a first order spatial derivative. Therefore the difference equation converges to a

advection-diffusion PDE:

∂tp(x, t) = −µ∂xf(x, t) + d∂2
xf(x, t)

which has the same form as the Fokker-Planck equation for the SDE dX = µdt+
√

2ddW .

Returning to the original transition probabilities, when ∆t is small l+ and l− converge to

∆t times the instantaneous transition rates between states since the continuous time process

has exponentially distributed event times [244]. Thus, for small ∆t, l+/l− converges to the

ratio of forward and backward rates. Therefore, in the limit as ∆t goes to zero, the edge

flow is:

f =
1

2
log(l+/l−) =

1

2
log

Ç
1
2
(1 + ε)

1
2
(1− ε)

å
= ε+O(ε3) =

µ

d

∆x

2
+O(∆x3).

The ratio µ/d is the force for the SDE achieved in the limit, therefore the edge flow

converges to ∆x/2 times the force. The factor of two, as usual, comes from our choice

to work with the square root of the ratio of forward and backward rates, so has no real

significance outside of convention.

Thus, for some sequences of biased random walks in one-dimension with appropriately

chosen scaling, the edge flow on the network converges to the forces defined by Equa-

tion (8.16). Our goal is to show that this convergence holds for more general sequences
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of networks. Here we show that, if we pick a sequence of networks with transition rates

designed to ensure convergence to a particular SDE, then the edge flow converges to the

forces.

Suppose that we start with an SDE, and approximate it with a discrete-space continuous-

time process. Consider an SDE defined on the real line x ∈ R. The corresponding Fokker-

Planck equation is:

d

dt
π(x) = −∂x(µ(x)π(x)) + ∂2

x(D(x)π(x)).

Here π(x) is used instead of p(x) since the Fokker-Planck equation governs the evolution

of a probability density, which we will approximate with a set of probabilities p on nodes.

The Fokker-Planck equation is a one-dimensional PDE. We would like to approximate

this PDE with a master equation of the form:

d

dt
p = Lp.

This is a classic problem in numerical differential equations. There are a variety of

standard methods for discretizing advection-diffusion type equations (see [76]). Here

we will focus on a second order finite volume method designed to conserve probability.

In addition we require that the discretized differential operator L is interpretable as a

Laplacian for a continuous-time Markov chain. This requires that all the off-diagonal

entries are nonnegative, and all the columns sum to zero. Finally, we would like the

associated network to reflect the ordering of the real line, so require that each node is

connected exclusively to its nearest neighbors. This requires that L is tridiagonal. An

appropriate discretization scheme follows.

First, discretize the real line into a series of evenly spaced cells width ∆x. Denote the
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center of the jth cell xj and let xj = j∆x. The boundaries between the cells are xj ± 1
2
∆x.

As short hand these will be denoted xj± 1
2
.

Let pj(t) represent the probability that the system is in the jth cell at time t. Then:

pj =

∫ x
j+1

2

x
j− 1

2

π(x)dx. (8.21)

By the Fokker-Planck equation:

d

dt
pj =

∫ x
j+1

2

x
j− 1

2

∂x (−µ(x)π(x) + ∂xD(x)π(x)) = [−µ(x)π(x) + ∂xD(x)π(x)]
x
j+1

2
x
j− 1

2
.

Let Jj− 1
2

denote the flux through the j− 1
2

boundary. Then the change in the probability

that the system occupies the jth cell is equivalent to the flux of probability through the

boundaries:
d

dt
pj = Jj+ 1

2
− Jj− 1

2
(8.22)

where the flux is given by (see Equation (8.5)):

Jj+ 1
2

= −µj+ 1
2
πj+ 1

2
+ ∂xDj+ 1

2
πj+ 1

2
.

In order to complete the discretization we need to approximate π(x ± ∆x) and its

derivatives given p. There is no unique way to make this approximation, however the

following procedure is straightforward, sufficiently accurate, and interpretable.

The average value of π(x) over the jth cell is 1
∆x
pj . Approximate π(x) at the boundary

between the jth and j + 1st cell with:

πj± 1
2
≈ pj + pj±1

2∆x
.
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To approximate the derivative, use center differencing with π(xj) ≈ pj/∆x:

∂xDj± 1
2
πj± 1

2
≈ ± 1

∆x

(
Dj

pj
∆x
−Dj±1

pj±1

∆x

)
= ± 1

∆x2
(Djpj −Dj±1pj±1) .

Substitute these two approximations into the flux:

Jj+ 1
2

= − 1

2∆x
µj+ 1

2
(pj + pj+1) +

1

∆x2
(Dj+1pj+1 −Djpj) .

Now the time derivative of pj can be approximated as a linear combination of its

neighbors:
d

dt
pj =− 1

2∆x
[µj+ 1

2
(pj + pj+1)− µj− 1

2
(pj + pj−1)]

+
1

∆x2
[Dj+1pj+1 − 2Djpj +Dj−1pj−1].

(8.23)

Notice that the first bracketed term is a finite difference approximation to ∂xµ(x)p(x)

and the second bracketed term is the standard central difference approximation to ∂2
xD(x)p(x).

Both of these approximations are second order accurate in ∆x [76], so the discretization

converges to the Fokker-Planck equation quadratically as ∆x goes to zero.

To write the linear system in the standard master equation form rearrange the terms so

that each pj only appears once:

d

dt
pj = lj,j−1pj−1 + lj,jpj + lj,j+1pj+1 = Lp. (8.24)
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Where L is tridiagonal and:


lj,j−1 =

1

2∆x
µj− 1

2
+

1

∆x2
Dj−1

lj,j = − 1

2∆x
(µj+ 1

2
− µj− 1

2
)− 2

∆x2
Dj

lj,j+1 = − 1

2∆x
µj+ 1

2
+

1

∆x2
Dj+1

 . (8.25)

This accomplishes two of our goals. We have successfully found a second order ac-

curate discretization scheme that produces a tridiagonal matrix L. To interpret L as a

Laplacian it must conserve probability, so each column must sum to zero. Since L is

tridiagonal the column sum only includes three terms:

∑
i,j

li,j = lj−1,j + lj,j + lj+1,j.

To find lj±1,j note that lj−1,j = l(j−1),(j−1)+1 so can be recovered from Equation (8.25)

by subtracting one from every index in lj,j−1. Similarly lj+1,j can be found by adding one

to every index in lj,j−1. Then:

∑
i,j

li,j =

ï
− 1

2∆x
µj− 1

2
+

1

∆x2
Dj

ò
−
ï

1

2∆x
(µj+ 1

2
− µj− 1

2
)− 2

∆x2
Dj

ò
+

ï
1

2∆x
µj+ 1

2
+

1

∆x2
Dj

ò
= 0.

Therefore every column of L sums to zero, and the discretization conserves probability.

This is an automatic virtue of working with a finite volume method [76].

To interpret L as a Laplacian all of its offdiagonal entries must be nonnegative, which

requires lj,j−1 ≥ 0 and lj,j+1 ≥ 0. The off-diagonal entries of Equation (8.25) are not
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automatically nonnegative, since advection may outweigh diffusion at the scale of the

discretization. If the diffusion term is sufficiently small, or the drift term sufficiently large,

then some of the off-diagonal elements of L may be negative. In that case L cannot be

considered a Laplacian associated with a discrete-space continuous-time Markov process.

Nonnegativity requires:
1

∆x2
Dj±1 ≥

1

2∆x
|µj± 1

2
|.

Or:

∆x ≤ 2
Dj±1

|µj± 1
2
|
. (8.26)

Thus, to interpret L as a Laplacian ∆x must be sufficiently small. This can be accom-

plished either by setting the noise variance very large relative to the drift term, or by using

a very fine discretization. In general the smaller the diffusion term and the larger the drift

term the finer the discretization size ∆x needs to be. Since advection and diffusion scale

differently in the discretization size, 1/∆x and 1/∆x2 respectively, it is always possible to

pick a discretization sufficiently small to guarantee accuracy.

Provided ∆x is sufficiently small Equation (8.25) defines a second order accurate dis-

cretization of the Fokker-Planck equation such that L is tridiagonal, conserves probability,

and has all non-negative off-diagonal entries. Then we can study the behavior of the master

equation:
d

dt
p = Lp

exactly as in Chapter 6 and Chapter 7. Then, as before, let:

lj,j±1 = ρj,j±1 exp (f
(L(∆x))
j,j±1 )

where the superscript is added to distinguish the edge flow from the forces.
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Then: ï
1

2
(L− LT )

ò
j,j−1

= exp (ρj,j−1) sinh (f
(L(∆x))
j,j−1 )ï

1

2
(L+ LT )

ò
j,j−1

= exp (ρj,j−1) cosh (f
(L(∆x))
j,j−1 ).

(8.27)

Substituting in for the forward and backward rates:

1

2
(lj+1,j − lj,j+1) =

1

2

Å
1

2∆x
µj+1/2 +

1

2∆x
µj+1/2 +

1

∆x2
Dj −

1

∆x2
Dj+1

ã
=

1

2∆x

Å
µj+1/2 −

1

∆x
(Dj+1 −Dj)

ã
1

2
(lj+1,j + lj,j+1) =

1

2

Å
1

2∆x
µj+1/2 −

1

2∆x
µj+1/2 +

1

∆x2
Dj +

1

∆x2
Dj+1

ã
=

1

2∆x2
(Dj +Dj+1).

(8.28)

Then, to solve for f divide the first equation by the second:

tanh
Ä
f (L(∆x))

ä
=

∆x

2

µj+1/2 − 1
∆x

(Dj+1 −Dj)
1
2
(Dj +Dj+1)

.

Then, expanding in ∆x:

µj+1/2 = µ(x+ ∆x/2)

1

∆x
(Dj+1 −Dj) = ∂xD(x+ ∆x/2) +O(∆x2)

1

2
(Dj +Dj+1) = D(x+ ∆x/2) +O(∆x2).

Therefore, the edge flow on the edge between x and x+ ∆x/2 is:

tanh
Ä
f (L(∆x))(x+ ∆x/2)

ä
=

∆x

2

µ(x+ ∆x/2)− ∂xD(x+ ∆x/2)

D(x+ ∆x/2)
+O(∆x3).
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Taking the arc-tanh, and shifting the indexing by ∆x/2:

f (L(∆x))(x) = atanh
Å

∆x

2

µ(x)− ∂xD(x)

D(x)
+O(∆x3)

ã
.

Notice that the term inside the parenthesis is exactly the forces we defined for the SDE

scaled by ∆x/2. To finish the analysis, Taylor expand the arctanh: atanh(x) = x + 1
3
x3 +

O(x5). Then:

f (L(∆x))(x) =
∆x

2

µ(x)− ∂xD(x)

D(x)
+O(∆x3) =

∆x

2
f(x) +O(∆x3). (8.29)

Thus, the edge flow converges to ∆x/2 times the forces, exactly as in the hydrodynamic

limit, and the approximation 2
∆x
f (L(∆x))(x) ' f(x) is O(∆x2) accurate. Thus, at least in

one dimension, the forces are consistent with the edge flow of a discrete-space continuous-

time approximation to the SDE, and in the hydrodynamic limit of a random walk the edge

flow converges to the forces.

8.4 Potentials in the Continuum

Given the forces f(x) = D−1(x)(µ(x)−∇·D(x)) there are three natural potentials. These

are presented here and compared.

8.4.1 The Helmholtz Potential in the Continuum

Let f(x) be the forces. Then a function φ(x) is a Helmholtz potential φ(x) if it satisfies:

−∇φ(x) + frot(x) = f(x)

∇ ·W (x)frot(x) = 0.

(8.30)
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for some symmetric positive definite weight matrix W (x). The weight matrix could be an

identity, or could be the diffusion tensor D(x). Combining the top and bottom equations

yields the PDE:

∇ ·W (x) (∇φ(x) + f(x)) = 0. (8.31)

The rotational component frot = ∇φ(x) + f(x) is the residual left over when approxi-

mating f(x) with the gradient of a potential function. A Helmholtz potential is a potential

such that the residual is divergence free (when W (x) = I), or is divergence free in the

weighted sense∇ ·W (x)frot = 0. Both the Helmholtz potential and the quasipotential can

be expressed in this way - the forces f(x) are approximated with the gradient of a potential

function, and a constraint is introduced on the residual that ensures that the residual is, in

some sense, circulatory. Using the Helmholtz potential the residual must be divergence

free so is incompressible. If W (x) = I and the process is two or three dimensional then

frot(x) can be expressed as the curl of a vector potential, possibly with the addition of a

harmonic component. Note that W (x) plays essentially the same role that weights play in

the weighted HHD (see Section 2.4)

WeightsW (x) could enter the decomposition after a coordinate transform. If x = x(y),

y ∈ Rn for some invertible change of coordinates and, in the original coordinate system

∇x ·(∇xφx(x)+fx(x)) = 0, then in terms of y,∇y ·A(y)−ᵀA(y)−1 (∇yφy(y) + fy(y)) = 0,

where the subscripts on ∇ denote differentiation with respect to the associated coordinate,

A(y) is the Jacobian of x(y), φy(y) = φx(x(y)) is the potential in the y coordinate system,

and fy(y) = A(y)fx(x(y)) are the forces in the y coordinate system.

For example, consider the SDE dX = µ(X)dt +
√

2D1/2(X)dW where D1/2(x) is

symmetric. Then if there is an invertible change of coordinates x = x(y) with Jacobian

A(y) = D1/2(x(y)) then (x(y) − x(y0)) ' A(y)(y − y0) = D1/2(y0)(y − y0), so dX '

571



D1/2(x(y))dY . Then dY = D−1/2(X)dX = D−1/2(x(Y ))µ(x(Y )) +
√

2dW , so Y (t) is a

stochastic process governed by an SDE with constant noise variance. Then if φx(x) is the

solution to ∇x · D(x)(∇xφx(x) + fx(x)), then φ(x(y)) is the solution to the unweighted

equation∇·D−1/2(x(y))D(x(y))D−1/2(x(y))(∇φy(y)+fy(y)) which equals∇·(∇φy(y)+

fy(y)). Therefore, if W (x) = D(x), then the Helmholtz potential may be interpreted as

the Helmholtz potential associated with the unweighted HHD after a change of coordinates

into a coordinate system where the noise is isotropic and uniform. In that coordinate system

the remainder frot is divergence free.

Note that [21] uses the unweighted convention W (x) = I when decomposing the

forces.

It is also important to note that the Helmholtz potential may not be unique for all fields

f(x). In R3 the potential is only unique if f(x) vanishes faster than 1/||x|| as ||x||→ ∞.

See Section 2.2.1 or [8] for a review of conditions which guarantee uniqueness.

Continuum limit of HHD on a lattice

For a general sequence of reaction networks converging to an SDE the discrete HHD does

not, in general, converge to the Helmholtz-Hodge decomposition of the forces. The discrete

HHD does not necessarily converge to the Helmholtz-Hodge decomposition of the forces

because the topology of the family of networks may not converge to an approximation of

Rn. Consider a square lattice with sides lengths ∆x embedded in R2. Let x ∈ R2 denote the

location of a vertex. Now suppose there are transitions between x and x±∆xe1, x±∆xe2,

and we also add transitions from x to x ± ∆xe1 ± ∆xe2. Then the network consists of

a square lattice plus diagonal edges between the corners of the lattice. In order for the

discrete HHD to converge to the forces we must be able partition the edges so that each

set of edges in the partitioning corresponds to a particular point in space, x, and each set
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has two degrees of freedom corresponding to a basis of R2. There is no way to make this

partitioning since there are too many edges in the network. If there were no diagonal edges

in the network then we could associate the edges that transition between x and x + ∆xe1,

x + ∆xe2 with node x, and would have a pair of edges for each vertex that correspond to

the canonical basis in R2. Then the pair of edge flows associated with each node could

converge to the pair of values in the force f(x) associated with that point in space. Once

the diagonal edge is added the edge flow has too many degrees of freedom, so we cannot

establish a one-to-one mapping between the entries of the force at a given point in space,

and a set of edges associated with a particular vertex. If the stoichiometry matrix associated

with a reaction network is not invertible then there are too many possible reactions (edges)

per node to establish a one-to-one mapping between the edge flow and the forces.

That said, if the sequence of networks is a sequence of square lattices formed by

the Cartesian product of a refinement of the line with itself, then it is possible to show

convergence of the discrete HHD to the HHD of the forces provided the transition rates are

chosen so that the discrete-space process converges to the corresponding SDE.

Let G0(∆x) be a refinement of R with equally spaced nodes separated by ∆x. Then let

G(∆x) be the Cartesian product�nj=1G0(∆x) which is the n dimensional hypercube lattice

with sidelength ∆x. Let x denote the coordinates of a particular vertex in Rn. Let Ω(x)

denote the hypercube centered at xwith sidelengths ∆x. Let ∂Ω(x) denote the boundary of

Ω(x). Let ∂Ω±j (x) = Ω(x)∩Ω(x±∆xej) denote the face shared between x and its neighbor

x±∆xej . Let ∂Ω±±ji = Ω(x)∩Ω(x±∆xej)∩Ω(x±∆xei)∩Ω(x±∆xej±∆xei) denote the

shared boundary between the four vertices x, x±∆xej , x±∆xei, and x±∆xej±∆xei. In

R3, ∂Ω±j is a face of the cube containing x, and ∂Ω±±ji is an edge of the cube. The notation

introduced here is illustrated in Figure 8.2.

Let p(x, t) =
t

Ω(x)
π(x, t) be the probability that X(t) ∈ Ω(x). Then the rate of
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Figure 8.2: An example volume in a cubic lattice. The circles represent nodes. The cube
surrounding the central node is Ω(x). The boundary faces associated with direction ej and
ei are shaded blue and red respectively. The intersection of these faces are shown in purple.

change in p(x, t) is given by the net flux through the boundary of Ω(x), which can be

expressed as a sum over each pair of faces with the same orientation:

d

dt
p(x, t) =

n∑
j=1

x

∂Ω+
j

Jj(y, t|π)dy −
x

∂Ω−j

Jj(y, t|π)dy.

Let J±j (x) =
s
∂Ω±j

Jj(y, t|π)dy be the flux through the face ∂Ω±j (with outward normal

set in the positive direction). Then substituting in for the flux we find:

J±j (x) =
x

∂Ω±j (x)

[µj(y)− ∂xjDjj(y)]π(y, t)dy

−
x

∂Ω±j (x)

Djj(y)∂xjπ(y, t)dy

−
∑
i 6=j

x

∂Ω±+
ji (x)

Dij(y)π(y, t)dy −
x

∂Ω±−ji (x)

Dij(y)π(y, t)dy

where the separation into terms associated with the diagonal entries of the diffusion tensor,

and off-diagonal tensor, can be derived using integration by parts. The top line is associated
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with advection, while the bottom two lines are associated with diffusion. The diffusive

terms are split into two parts. The first part is diffusion through the face Ω±j (x), and the

second is diffusion through the intersection of faces Ω±j (x) and Ω±i (x).

Next we need to approximate π(y, t) and its partial derivatives on each face (and inter-

section of faces), given the probability p(x, t) that X(t) is in any of the volumes Ω(x). A

natural extension of the approximation scheme used in one dimension is:

π(y, t) ' 1

∆xn
(p(x) + p(x±∆xej))

2
if y ∈ ∂Ω±j (x)

π(y, t) ' 1

∆xn
(p(x) + p(x±∆xej) + p(x±∆xei) + p(x±∆xej ±∆xei))

4
if y ∈ ∂Ω±±ji (x)

∂xjπ(y, t) ' 1

∆xn
±(p(x±∆xej)− p(x))

∆x
if y ∈ ∂Ω±j (x).

Notice that the middle term, which is required to approximate the diffusion through the

intersection of two faces, depends on the average of the probability of four neighboring

volumes. Thus, if this approximation is substituted back into the expression for the flux

through each face, the resulting finite volume method for approximating d
dt
p(x, t) will

include flow of probability between the node representing x and x + ∆x(±ej ± ei) for

all i and j. Thus, the associated finite volume method would converge to a master equation

on a graph that is not a square lattice in n dimensions. Instead it would converge to a

master equation on the square lattice, with diagonal edges connecting nodes that differ

in two coordinates. That is, instead of a graph that is given by a Cartesian product of

the line segment with itself, the resulting graph would be the result of a strong product

[64] of the line segment with itself. Our goal in this section is to show that edge flow

on the network converges to the edge flow in the continuum and the operators of the

discrete HHD converge to the corresponding differential operators in the continuum, so

the entire decomposition converges. Convergence of this kind is only possible if the
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underlying sequence of networks are square lattices, and do not include extra diagonal

edges. Therefore, from now on we will assume that the diffusion tensor D(x) is diagonal

for all x. Note that, if the SDE arises from a Langevin approximation to a reaction network

then the diffusion tensor is automatically diagonal if all the reactions only change one state

variable at a time, as in a birth-death process. Alternatively, if D(x) is diagonalizable, and

can be diagonalized by an orthonormal set of eigenvectors that change smoothly in x, then

it may be possible to construct a sequence of networks that converge to a rotated square

lattice for vanishing neighborhoods about each point, such that the lattices are oriented to

diagonalize D(x).

If D(x) is diagonal, then, substituting the finite volume approximation in for π(x, t) in

the expression for J±j (x) gives:

J±j (x) ' 1

∆xn

 x

∂Ω±j (x)

µj(y)− ∂xjDjj(y)dy

 p(x±∆xej) + p(x)

2

− 1

∆xn

 x

∂Ω±j (x)

Djj(y)dy

 ±(p(x±∆xej)− p(x))

∆x
.

Let g(x) be an arbitrary real scalar valued function. Then let g(A) be the average value

of g(x) over the set A. Then:

J±j (x) ' 1

∆x

[
µj(∂Ω±j (x))− ∂xjDjj(∂Ω±j (x))

] p(x±∆xej) + p(x)

2

− 1

∆x

[
Djj(∂Ω±j (x))

] ±(p(x±∆xej)− p(x))

∆x
.

Then, the forward rate of transition from x to x+ ∆xej , and corresponding backwards
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rates are:
l+j (x) =

1

2∆x

[
µj(∂Ω±j (x))− ∂xjDjj(∂Ω±j (x))

]
+

1

∆x2
Djj(∂Ω±j (x))

l−j (x+ ∆xej) = − 1

2∆x

[
µj(∂Ω±j (x))− ∂xjDjj(∂Ω±j (x))

]
+

1

∆x2
Djj(∂Ω±j (x))

Note that these two rates involve averages over the same face, since they both depend on

the flux across the face separating Ω(x) and Ω(x+ ∆xej).

Now let f (L(∆x))
j

(
x+ ∆x

2
ej
)

be the edge flow on the edge from x to x + ∆xej . Then,

repeating the same technique we used for the one-dimensional case:

f
(L(∆x))
j

Å
x+

∆x

2
ej

ã
= tanh−1

Ç
∆x

2

µj(∂Ω±j (x))− ∂xjDjj(∂Ω±j (x))

Djj(∂Ω±j (x)

å
.

So, in the limit ∆x goes to zero, the edge flow on each edge in the discrete approxima-

tion to the SDE is:

f
(L(∆x))
j

Å
x+

∆x

2
ej

ã
=

∆x

2

[
D(∂Ω±j (x))−1

(
µ(∂Ω±j (x))−∇ ·D(∂Ω±j (x)

)]
j
+O(∆x3).

(8.32)

Now, in the continuum the forces in the direction ej at x are D−1(x)(µ(x)−∇·D(x)).

Then
[
D(∂Ω±j (x))−1

(
µ(∂Ω±j (x))−∇ ·D(∂Ω±j (x)

)]
j

is a O(∆x2) accurate approxima-

tion to fj
(
x+ ∆x

2
ej
)

so:

f
(L(∆x))
j

Å
x+

∆x

2
ej

ã
=

∆x

2
fj

Å
x+

∆x

2
ej

ã
+O(∆x3). (8.33)

Equation (8.33) establishes that the forces on each edge in the discrete lattice approxi-

mation to an SDE in Rn with a diagonal diffusion tensor converge to the forces scaled by
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∆x.

The corresponding discrete HHD reads:

−Gφ(L(∆x)) + CT θ(L(∆x)) = f (L(∆x)).

Divide both sides by ∆x. Then, on each edge, we have:ï
− 1

∆x
Gφ(L(∆x)) +

1

∆x
CT θ(L(∆x))

ò
j

Å
x+

∆x

2
ej

ã
=

1

2
fj

Å
x+

∆x

2
ej

ã
+O(∆x2).

In this form the left hand side consists of a pair of discrete approximations to differential

operators, and the right hand side converges to the forces defined by Equation (8.16). In

order for the discrete potentials to converge to the potentials defined by the continuous

HHD we first show that the operators converge. Then we show that the discrete weighted

Poisson equation associated with a weighted version of the HHD converges to the weighted

Poisson equation used to define the Helmholtz potential in the continuum. This establishes

the conceptual equivalence of the potentials associated with the discrete HHD and the

Helmholtz potential. To conclude we show that, in the unweighted case, the discrete scalar

potential converges to the continuous potential using the spectral approach to solving the

discrete Poisson equations developed in Section 3.3.3.

Convergence of the gradient is trivial. Let u be a differentiable function on Rn, and

sample u at each node x in the graph. Then:ï
1

∆x
Gu

ò
j

Å
x+

∆x

2
ej

ã
=
u(x+ ∆xej)− u(x)

∆x
= ∂xju

Å
x+

∆x

2
ej

ã
+O(∆x2)

(8.34)

Therefore the discrete gradient applied to u converges, on each edge, to the corresponding

partial derivative of u evaluated at the center of the edge.
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Illustrating convergence for the curl is, not surprisingly, a little more difficult. To help

organize the calculation subdivide the loops in the square space of the lattice into sets

of loops with a specific orientation. Consider a node x in the lattice. From each node

we can uniquely specify a face Cij(x) of the lattice where Cij(x) is the face contained

between the nodes [x, x + ej, x + ei, x + ej + ei]. Notice that Cij(x) is the same face

as Cji(x) and Cii(x) does not correspond to a face. Therefore there are d(d − 1)/2 faces

per node. Each face corresponds to a particular plane of rotation. Define a vector valued

function Θ(x) = [θ12(x), θ13(x), ...θd−1,d(x)]. The function Θ(x) has d(d − 1)/2 outputs

for every point x. It will play the same role as the vector potential in electromagnetism. In

terms of our standard decomposition this corresponds to defining d(d− 1)/2 sets of loops

(1, 2), (1, 3), ...(d − 1, d) that correspond to specific orientations of rotation. In essence

these definitions partition the set of loops in the square space of the lattice into subsets

associated with each node. Recall that the set of all loops in the square space is too large to

be a cycle basis. However, as noted in Section 2.4 we can work with an extended cycle basis

without changing the scalar potential, conservative component, or rotational component of

the decomposition.

Since the adjoint curl maps from the space of loops to the space of edges this partition-

ing of the loops into sets with specific orientations corresponds to partitioning the adjoint

curl CT into a set of operators CijT where CijT maps from the loops (i, j).

With this modified notation:

CTΘ(x) =
∑
i<j

CijT θij(x).

The kth entry of this product evaluated at x corresponds to the edge from x to x+∆xek.
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𝜃𝑘𝑖

Figure 8.3: The three different loop classes (ij,jk and ki) neighboring a given node x in a
cubic lattice.

Evaluating the product (scaled by ∆x) gives:

ñ
CijT

∆x
θij(x)

ô
k

=


0 if k 6= i or j

θij(x+ ∆xej/2)− θij(x−∆xej/2)

∆x
if k = i

θij(x−∆xei/2) + θij(x−∆xei/2)

∆x
if k = j

Therefore, in the limit ∆x goes to zero:

lim
∆x→0

ñ
CijT

∆x
θij(x)

ô
k

=


0 if k 6= i or j

∂xjθ
ij(x) if k = i

− ∂xiθij(x) if k = j

Now, define a set of d× d rotation matrices Rij which take j to i and i to −j, and send
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all other entries to zero5 then:

lim
∆x→0

ñ
CijT

∆x
θij(x)

ô
k

= Rij∇θij(x)

Therefore, in three dimensions:

lim
∆x→0

ï
CT

∆x
Θ(x)

ò
k

=
∑
i<j

Rij∇θij(x) = ∇×Θ(x). (8.35)

Thus, if the curl is defined using all the loops in the square space then each entry of the

curl of Θ is the same as the curl of Θ projected onto a hyperplane spanned by ei and ej

for some i and j. This establishes that the discrete curl converges to a differential operator

analogous to the curl in the continuum.

In general we can solve for the scalar potential without ever solving for a vector poten-

tial. Our objective is to show the conceptual equivalence of the Helmholtz potential defined

by Equation (8.31) to the scalar potential arising from a weighted HHD on a discrete

approximation to the SDE, not to show equivalence of both potentials. Therefore we will

now focus exclusively on the scalar potential.

The scalar potential associated with a weighted Helmholtz-Hodge Decomposition of

the edge flow is the solution to a discrete weighted Poisson equation:

1

∆x2
G(L(∆x))ᵀWG(L(∆x))φ(L(∆x)) = − 1

∆x
G(L(∆x))ᵀf (L(∆x)).

5For example, if d = 3 then:

R12 =

 0 1 0
−1 0 0
0 0 0

 .
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The right hand side converges to the divergence of the forces since:ï
− 1

∆x
G(L(∆x))ᵀf (L(∆x))

ò
(x) =

n∑
j=1

1

∆x

ï
fj

Å
x+

∆x

2
ej

ã
− fj

Å
x− ∆x

2
ej

ãò
→ ∇·f(x).

Let u(x) be a twice differentiable scalar valued function, which is sampled at the nodes

of the lattice. Then:ï
1

∆x2
G(L(∆x))ᵀWG(L(∆x))u

ò
(x)

=
1

∆x

n∑
j=1

wj

Å
x+

∆x

2
ej

ã
u(x+ ∆xej)− u(x)

∆x
− wj

Å
x− ∆x

2
ej

ã
u(x)− u(x−∆xej)

∆x

→ ∇ ·W (x)∇u(x).

Therefore the operator on the left hand side of the discrete Poisson equation converges

to∇ ·W∇ as ∆x→ 0, which is the same operator used to define the Helmholtz potential,

and the right hand side of both equations converge. It remains to show that the potentials

converge.

Here we show that the potentials converge in the special case when no weights are

introduced, and X(t) can reach any point inside a rectangular domain, but cannot leave

the domain. That is, X(t) is restricted to taking on values inside the Cartesian product of

a sequence of intervals. For simplicity we will assume that the domain is the unit cube in

n-dimensions. The following results could be generalized to arbitrary rectangular domains.

Then, the discrete approximations consist of a sequence of lattices formed by the

Cartesian product of a line segment with itself n times. The segment has 1/∆x+1 vertices,

and each edge is length ∆x. If the HHD is unweighted then the spectral approach to solving

the discrete Poisson equation can be used. Our goal is to show that this spectral approach

gives a convergent solution to the spectral approach in the continuum.
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The spectral approach on the lattice depended on expanding the divergence of the

edge flow onto the eigenbasis of the Laplacian. The eigenvectors of the Laplacian of the

lattice are outerproducts of the eigenvectors of the Laplacian in one-dimension, and the

eigenvalues are the sums of the eigenvalues of the Laplacian in one-dimension. In one-

dimension the eigenvalues and vectors are:

λj = 4 sin2

Å
π(j − 1)

2V

ã
=

Å
π(j − 1)

V

ã2

+O(V −4)

vij =


V −1/2 if j = 1…

2

V
cos

Å
π(j − 1)

V

Å
i− 1

2

ãã
else


where V = 1

∆x
+1 is the number of vertices, and diverges as ∆x becomes small. To convert

to the continuous Poisson equation we divide both sides of the discrete Poisson equation

by ∆x2. Then the Laplacian is divided by ∆x2 and converges to a differential operator. It

follows that the eigenvalues of the scaled equations are:

λj = (π(j − 1))2 +O(∆x2).

Then let:

ω(j) = π(j − 1)

and let x(i) = ∆x(i− 1). Then the eigenvalues and eigenvectors are of the form:

λj ' ω(j)2 +O(∆x2)

vij '


(∆x)1/2 if j = 1

√
2∆x cos (ω(j)(x(i) + ∆x/2)) else

 .
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That is, the eigenvectors are trigonometric functions in x, and the corresponding eigen-

values converge to the frequencies squared.

The eigenvectors and eigenvalues of the continuous Laplacian have the same structure

since, in one dimension −∂2
x exp(iωx) = ω2 exp(iωx) and in higher dimension:

−∇ · ∇
n∏
j=1

exp(iωjxj) = −
n∑
j=1

∂2
xj

n∏
j=1

exp(iωjxj) =

(
n∑
j=1

ω2
j

)
n∏
j=1

exp(iωjxj).

Moreover, if the domain has reflecting boundaries then the normal derivative of π(x, t)

must be zero at the boundaries, so the eigenfunctions are limited to cosines with frequencies

such that the boundaries occur at extrema of the eigenfunctions. These are given by

frequencies π(j − 1).

Thus, in the continuum the eigenvectors of the Laplacian are any product of cosine

functions in each coordinate, with frequency such that the normal derivative at the boundary

is zero, and with eigenvalues equal to the sum of squares of the frequencies. In the discrete

case the eigenvectors are outerproducts of cosine functions with frequencies such that the

normal derivative of the eigenfunction is vanishing at the boundary, and with eigenvalues

that converge to the sums of the frequencies of squared. The convergence is faster at low

frequencies than at high frequencies. Convergence of the eigenvectors ensures that the

inner products used to move into and out of the eigenbasis converge, and convergence of the

eigenvalues ensures convergence of the solutions in the eigenbasis (frequency space). Note

that the eigenvalues converge fastest at low frequencies, so convergence requires forces

whose divergence is sufficiently smooth. For more details on convergence see [73].

In summary, if the SDE has a diagonal diffusion tensor, as in a birth-death process,

then it can be approximated by a family of lattices, whose edge-flow, gradient operator,

and Laplacian converge to the forces, gradient, and weighted Laplacian. This establishes
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the conceptual equivalence of the Helmholtz potential defined by Equation (8.31), and the

scalar potential which solves a weighted HHD.

8.4.2 The Quasipotential

So far we have focused on extending the HHD based potentials theory we developed

for networks into the continuum. The natural extension of the discrete scalar potential

defined using the HHD is the Helmholtz potential defined by Equation (8.31). For SDEs

an alternative potential exists, and is widely used - the quasipotential.

In the previous chapter we showed that the limiting behavior of the steady state distribu-

tion of a Markov process was governed by different potentials if the process was dominated

by drift or if the process was dominated by diffusion. If the process was dominated by

diffusion than an HHD type potential governed the steady state and steady state fluxes.

In contrast, if the forcing was strong then advection dominated drift, and as a result a

quasipotential framework was needed. In Section 2.3.2 we showed that differences in the

scalar potential associated with an HHD is equivalent to the average work required to move

between nodes, where the average is evaluated over an ensemble of paths. In contrast,

when the forcing was strong, then a quasipotential was introduced, where the difference in

quasipotential at pairs of nodes was equal to the work to move between those nodes over

an optimal path. When a near deterministic limit was used then the optimal paths were the

most likely sequence of nodes.

As in the discrete case, the quasipotential in the continuum is defined by evaluating the

work over an optimal set of paths [23]. Quasipotentials are widely used to study multistable

systems in small noise limits and large deviations. Applications of the quasipotential

include modeling insect outbreaks, epidemics, extinction, invasion, and cell development

(cf. [23, 277]).
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Consider a path y(t) on the time interval [0, T ]. The probability of observing the path y

can always be written:

π(y) ∝ exp (−S(y)) (8.36)

where S is an action functional that maps trajectories to real numbers [24].

To approximate the action functional consider a sequence of evenly spaced sample

times at intervals ∆t. Let yj = y(tj) where tj = j∆t. Then the probability of observing a

sample trajectory y can be approximated by computing the probability of sampling y using

a numerical approximation scheme. The simplest such scheme is the Euler-Maruyama

scheme, where Yj+1 = Yj + µj(Yj)∆t+B(Yj)∆W . Then:

π(y|∆t) =
∏
j

1√
(2π)n|D(yj)|∆tn

exp

Å
−1

2
||(yj+1 − yj)− µ(yj)∆t||2D−1(yj)∆t

ã
.

Therefore:

π(y|∆t) ∝ exp(−
∑
j

1

2
||(yj+1 − yj) + µ(yj)∆t||2D−1(yj)∆t

−1

2
log(|D(yj)|)).

Notice that ||(yj+1−yj)+µ(yj)∆t||2D−1(yj)∆t
equals || 1

∆t
(yj+1−yj)+µ(yj)||2D−1(yj)

∆t.

Then, the discrete time action is:

S(y|∆t) =
∑
j

Å
1

2
|| 1

∆t
(yj+1 − yj)− µ(yj)||2D−1(yj)

∆t+
1

2
log(|D(yj)|))

ã
.

Then the probability of any sample trajectory y is proportional to exp(−S(y|∆t)). A

continuous time action functional can then be defined by taking the limit as ∆t goes to

zero. Care has to be taken when defining this limit since sample trajectories of an SDE are

not differentiable, and the probability of trajectories must be replaced with a probability
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density.

Now suppose we consider the set of all paths Y starting from x0 at time 0 and ending at

x at time T . For any x there exists some path, or set of paths, that minimizes the action in

the limit as the diffusion tensor vanishes. Let x0 be a stable equilibrium of the deterministic

skeleton. The infimum of the action over all possible paths from x0 to x in the limit as the

noise vanishes is the Friedlin-Wentzell quasipotential associated with the equilibrium x0

[24, 25].

The optimal trajectories can be approximated using a variational approach. Broadly

speaking, a Hamiltonian approach can be used to derive a pair of Euler-Lagrange equations

that govern the motion of optimal trajectories. The optimal trajectories can be simulated

by solving the system of ODEs defined by the Euler-Lagrange equations. These require

introducing a “momentum" term. Fixing an initial position and momentum fixes an optimal

trajectory. Note that this does not specify the endpoint of the optimal trajectory, so typi-

cally many trajectories using different initial momentum are generated to approximate the

quasipotential surface. Using this approach it can be shown that, if the SDE obeys detailed

balance, then the optimal trajectories are time-reversed trajectories of the deterministic

process.

The quasipotential surface can also be defined as the solution to a PDE. The appropriate

PDE is the Hamilton-Jacobi equation, which can be derived using a WKB expansion of the

steady state [23, 24]. We will rely on this approach here since it is simpler, does not require

as advanced machinery, and enables a more direct comparison to the Helmholtz potential.

The Wentzell-Kramers-Brillouin approximation, or WKB, is an approximation scheme

for solving linear partial differential equations. The technique revolves around asymptotic

expansion of a function in some parameter, and is an example of multiple-scale anaylsis.

The relevant parameter here is the noise intensity σ. Replace D(x) with σ2D(x) so that
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the noise intensity is controlled by a single parameter. For example, in a system size

expansion σ2 would scale in one over the system size. By varying σ it is possible to solve

for approximate solutions to the Fokker-Planck equation. In particular the WKB can be

applied to approximate the stationary distribution.

The main virtue of the WKB is that it can be used to accurately estimate the likelihood

of rare events. It can be applied to estimate mean first passage times and to construct

quasipotentials [24]. Example applications in ecology include estimating mean times to

extinction [278].

The WKB is defined for linear differential equations whose highest derivative is scaled

by some small parameter. The Fokker-Planck equation is a second order linear equation of

this type, whose highest derivative is scaled by the noise intensity σ2.

Given an nth order equation of the form:

ε
dn

dxn
f(x) + αn−1(x)

dn−1

dxn−1
f(x) + ...+ α0f(x) = 0

the WKB approximation proceeds by solving for a function S(x|ε) such that:

f(x) ∝ exp (−S(x|ε)) (8.37)

where S(x|ε) can be expanded using a Laurent series in ε [279]:

S(x|ε) =
1

ε

∞∑
m=0

Sm(x)εm. (8.38)

To solve for each term in the expansion substitute S(x|ε) into the differential equation,

then take the limit as ε goes to zero. This gives a lower order equation exclusively in terms

of S0(x). To compute higher order terms Sm, equate the appropriate orders in ε [279].
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First let q(x) denote the steady state distribution. Then write:

q(x) ∝ exp(−S(x|σ)) (8.39)

where S(x) = − log(q(x)) is an effective potential.

The first term in the WKB expansion is the small noise limit of the effective potential:

S0(x) = lim
σ→0

σ2 log (q(x)) = lim
σ→0

S(x|σ). (8.40)

Here we start by applying WKB to the Fokker-Planck equation in one dimension. The

results mirror our previous analysis using integration by parts. The one-dimensional case

is used primarily as an example to introduce the technique.

The steady state Fokker-Planck equation in one-dimension is:

− d

dx
(µ(x)q(x)) + σ2 d

2

dx2
(D(x)q(x)) = 0.

To simplify, separate the derivatives using the product rule:

σ2

Åï
d2

dx2
D(x)

ò
q(x) + 2

d

dx
D(x)

d

dx
q(x) +D(x)

ï
d2

dx2
q(x)

òã
− µ(x)

d

dx
q(x)−

ï
d

dx
µ(x)

ò
q(x) = 0.

Collecting terms, and dividing through by D(x) yields:

σ2 d
2

dx2
q(x) +

ñ
2σ2 d

dx
D(x)− µ(x)

D(x)

ô
d

dx
q(x) +

σ2 d2

dx2
D(x)− d

dx
µ(x)

D(x)
q(x) = 0.

Then make the substitution: q(x) = exp(−S(x|σ)). The derivatives of the exponential
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are:
d

dx
q(x) = −

Å
d

dx
S(x|σ)

ã
exp (−S(x|σ))

d2

dx2
q(x) =

Ç
− d2

dx2
S(x|σ) +

Å
d

dx
S(x|σ)

ã2
å

exp (−S(x|σ))

Plugging in, and dividing through by −q(x) = − exp(−S(x|σ)) gives:

σ2

Ç
d2

dx2
S(x|σ)−

Å
d

dx
S(x|σ)

ã2
å
−
ñ

2σ2 d
dx
D(x)− µ(x)

D(x)

ô
d

dx
S(x|σ)−

σ2 d2

dx2
D(x) = d

dx
µ(x)

D(x)
.

Now expand S(x|σ) with a Laurent series:

S(x|σ) =
1

σ2

∞∑
m=0

Sm(x)σ2m =
1

σ2
S0(x) +

∞∑
m=1

Sm(x)σ2(m−1).

To recover the lowest order term, substitute the Laurent expansion into each term in the

differential equation one at a time, and take the limit as σ goes to zero. The highest order

term in the differential equation converges to:

lim
σ→0

σ2

Ñ
1

σ2

∞∑
m=0

d2

dx2
Sm(x)σ2m −

(
1

σ2

∞∑
m=0

d

dx
Sm(x)σ2m

)2
é

= lim
σ→0
− 1

σ2

Å
d

dx
S0(x)

ã2

+O(1).

The next highest order term converges to:

lim
σ→0

ñ
2σ2 d

dx
D(x)− µ(x)

D(x)

ô
1

σ2

∞∑
m=0

d

dx
Sm(x)σ2m = lim

σ→0

1

σ2

ï−µ(x)

D(x)

ò
d

dx
S0(x) +O(1).

The final term remains O(1) as σ goes to zero so:

lim
σ→0

−1

σ2

Å
d

dx
S0(x)

ã2

+
1

σ2

ï−µ(x)

D(x)

ò
d

dx
S0(x) = 0.
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Multiplying through by σ2 gives:Å
d

dx
S0(x)

ã2

+

ï
µ(x)

D(x)

ò
d

dx
S0(x) = 0.

This is a quadratic equation in d
dx
S0 therefore there are two possible solutions. Either:

d

dx
S0(x) = 0 or

d

dx
S0(x) =

−µ(x)

D(x)
.

Therefore, after integration, S0(x) is either equal to some constant, or:

S0(x) =

∫ x

x0

−µ(y)

D(y)
dy.

This result is completely consistent with the small noise limit of the effective potential

found via integration by parts (see Equation (8.17)).

Suppose now that x ∈ Rn. Then, from Fokker-Planck, the equilibrium distribution

obeys:

−∇ · (µ(x)q(x)) + σ2
∑
ij

∂2

∂xi∂xj
(Dij(x)q(x)) = 0.

To simplify the notation let ∂i represent the partial derivative with respect to xi and ∂2
ij

represent the second partial derivative with respect to xi and xj .

In order to solve for S0 rearrange the stationary Fokker-Planck equation. First, by the

divergence product rule:

−∇ · (µ(x)q(x)) = −[(∇ · µ(x))q(x) + µ(x) · ∇q(x)].
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To expand the diffusion term use the standard product rule:

∑
ij

∂2
ij(D(x)q(x)) =

∑
ij

(
∂2
ijDij(x)

)
q(x) + 2 (∂iDij(x)) (∂jq(x)) +Dij(x)∂2

ijq(x).

Now, letting q(x) = exp (−S(x|σ)):

∂iq(x) = − [∂iS(x|σ)] q(x)

∂2
ijq(x) =

[
−∂2

ijS(x|σ) + ∂iS(x|σ)∂jS(x|σ)
]
q(x).

All terms are scaled by q(x) so we can divide it out from the full expression. To find S0

consider the limit that σ goes to zero. Then the terms O(σ−2) dominate the equation. This

leaves:

∇S0(x) · µ(x) + (∇S0(x))TD(x)(∇S0(x)) = 0.

or:

∇S0(x) · (D(x)∇S0(x) + µ(x)) = 0.

Then, provided the diffusion tensor is invertible:

∇S0(x) ·D(x)
(
∇S0(x) +D−1(x)µ(x)

)
. (8.41)

Equation (8.41) is a static Hamilton-Jacobi equation [23]. Hamilton-Jacobi equations play

a fundamental role in classical mechanics, in particular, for the trajectory of particles that

conserve energy. The Hamilton-Jacobi equation has three solutions. First, the parenthetical

term could be zero:

∇S0(x) = −D−1(x)µ(x) (8.42)

which would require that the vector field D−1(x)µ(x) is conservative, and in which case
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S0(x) would be the associated potential. Second, the second term could be zero:

∇S0(x) = 0

which would require that the potential is constant. Or, third, the two terms could be

orthogonal. This indeterminacy allows for multiple solutions of the first type joined along

surfaces where ∇S0(x) = 0, or ∇S0(x) is perpendicular to
[
−µ(x) + 1

2
D(x)(∇S0(x))

]
.

In general we will focus on solutions of the first type or third type inside domains where

the latter solutions are not possible. To construct a general solution we can combine these

domains, making sure to match S0 at the boundaries appropriately. This is the procedure

suggested in [23]. Numerical methods are provided in [280].

The first solution generalizes the one dimensional result ∂S0(x) = − µ(x)
D(x)

and is gener-

ally the most intuitive. If D(x)−1µ(x) is a gradient system then there exists an S0(x) such

that ∇S0 = −D(x)−1µ(x). This is the standard relationship between a vector field and a

potential.

IfD(x)−1µ(x) is not a gradient system then we need to find an S0 such that the gradient

of S0(x) is perpendicular to the difference between −D(x)−1µ(x) and ∇S0(x).

Let µcirc = ∇S+D(x)−1µ(x) denote the circulant [23]. The circulant is the remainder

left over when approximating D(x)−1µ(x) with the negative gradient of the quasipoten-

tial. If S0 satisfies the Hamilton-Jacobi equation then the circulant is perpendicular to the

gradient of S0 under the inner-product weighted by the diffusion tensor:

µcirc(x) ·D(x)∇S0(x) = 0.

Suppose D(x) is proportional to the identity. Then, since S0 is a scalar function the

vector field Equation (8.41) requires the vector field µcirc moves along isoclines of S0. For
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this reason the circulant is sometimes called a transverse vector field. Notice the strong

resemblance to the HHD and Helmholtz potential. Like the HHD we are searching for a

scalar potential function whose gradient generates a conservative field that approximates a

vector field, and, when the conservative field is removed from the original vector field the

remainder field circulates.

The quasipotential has a number of important properties. The most intuitive is proved

below:

Lemma 38. Given an equilibrium distribution q(x) = expS0(x|σ) the quasipotential

(negated first term in the Laurent expansion of S0(x|σ) in σ2) is a Lyapunov function for

the deterministic eqution d
dt
x = µ(x) [23].

Proof. Given d
dt
x(t) = µ(x):

d

dt
S0(x(t)) = ∇S0(x) · d

dt
x = ∇S0(x) · µ(x)

= ∇S0(x) ·D(x)D−1(x)µ(x) = ∇S0(x) ·D(x)f(x)

= ∇S0(x) ·D(x)(−∇S0(x) + µcirc)

.

The diffusion tensor D(x) is positive semi-definite for all x so the product ∇S0(x) ·

D(x)∇S0(x) ≥ 0. By definition of the circulant, the inner product with the circulant

∇S0(x) ·D(x)µcirc is zero so d
dt
S(x(t)) ≤ 0.

To make the comparison with the Helmholtz potential more direct we define a general-

ized quasipotential by modifying the vector field appearing in the Hamilton-Jacobi equation

594



and generalize the inner-product to allow for arbitrary weights:

∇φq(x) ·W (x)(∇φq(x) + f(x)) = 0. (8.43)

HereW (x) is an arbitrary positive-definite weight matrix, and f(x) are the forces. Note that

the forces f(x) = D−1(x)(µ(x)−∇ ·D(x)) only differ from the vector field that appears

in the quasipotential by the inclusion of the Itô term −D−1∇ ·D(x). This arises from the

zeroeth order term in the Laurent expansion of S(x), and is zeroeth order in σ if D(x) is

replaced with σ2D(x). The first term is O(σ−2) so it dominates in the small noise limit.

Thus, in the small noise limit the forces converge to the vector field decomposed using the

quasipotential. If W (x) is set to D(x) and a small noise limit is taken, then the generalized

Hamilton-Jacobi equation converges to the Hamilton-Jacobi equation associated with the

the Friedlin-Wentzell quasipotential.

Equation (8.43) allows for easy comparison with the Helmholtz potential. The poten-

tials obey the Poisson equation and Hamilton-Jacobi equations respectively:

∇ ·W (x) · (∇φ(x) + f(x)) = 0

∇φq(x) ·W (x)(∇φq(x) + f(x)) = 0

(8.44)

where the weight matrices may arise from a change of coordinates, or from the diffusion

tensor. Note that both equations consist of a requirement on the remainder left over after

approximating the forces with the negative gradient of a potential function. The Poisson

equation requires that, after weighting, the remainder is incompressible. The Hamilton-

Jacobi equation requires that, after weighting, the remainder is orthogonal to the gradient

of the potential. While these equations are similar, this last distinction is important. It

introduces different geometric requirements on the remainder, and hence what it means to
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find a remainder that circulates.

8.4.3 The Effective Potential

Let q(x) be the steady state distribution for the SDE. Then the effective potential is defined:

φeff(x) = − log(q(x)) (8.45)

or, in some limiting scenarios, as a function of the limiting parameter times − log(q(x)).

For example, if the noise intensity is vanishing then we might define φeff(x) = − 1
σ2 log(q(x)).

These definitions are motivated by the Boltzmann equation. Written this way, the effective

potential plays the same role as energy if the system is energetically closed.

We have hinted at the effective potential throughout this discussion, but will now ex-

plore it in depth. Like the Helmholtz potential and quasipotential, the effective potential

can be expressed as the solution to a PDE involving the approximation of the forces with

the gradient of a potential function. In fact, we will show that the PDE governing the

effective potential is intimately related to both the Poisson and Hamilton-Jacobi equations.

We then use this relation to derive an equivalence theorem, and to show how the potentials

are related to the steady state distribution.

To start, consider the case when D(x) = σ2I . Then, as usual, we begin by writing

down the stationary Fokker-Planck equation:

d

dt
π(x, t) = −∇ · (µ(x)π(x, t)) + σ2∇2π(x, t).
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Then stationarity requires:

−∇ · (µ(x)q(x)) + σ2∇2q(x) = 0.

Then suppose that q(x) takes the form:

q(x) =
1

Z
exp (−S(x)).

so S(x) is proportional to the effective potential. Then the gradient of the stationary

distribution is:

∇q(x) = ∇ 1

Z
exp (−S(x)) = (−∇S(x)) q(x).

and by the divergence product rule:

−∇ · (µ(x)q(x)) = − ([∇ · µ(x)]q(x)− [µ(x) · ∇S(x)]q(x))

∇2q(x) = ∇ · ∇q(x) = ∇ · [(−∇S(x)) q(x)] = [∇S(x) · ∇S(x)]q(x)− [∇2S(x)]q(x).

Substituting into the stationarity condition and canceling the common factor of q(x):

∇ · µ(x)− µ(x) · ∇S(x) = σ2
[
∇S(x) · ∇S(x)−∇2S(x)

]
Divide across by σ2 and replace µ(x)/σ2 with f(x):

∇ · f(x)− f(x) · ∇S(x) = ∇S(x) · ∇S(x)−∇2S(x).
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Finally, rearrange the equation so that the left hand and right hand sides are familiar:

∇ · (∇S(x) + f(x)) = ∇S(x) · (∇S(x) + f(x)) (8.46)

Equation (8.46) is the necessary requirement for S(x) to be proportional to the effective

potential if the noise is isotropic and its instantaneous variance constant. Notice that the

left hand side is the divergence of the circulant (the difference between the conservative

field and the stochastic field), while the right hand side is the inner product between the

conservative field and the circulant. That is, the left hand side is the left hand side of

the Poisson equation, and the right hand side is the left hand side of the Hamilton-Jacobi

equation. If both are independently zero, then S(x) is automatically proportional to the

effective potential. If both sides are independently zero then the circulant is divergence-

free and the circulant is orthogonal to the conservative field at every x.

Equation (8.46) can be rewritten:

∇ · (∇S(x) + f(x))−∇S(x) · (∇S(x) + f(x)) = 0. (8.47)

In this form it is clear that the effective potential obeys a PDE that is a mixture of both the

Hamilton-Jacobi equation and the Poisson equation which define the quasipotential and

Helmholtz potential.

Now suppose that the noise is not isotropic and constant. Then the Fokker-Planck

equation takes the more complicated form:

d

dt
π(x, t) = −∇ · (µ(x)π(x, t)) + σ2

∑
ij

∂xi∂xjDij(x)π(x, t).
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Which gives the equilibrium condition:

∇ ·

([
µ(x)− σ2

2

∑
j

∂xjDij(x)

]
q(x)

)
=
σ2

2
∇ ·Dij(x)∇q(x).

Next let:

f(x) =
1

σ2
D−1(x)

(
µ(x)− σ2∇ ·D(x)

)
denote the forces. In the small noise limit the forces converge to the vector fieldD−1(x)µ(x),

which is decomposed into the quasipotential and the circulant when using the Friedlin-

Wentzell quasipotential.

Then, applying the divergence and gradient product rules, and canceling the common

factor of q(x) from both sides of the equation gives the general stationarity equation for the

effective potential:

∇ ·D(x) (∇S(x) + f(x)) = ∇S(x) ·D(x) (∇S(x) + f(x)) (8.48)

As in the special case when D(x) = I , the stationarity condition is a mixture of the

Poisson equation and Hamilton-Jacobi equation:

∇ ·D(x) (∇S(x) + f(x))−∇S(x) ·D(x) (∇S(x) + f(x)) = 0. (8.49)

Equation (8.48) can be used to work out the large and small noise limits of the effective

potential. Here we focus on the constant isotropic noise case for simplicity. We have

already shown that the quasipotential is a small noise limit of the effective potential, if we
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Figure 8.4: Classification of which potential to use, given state space and noise/forcing
limit.

assume the effective potential has the form:

S(x, σ2) =
1

σ2

∞∑
m=0

Sm(x)σ2m.

Then:

lim
σ2→0

σ2 [∇ · (S(x) + f(x)) +∇S(x) · (S(x) + f(x))] = lim
σ2→0

O(σ0) +O(σ−2) = 0

is dominated by the second half of the bracketed expression since it depends on an addi-

tional factor of σ−2. Thus the limit leaves the Hamilton-Jacobi equation for the quasipo-

tential.

The same technique can be used to isolate the Poisson term if we take a large noise limit.

In the large noise limit the stationary distribution becomes increasingly smooth. When the

noise is large the forces are small, so a large noise limit is analogous to the weak forcing

limits considered in Section 7.3. When the noise is large, diffusion dominates drift. If the
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noise is isotropic and constant, then the steady state approaches a uniform distribution. It

follows that the effective potential should approach an arbitrary constant, which we pick

to be zero. The constant is arbitrary since the distribution is normalized by Z. Then, it is

natural to expand the effective potential for large σ2 as:

S(x, σ) =
1

σ2

∞∑
m=0

Sm(x)σ−2m.

Then:

lim
σ2→∞

σ2 [∇ · (S(x) + f(x)) +∇S(x) · (S(x) + f(x))] = lim
σ2→∞

O(σ0) +O(σ−2) = 0

so the Poisson term dominates. Therefore:

φ(x) ∝ lim
σ2→∞

σ2φeff(x). (8.50)

It follows that in the large noise limit, if the diffusion tensor is constant and isotropic,

then the effective potential converges to the Helmholtz potential, and in the small noise

limit converges to the quasipotential. Note that this limiting behavior mimics the same

results observed for discrete space processes, and is natural given the different path integral

interpretations of the Helmholtz potential and quasipotential (see Figure 8.4).

8.5 Comparison

We are now equipped to compare the three potentials. The three potentials (Helmholtz,

quasi, effective) all decompose the forces. Each attempts to approximate the forces with

the negative gradient of a potential function, and enforces a requirement on the error
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in that approximation. The remainder left over after approximating the forces with the

gradient of a potential is a circulant. The Helmholtz potential requires that the circulant is

incompressible. The quasipotential requires that the circulant is transverse (orthogonal to

the gradient of the quasipotential).6 The effective potential mixes the two requirements.

The three potentials are defined by the Poisson, Hamilton-Jacobi, and stationarity equa-

tions respectively:

Poisson: ∇ ·D(x)(∇φ(x) + f(x)) = 0

Hamilton-Jacobi: ∇φq(x) ·D(x)(∇φq(x) + f(x)) = 0

Stationarity: (∇−∇φeff(x)) ·D(x)(∇φeff(x) + f(x)) = 0

(8.51)

Equation (8.51) lays the groundwork for analyzing cases when the potentials are all

equivalent. These are explored in the next section.

8.5.1 Conditions for Equivalence

Theorem 39 (Potential Equivalence). Given an SDE X(t) in Rn defined by Equation (8.3)

with a diffusion tensor D(x) that is invertible for all x that can be reached by X(t) with

nonzero probability, then either all three potentials (Helmholtz, quasi, effective) can be

chosen so that they are equivalent, or none of the three potentials are equivalent.

Proof. Either none of the three potentials are equivalent, exactly two are equivalent, or all

three are equivalent. We will prove that it is impossible for exactly two to be equivalent.

Suppose two of the potentials are equivalent. Then there is a function S(x) that satisfies

6Notice that it is possible to be transverse and compressible. For example, if the isoclines of the potential
are circular and centered at the origin, and the circulant follows the isoclines, but follows them clockwise for
negative x and counterclockwise for positive x, then the circulant is transverse, but is compressible since the
divergence is nonzero along x = 0.
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two of the equations in Equation (8.51). But if S(x) satisfies two of the equations it must

satisfy the third equation, since any of the three equations can be expressed as a linear

combination of the other two equations. Thus, if two of the potentials are equivalent there

exists a potential that satisfies all three equations.

Theorem 39 is useful since it is often easier to solve and check the Poisson and Hamilton-

Jacobi equations than the stationarity equations. If a solution to the Poisson equation

can be identified which satisfies the Hamilton-Jacobi equation then it is necessarily also

the effective potential. Alternatively, in cases when the effective potential is known, the

equivalence theorem can be used to check whether it is also a Helmholtz and quasipotential

without checking both the Poisson and Hamilton-Jacobi equations.

Theorem 39 can be used to derive other equivalence requirements. For example, sup-

pose that X ∈ R2 and D(x) = I . The HHD requires that the circulant can be written as the

curl of a scalar valued function θ(x). In two dimensions the curl is simply a ninety-degree

rotation R of the gradient. Therefore the circulant must be expressible as R∇θ(x). The

Hamilton-Jacobi equation is now:

(∇S(x))TR(∇θ(x)) = 0.

For any given x this takes the form vTRw = 0 for some pair of vectors v, w. Since

R rotates by ninety-degrees, v is orthogonal to Rw if and only if v is parallel to w.

Therefore the Hamilton-Jacobi equation requires that the vector potential is constant along

the isoclines of S(x). Therefore the vector potential must be some scalar valued function

of the scalar potential:

θ(x) = Λ(S(x)). (8.52)
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Figure 8.5: Isoclines of θ and φ in 2D are shown on the left. Since these isoclines are
not parallel the inner product between the circulant and the conservative field is not zero
everywhere as illustrated in the right hand panel.

Then, by the chain rule:

∇θ(x) = [∂sΛ(S(x))]∇S(x)

so the Hamilton-Jacobi equation is satisfied automatically. Thus, in two dimensions, and

for constant isotropic noise, the potentials are only equivalent if the vector potential can be

expressed as a scalar function of the scalar potential (Helmholtz). Therefore, the Helmholtz

potential is only the effective potential for a two-dimensional process with constant isotropic

noise if the vector potential is a scalar function of the scalar potential. An example is

illustrated in Figure 8.5 where the isoclines of the two potential functions are not parallel,

so the Helmholtz potential is not equivalent to the quasipotential or effective potential.

More generally:

Corollary 39.1 (Equivalence in Detailed Balance). If X(t) is governed by an SDE that

obeys detailed balance (forces f(x) are conservative) then all three potentials are equiva-
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lent.

Proof. If the SDE obeys detailed balance then the forces f(x) are conservative so f(x) =

−∇S(x) for some S(x). Then if all three potentials are set equal to S(x) the Poisson,

Hamilton-Jacobi, and stationarity equations are all satisfied simultaneously.

Outside of detailed balance the three potentials are usually not equivalent. However,

in some important special cases all three are the same. In the next section we will show

that if the SDE is an Ornstein-Uhlenbeck (OU) process then it is always possible to find a

potential function which is simultaneously a Helmholtz, quasi, and effective potential.

8.5.2 Equivalence for OU Processes

An Ornstein-Uhlenbeck (OU) process is an SDE of the form:

dX = −AX(t)dt+BdW. (8.53)

OU processes are widely used to approximate the behavior of SDEs near a stable

attractor of the deterministic process, or fluctuations away from deterministic trajectories

[281]. OU processes are also widely used to model stochastic oscillators. Throughout this

section we will assume that A is positive definite and D = 1
2
BBT is invertible. These

assumptions guarantee that there is a Gaussian steady state with mean zero and finite

covariance.

To start, consider an OU process in R2 centered at x0 = 0 with isotropic noise. Then

let µ(x) = −Ax and D(x) = I so:

dX = −AXdt+ σdW. (8.54)
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Since the domain is unbounded and µ(x) is not L1 integrable the HHD of the stochastic

field is not unique [8]. It follows that there is a space of potentials φ, θ such that:

−∇φ(x) +∇× θ(x) =
1

σ2
µ(x) = − 1

σ2
Ax. (8.55)

Our goal is to find a particular pair of potentials φ, θ such that the scalar potential φ

is equivalent to the effective potential for the system, and converges to the quasipotential

in the small noise limit. This requires that the potentials also satisfy the Hamilton-Jacobi

equation:

∇φ ·
Å
∇φ+

1

σ2
µ(x)

ã
= (∇φ) · (∇× θ(x)) = 0. (8.56)

That is, the conservative field∇φ must be orthogonal to the rotational field∇× θ at every

x.

The main advantage of working in 2D is that the curl operator is just a rotation of the

gradient operator. This simple relation allows us to solve explicitly for φ and θ in terms of

the entries of A.

The gradient is:

∇ =

 ∂x1

∂x2


and the curl is:

∇× =

 ∂x2

−∂x1

 .
Therefore, if we define the rotation matrix R that rotates each vector by ninety degrees:

R =

 0 1

−1 0

 .
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Then:

∇× = R∇.

The right hand side of the HHD is linear, therefore we expect both potentials to be

quadratic, and centered at the origin:

φ(x) =
1

2
xBxT

θ(x) =
1

2
xCxT

(8.57)

for some pair of matrices B and C. Any quadratic form is symmetric, for example:

xTBx = b11x
2
1 + (b12 + b21)x1x2 + b22x

2
2 = b11x

2
1 + (b21 + b12)x1x2 + b22x

2
2.

Therefore, without loss of generality we assume that both B and C are symmetric.

In general, for any symmetric matrix:

∇1

2
xBxT = Bx.

So:

∇× 1

2
xCxT = RCx.

Therefore:

−∇φ(x) +∇× θ(x) = (−B +RC)x.

Plugging into the HHD we get the linear equation:

(−B +RC)x = Ax. (8.58)
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Since B and C are both symmetric the left hand side of this equation has six degrees of

freedom. The matrix A has four degrees of freedom, so there is a two dimensional space of

possible B and C. In order to solve for some constraints on B and C take the divergence

and curl of the HHD to get a pair of Poisson’s equation. Since the divergence is orthogonal

to the curl, and the curl to the gradient:

−∇2φ(x) = −∇ ·Bx = −trace(B) = ∇ · Ax = trace(A)

−∇2θ(x) = ∇×RCx = trace(C) = ∇× Ax = trace(R A).

That is:
trace(B) = b11 + b22 = −trace(A)− (a11 + a22)

trace(C) = c11 + c22 = trace(R A) = a12 − a21.

(8.59)

Clearly this is not enough to specify B and C. If we treat the trace of the matrix

appearing in a quadratic form as a general measure of the size of the associated quadratic

potential then the first equation requires that the scalar potential is about the same size as

the diagonal ofA, while the second equation requires that vector potential is about the same

size as the asymmetric part of A. In fact, if A is symmetric then the system is conservative

and we can set B = A and C = 0. More generally, if A is not symmetric we could let:

B = −1

2

(
A+ AT

)
=

 a11
1
2
(a12 + a21)

1
2
(a12 + a21) a22


C =

1

2
RT
(
A− AT

)
=

 1
2
(a12 − a21) 0

0 1
2
(a12 − a21)

 .
(8.60)

Then −∇φ(x) = 1
2

(
A+ AT

)
x and, since RRT = I , ∇ × θ(x) = R 1

2
RT
(
A− AT

)
=

1
2
(A− AT )x. Then, −∇φ+∇× θ = 1

2

(
A+ AT

)
x+ 1

2
(A− AT )x = Ax.
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That said, this decomposition does not satisfy the Hamilton-Jacobi equation since:Å
1

2

(
A+ AT

)
x

ã
·
Å

1

2

(
A− AT

)
x

ã
=

1

4

(
xTAAx+ xTATAx− xTAATx− xTATATx

)
and:

1

4

(
xTAAx+ xTATAx− xTAATx− xTATATx

)
=

1

4
xT (ATA− AAT )x 6= 0

unless A is a normal matrix (is unitarily diagonalizable).

In order to find a decomposition that does satisfy the Hamilton-Jacobi equation rewrite

the Hamilton-Jacobi in terms of R:

(∇φ(x))TR(∇θ(x)) = 0.

In general the quadratic form vTRw = 0 if and only if v is parallel to w. Therefore the

Hamilton-Jacobi equation requires:

∇θ(x) = s(x)∇φ(x) (8.61)

for some scalar function s(x). For OU processes it is sufficient to assume s(x) is a constant

s. Then, plugging into the left hand side of the HHD:

−∇φ(x) +∇× θ(x) = −∇φ(x) +R∇θ(x) = −∇φ(x) + sR∇φ(x) = (−I + sR)∇φ

which gives:

(−I + sR)∇φ(x) =
1

σ2
Ax (8.62)
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where both s and φ(x) are unknown. Substitute in the quadratic form for φ(x):

(−I + sR)Bx =
1

σ2
Ax (8.63)

or:

(−I + sR)B =
1

σ2
A. (8.64)

For simplicity assume 1
σ2 = 1. We can generalize our results to arbitrary σ by multi-

plying by 1
σ2 .

Now the goal is to solve for the four unknowns b11, b12 = b21, b22 and s given the four

knowns a11, a12, a21, a22. As long as s is unknown this is not a linear problem. To solve,

write the four equations explicitly (noting b12 = b21):

− b11 + sb12 = a11

− b12 + sb22 = a12

− sb11 − b12 = a21

− sb12 − b22 = a22.

(8.65)

Notice that if we add the first and fourth equation we get:

−b11 + sb12 − sb12 − b22 = −trace(B) = a11 + a22 = trace(A)

which matches the requirement we derived from Poisson’s equations:

trace(B) = −trace(A) (8.66)
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Next note that if we subtract the third equation from the second equation we get:

−b12 + sb22 + sb12 + b12 = s(b11 + b22) = strace(B) = a12 − a21.

Plugging in trace(B) = −trace(A) and simplifying we find:

s = −a12 − a21

trace(A)
. (8.67)

That is, the vector potential is proportional to the scalar potential with a factor s that is

the ratio between the asymmetric part of A and its trace. Notice that this proportionality

corresponds to the requirement on the vector potential we derived from Laplace’s equation.

Also notice that if A is symmetric then s is zero.

Now that s is known the four equations are a linear system in three unknowns. In

order to solve this linear system it is convenient to let b11 = −1
2
trace(A) + u and b22 =

−1
2
trace(A)− u. Then:

1

2
(a11 + a22)− u+ sb12 = a11

− b12 −
a12 − a21

trace(A)

Å
−1

2
trace(A)− u

ã
= a12

a12 − a21

trace(A)

Å
−1

2
trace(A) + u

ã
− b12 = a21

− sb12 +
1

2
(a11 + a22) + u = a22.

To simplify first cancel the common factor of the trace ofAwhere possible, and subtract
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all terms in the first and fourth equations involving a11 and a22 to the right hand side:

− u+ sb12 =
1

2
(a11 − a22)

− b12 +
1

2
(a12 − a21)− su = a12

− 1

2
(a12 − a21)− su− b12 = a21

− sb12 + u = −1

2
(a11 − a22).

Notice that the first and fourth equations are identical. This should not be a surprise

since we have already solved for two unknowns. If we subtract all terms in equations two

and three involving a12 and a21 to the left hand side then the two equations are identical,

leaving the linear system:

− u+ sb12 =
1

2
(a11 − a22)

− b12 − su =
1

2
(a12 + a21)

Notice that the two terms left on the right hand side correspond to the difference along

the diagonal of A and the sum off the off-diagonal elements. This should not be a surprise

since we have already ensured the decomposition would match the sum of the diagonal

elements of A and the difference of the off-diagonal elements.

If A is symmetric then s is zero, therefore:

u = −1

2
(a11 − a22)

b12 = −1

2
(a12 + a21)

which automatically gives B = −A.

If A is not symmetric then s is not zero so we need to solve the linear system for u and
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b12. The linear system has solution:

u = −1

2

1

(s2 + 1)
[(a11 − a22) + s(a12 + a21)]

b12 =
1

2

1

(s2 + 1)
[s(a11 − a22)− (a12 + a21)]

(8.68)

Now plugging back in for b11 and b22 we find:

b11 = −1

2
(a11 + a22)− 1

2

1

(s2 + 1)
[(a11 − a22) + s(a12 + a21)]

b12 = b21 =
1

2(s2 + 1)
[s(a11 − a22)− (a12 + a21)]

b22 = −1

2
(a11 + a22) +

1

2

1

(s2 + 1)
[(a11 − a22) + s(a12 + a21)]

(8.69)

As usual, if s = 0 then we get B = −A.

If s is small then:

B = −1

2
[A+ AT ]− s1

2

 (a12 + a21) (a22 − a11)

(a22 − a11) −(a12 + a21)

+O(s2). (8.70)

Note that this differs from the most natural decomposition B = −1
2
[A + AT ] by the factor

−1
2
s[RA− AR].

In summary, given an OU process in R2 with deterministic skeleton µ(x) = −Ax

the scalar potential and vector potentials take the forms φ(x) = 1
2
xTBx and θ(x) = sφ(x)

where s = − a12−a21
trace(A)

andB is symmetric with b11, b12, and b22 as given by Equation (8.69).

Then φ(x), θ(x) are an HHD of the forces and satisfy the Hamilton-Jacobi equation. It

follows that the rotational field is orthogonal to the conservative field everywhere and φ(x)

is equivalent to both the effective potential and the quasipotential. Therefore, there exists

at least one generic non-detailed balance case where the potentials can be chosen
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so that the Helmholtz potential is equivalent to the effective potential and the quasipo-

tential.

We have also shown that for a two dimensional OU process there exists a natural

measure of how much rotation is present in a system relative to its conservative part, s,

where s is given by the ratio of the asymmetric part of A to its trace. It is worth noting that

|s|> 0 whenever A is not symmetric, so even if A has all real eigenvalues the field Ax is

not necessarily conservative, and the vector potential may not be zero.7

These results can be generalized to higher dimension and to anisotropic noise. Before

considering the general case we can easily extend our first result from the previous section,

that is, if the matrix A is normal and noise is isotropic then φ(x) = 1
4
xT (A + AT )x is

equivalent to all three potentials.

As in the previous section assume that X(t) is a stochastic process which takes values

on Rn with deterministic skeleton µ(x) = −Ax and diffusion D(x) = I . Also assume that

A is normal:

ATA = AAT .

Then:

Lemma 40. Given any OU process in Rn with drift µ(x) = −Ax and diffusion tensor

D = σ2I then, if A is normal, there exists a potential function:

S(x) =
1

4σ2
xT (A+ AT )x (8.71)

that is equal to the Helmholtz potential, quasipotential, and effective potential up to the

addition of a constant.

7The ratio s is also the area production defined by [281, 282].
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Proof. The forces are:

f(x) = − 1

σ2
Ax = − 1

2σ2

(
A+ AT

)
x− 1

2σ2

(
A− AT

)
x.

Let:

S(x) =
1

4σ2
xT (A+ AT )x

Then:

−∇S(x) = − 1

2σ2
(A+ AT )x.

Therefore:

∇S(x) + f = − 1

2σ2

(
A− AT

)
x.

In general the∇·Bx is the trace of B. The matrix A−AT is all zero along its diagonal

so:

∇ · (∇S(x) + f(x)) = −∇ · 1

2σ2

(
A− AT

)
x = − 1

2σ2
trace(A− AT ) = 0.

Therefore S(x) satisfies the Poisson equation, so is a Helmholtz potential.

Next, check the Hamilton-Jacobi equation:

∇S(x) · (∇S(x) + f(x)) =
1

4σ4
xT
(
A+ AT

) (
A− AT

)
x.

Expanding:

xT
(
A+ AT

) (
A− AT

)
x = xTAAx− xTAATx+ xTATAx− xTATATx.
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But, xTAAx = xTATATx so:

∇S(x) · (∇S(x) + f(x)) =
1

4σ4
xT (ATA− AAT )x.

For general A the commutator ATA − AAT is not zero. However, if A is normal then

ATA = AAT by definition so:

∇S(x) · (∇S(x) + f(x)) = 0.

It follows that S(x) satisfies the Hamilton-Jacobi equation so is proportional to the

quasipotential. Then, by the equivalence relation between the potentials, S(x) must also be

proportional to the effective potential.

More generally, the stationary distribution for any OU process in Rd with diffusion

tensor D is a multivariate normal distribution with mean zero:

q(x) ∝ exp

Å
−1

2
xTΣ−1x

ã
(8.72)

with covariance Σ. It follows that the effective potential always takes the form:

φeff(x) =
1

2
xTΣ−1x. (8.73)

The covariance matrix is symmetric, and is the solution to the Lyapunov equation [75]:

AΣ + ΣAT = 2D. (8.74)

Using the Fredholm alternative it can be shown that the Lyapunov equation has a unique
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solution in the space of symmetric matrices [71].

By Theorem 39, if we can show that the effective potential satisfies the weighted

Poisson equation ∇ · D(x) (∇φeff(x) + f(x)) = 0 then φeff satisfies the Hamilton-Jacobi

equation automatically. Therefore, to establish general equivalence we need to show that:

∇ ·D
(
Σ−1x−D−1Ax

)
= 0

The divergence of a matrix times x is the trace of the matrix, so the Poisson equation

reduces to:

trace[DΣ−1] = trace[A].

By exploiting the Lyapunov equation and the invertibility of Σ we can prove that this is true,

and thus, for any OU process there exists a potential which is simultaneously a Helmholtz,

quasi, and effective potential.

Theorem 41. Given an OU process in Rn with drift µ(x) = −Ax where A is positive

definite, and with a positive definite diffusion tensor D, there exists a potential function

S(x) that is proportional to the Helmholtz, quasi, and effective, and potentials. The

potential is:

S(x) =
1

2
xTΣ−1x (8.75)

where Σ is the covariance matrix for the stationary distribution of the OU process satisfy-

ing:

AΣ + ΣAT = 2D (8.76)

Proof. Given µ(x) = −Ax the forces are given by f(x) = −D−1Ax. Theorem 39 states

that if there is a potential S(x) that is simultaneously the effective potential and satisfies the

Poisson equation then it also satisfies the Hamilton-Jacobi equation and all the potentials
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are equivalent. Here we take advantage of the fact that the effective potential is known for

OU processes, so we can check whether or not it satisfies the Poisson equation directly.

Given an OU process with positive definite A the stationary distribution is Gaussian

with form:

q(x) ∝ exp

Å
−1

2
xTΣ−1x

ã
(8.77)

where:

AΣ + ΣAT = 2D.

Therefore let:

S(x) = − log (q(x)) =
1

2
xTΣ−1x. (8.78)

The covariance matrix Σ is symmetric so Σ−1 is also symmetric. Therefore:

∇S(x) = Σ−1x. (8.79)

It follows that the Poisson equation is satisfied if:

∇ ·D(Σ−1x− 2

σ2
Ax) = trace

(
DΣ−1

)
− trace (A) = 0

or:

trace
(
DΣ−1

)
= trace (A) .

Multiply the Lyapunov equation AΣ + ΣAT = σ2I from the right by Σ−1. Then:

A+ ΣATΣ−1 = 2DΣ−1.
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Take the trace on both sides:

trace(2DΣ−1) = trace(A) + trace(ΣATΣ−1).

But ΣATΣ−1 is a similarity transform of AT so trace(ΣATΣ−1) = trace(AT ). The

transpose of A has the same diagonal as A so trace(AT ) = trace(A). Therefore:

trace
(
2DΣ−1

)
= 2trace (A) . (8.80)

or trace (DΣ−1) = trace (A) .

Therefore the effective potential S(x) satisfies the Poisson equation hence it must also

satisfy the Hamilton-Jacobi equation, so all three potentials are equivalent.

Therefore, for any OU process, the effective potential satisfies both the Poisson and

Hamilton-Jacobi equation. The general equivalence between the three potentials for OU

processes in Rn leads to general equivalence near stable equilibria of the deterministic

skeleton.

Suppose the point x∗ is a stable equilibrium of µ(x). Then µ(x∗) = 0 and we could

write:

µ(x∗ + y) = −A(x∗)y +O(y2) (8.81)

where A is the Jacobian matrix of µ(x) evaluated at x∗. If the diffusion tensor is constant

then the linearized SDE is an OU process, and the corresponding potentials are all equiva-

lent. Therefore, given an arbitrary µ(x), if µ(x) has stable equilibria it is possible to pick a

Helmholtz potential φ which converges to the effective potential and the quasipotential at

at least one stable equilibrium of the deterministic process.
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It also follows that substantive differences in the potentials (differences that cannot be

resolved by changing which component of the harmonic field is associated with φ) are the

result of nonlinear features of f(x). Since we generally want the potentials to agree in

the vicinity of stable equilibria, this means that the potentials will primarily differ in their

treatment of saddles, and the curvature of each well away from its basin.

8.6 Summary

In this chapter we have illustrated how the discrete HHD developed in Chapter 6 can be

extended to the continuum. We then showed that, as for discrete-space processes, the

Helmholtz potential is associated with steady state dynamics when the process is dominated

by diffusion. We show that the effective potential is governed by a PDE which combines

the PDE defining the Helmholtz potential, and the PDE defining the quasipotential, and

that one term dominates when noise is small, and the other when noise is large. A general

equivalence theorem is presented in Section 8.5, and it is shown that the potentials may be

equivalent even if the underlying process does not obey detailed balance.
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Part V

Discussion
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Chapter 9

Discussion and Future Work

In this dissertation we have shown that the discrete HHD defined by Lim and Jiang [15, 16]

is a powerful tool for analyzing edge flows on networks that arise in applications. We

illustrate that, if the appropriate edge flow is chosen, then the HHD can be used to describe

structure, and to analyze dynamics. Chapters 4 and 5 showed that the HHD can be used to

describe the structure of competition in tournaments. Chapters 6 and 7 demonstrate that,

when applied to a Markov chain, the HHD can be used to build thermodynamic analogies,

is intimately related to nonequilibrium steady states, steady state fluxes, and observable

production in the weak rotation limit, and is a complementary potential decomposition to

the quasi-potential, which can be generalized to networks.

The results described here point to a variety of interesting avenues for future research.

The methods presented in Chapter 3 could be extended by considering other graph

operations (unions, intersections, contractions, strong and tensor products). Cycle basis

optimization methods could be implemented to minimize the length of the cycles in the

cycle basis, improve the conditioning of the curl, and reduce the reuse of edges.
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The trait-performance theorem presented in Chapter 4 could be extended by weakening

the statistical assumptions. In particular the assumption that the traits are drawn inde-

pendently from the network structure could be generalized. Possible modifications were

outlined at the end of Chapter 4. An important alternative approach would be to consider

other generic covariance structures for the edge flow.

The estimation tools developed in Chapter 5 could be applied to other examples. We did

not report all examples tested in this dissertation, and have a library of exciting examples to

consider in the future. These include a variety of political examples collated at preflib.org.

The examples include: Irish election data from with ranked votes from 44,000 to 64,000

voters on 12-14 candidates [283], 86 elections held by non-profit organizations, trade

unions, and professional organizations [175], the 2007 Glasgow city council elections for

21 wards with 5,000 to 13,000 voters and 8 to 13 candidates, the 2006 and 2009 mayoral

elections in Burlington Vermont, local elections in Aspen, Berkely, Minneapolis, Oakland,

San Francisco, San Leandro, and Takoma Park, the 2002 French Presidential election

[284], and elections to the American Psychological Association between 1998 and 2009 (5

candidates and 13,000-20,000 voters [171]. These data sets are both exciting and diverse.

Some include actual ranked votes submitted, so the methods could be applied without

inferring voter preferences from thermometer polling. Almost all include large sample

sizes on the order of 1,000 to 10,000 voters. An interesting extension to both Chapter 4 and

Chapter 5 would be to develop a trait-performance model for voter opinion. This could be

informed by polling data from the American National Election Study (ANES), which asks

respondents to answer a variety of policy and demographic questions in addition to rating

candidates.

Part IV developed the theoretical tools necessary to analyze dynamics of Markov pro-

cesses with the HHD. There is tremendous promise for future work here, since other
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dynamical properties could be considered (i.e. mixing times, passage times, and quasi-

stability) that are not addressed, and since Part III does not address a specific model system.

In the future we plan to apply the HHD to birth-death models of competition between

species to compare the results of using the discrete HHD to similar potential analyses

using the quasi-potential framework. We have also made preliminary investigations into

generalizations of the evolutionary models proposed by [285]. We plan to apply the weak

rotation expansion to understand evolutionary dynamics when selection is close to conser-

vative. This analysis would extend existing work relating statistical physics and evolution

[286, 287, 288].

In sum, we hope that the work presented here will provide a unified analytic framework

for understanding similar problems that arise in diverse fields.
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Part VI

Appendices
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Appendix A

Estimation Details

A.1 Model

Consider a tournament consisting of m competitors connected by E edges. Assume that

the tournament is connected, and that all competition events are purely pairwise. Index the

edges from 1 to E. For each edge assign an arbitrary direction. Let i(k), j(k) denote the

start and endpoint of edge k. Let pk denote the probability competitor i(k) beats competitor

j(k). Assume that the outcomes of the competition events are independent, and that pk do

not change in time.

Let nk be the number of competition events observed on edge k. Let Wk be the number

of wins observed.
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A.2 Likelihood and Prior

The number of wins Wk is binomially distributed:

Wk ∼ binomial(nk, pk) (A.1)

so:

Pr{Wk = w} =

Ö
nk

w

è
pwk (1− pk)nk−w. (A.2)

Then E[Wk] = pknk and V[Wk] = pk(1 − pk)nk. Order h central moments are

O(n
dh/2e
k ).

Assume that the win probabilities p are themselves realizations of a random variable.

Therefore denote the win probabilities P . Then the likelihood Pk = p given Wk = wk is:

Pr{Pk = p|Wk = wk} =

Ö
nk

wk

è
pwk (1− p)nk−wk . (A.3)

Therefore the likelihood Pk = p follows a Beta distribution:

X ∼ Beta(α, β) then πX(x) =
xα−1(1− x)β−1

B(α, β)
(A.4)

where πX(x) is the probability density of X , and X is supported on [0, 1]. The normalizing

factor B(α, β) is:

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
. (A.5)

Γ(x) is the continuous extension of the factorial: Γ(n + 1) = n! for any integer n.

Thus 1/B(α, β) is, in effect, a continuous extension of the binomial coefficient. The beta
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distribution has moments:

E[X] =
α

α + β

V[X] =
αβ

(α + β)2(α + β + 1)

E[ln(X)] = ψ(α)− ψ(α + β)

V[ln(X)] = ψ(1)(α)− ψ(1)(α + β).

(A.6)

Here ψ(x) = d
dx

ln(Γ(x)) is the digamma function and ψ(1)(x) = d
dx
ψ(x) is the trigamma

function. These moments will come in handy when developing the point estimators.

The beta distribution is the conjugate prior to the binomial. This fact makes the beta

distribution a natural choice of prior for the win probabilities P . If the probability i beats

j is p then the probability j betas i is 1− p. Since the start and endpoint of each edge was

chosen arbitrarily the prior distribution for P should be symmetric about p = 1/2. The

beta distribution is symmetric if α = β. Therefore, we assume that the win probabilities

are sampled i.i.d. from a symmetric beta distribution:

Pk ∼ Beta(γ, γ). (A.7)

Then the posterior distribution for Pk given Wk is:

πPk(p) ∝

Ö
nk

wk

è
pwk (1− p)nk−wk p

γ−1(1− p)γ−1

B(γ, γ)

∝ p(wk+γ−1)(1− p)(nk−wk+γ−1).

(A.8)

The posterior is supported on [0, 1] and has the same functional dependence on p as a
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beta distribution hence Pk given wk is beta distributed:

Pk given wk ∼ Beta(wk + γ, nk − wk + γ). (A.9)

So, given nk, wk and prior parameter γ:

Likelihood: Wk given p ∼ binomial(nk, p)

Prior: Pk ∼ Beta(γ, γ)

Posterior: Pk given wk ∼ Beta(wk + γ, nk − wk + γ)

(A.10)

Since Pk is beta distributed given the observed wins wk the moments of the posterior

are easy to evaluate (see Equation (A.6)):

E[Pk|wk] =
wk + γ

nk + 2γ

V[Pk|wk] =
(wk + γ)(nk − wk + γ)

(nk + 2γ)2(nk + 2γ + 1)

E[ln(Pk)|wk] = ψ(wk + γ)− ψ(nk + 2γ)

V[ln(Pk)|wk] = ψ(1)(wk + γ)− ψ(1)(nk + 2γ).

(A.11)

Equation (A.11) grants a natural interpretation of the prior parameter, γ. The parameter,

γ, is, in effect, a fictitious number of games added to the win and loss record of each team.

For example, the expected value of the probability i(k) betas j(k) is equal to the percent of

games i(k) won against j(k) if i(k) won wk + γ games and lost nk − wk + γ games.

A.2.1 Choice of Prior Parameter

The prior parameter, γ, can be interpreted as a fictitious number of wins and losses added

to the record of each team. In general γ ≥ 0. There are some conventional choices of γ.
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These are:

1. Haldane: γ = 0. The prior distribution is 1/2δ(x) + 1/2δ(x− 1).

2. Jefferys: γ = 1/2. The prior distribution is proportional to 1/
√
p(1− p).

3. Bayes: γ = 1. The prior is uniform.

Alternatively, we can fit for γ based on win records. Since we assumed that the win

probabilities on each edge were sampled i.i.d. from a gamma distribution, and then the wins

were binomially distributed according to the number of events and sampled win probability,

the number of wins on each edge is beta-binomial distributed given γ. This means that:

Wk ∼ Beta-binomial(γ, nk) so Pr{Wk = w} =

Ç
nk

w

å
B(w + γ, n− w + γ)

B(γ, γ)
. (A.12)

Thus, if no prior is assumed on γ:

πγ(γ|n,w) ∝
∏
k

Ç
nk

w

å
B(wk + γ, nk − wk + γ)

B(γ, γ)
. (A.13)

Here the range of the product is not specified as it is implied that the product is taken

over all data available. This may include more observed wins than are included in the

tournament under study, or the observed win records used to estimate γ may be entirely

distinct from the tournament of interest.

It follows from Equation (A.13) that the negative log-likelihood of γ given win records

w is (up to an additive constant):

Gγ(γ|n,w) =
∑
k

ln (B(γ, γ))− ln (B(wk + γ, nk − wkγ)) (A.14)

Here G is used since the negative log-likelihood is the “Gibbs energy" function.
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Substituting in for B(α, β) gives:

Gγ(γ|n,w) =
∑
k

ln (Γ(γ))2 − ln (Γ(2γ))

− ln (Γ(wk + γ))− ln (Γ(nk − wk + γ)) + ln (Γ(nk + 2γ)) .

(A.15)

Thus γ can be estimated by solving for γMLE:

γMLE(n,w) = argminγ>0{Gγ(γ|n,w)} (A.16)

The Gibbs energy is fairly cheap to evaluate, γMLE only needs to be solved for once,

and this is a one-dimensional minimization problem, so it is not prohibitively expensive

to start by evaluating γ at a series of different sample values. In practice we have found

that using γ sampled at geometrically spaced intervals between 10−3 and 103 gives a good

initial sampling of the energy function. The sample with the smallest value of the energy

function can then be used to initialize a numerical optimizer.

Initializing in this way avoids the following stability issues. The Gibbs energy function

is close to constant for large γ, and is very steep as γ converges to zero. As a result, if

initialized too close to zero the first step of the optimizer can easily overshoot the minimum.

If initialized at too large a γ the slope of the Gibbs function is so close to zero that the

optimizer stops iterating.

A.3 Posterior for Edge Flow

Given a set of win probabilities p the log-odds or logit edge flow is given by:

fk = logit(pk) = ln

Å
pk

1− pk

ã
. (A.17)
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The win probabilities can be recovered from the log-odds via the logistic function:

pk = logistic(fk) =
1

1 + exp (−fk)
. (A.18)

Note that logistic(−fk) = 1− pk and logit(1− pk) = −fk.

The HHD is a decomposition of the log-odds edge flow. Therefore, to estimate the

components of the HHD we need to be able to estimate the edge-flow. This requires pushing

the posterior distribution of the win probabilities forward to the posterior distribution for

the edge flow.

Using the standard change of variable formula for probability densities:

πF (f) = πP (p(f)|n,w, γ)| d
df
p(f)| (A.19)

where p(f) = logistic(f) and πP (p|w) is given by the beta distribution with parameters

w + γ, n− w + γ (see Equation A.10). Thus:

πF (f) = Beta(logistic(f)|n,w, γ)

∣∣∣∣ ddf logistic(f)

∣∣∣∣
=

logistic(f)w+γ−1logistic(−f)w+γ−1

B(w + γ, n− w + γ)

∣∣∣∣ ddf logistic(f)

∣∣∣∣ (A.20)

The derivative is:

d

df
logistic(f) =

d

df
(1 + exp(−f))−1 =

exp(−f)

(1 + exp(−f))2

=
exp(−f)

1 + 2 exp(−f) + exp(−2f)
=

−1

exp(f) + 2 + exp(−f)

=
1

(1 + exp(f))(1 + exp(−f))
= logistic(f)logistic(−f).

(A.21)
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Therefore the posterior for the log-odds/logit edge-flow is:

.πF (f |n,w, γ) =
1

B(w + γ, n− w + γ)
logistic(f)w+γlogistic(−f)w+γ. (A.22)

A.4 Point Estimators for Edge Flow

Given the posterior for the win probabilities and the edge flow we can compute point

estimators for the edge flow. We will consider two point estimators, the MAP estimator,

and the conditional expectation.

A.4.1 The MAP Estimator

To compute the MAP estimator we need to maximize the posterior distribution of the edge

flow. This is equivalent to minimizing the negative log of the posterior:

GF (f |n,w, γ) = (w + γ) ln (logistic(f)) + (n− w + γ) ln (logistic(−f)) . (A.23)

Substituting in for the logistic function gives:

GF (f |n,w, γ) = −(w + γ) ln (1 + exp(−f))− (n− w + γ) ln (1 + exp(f)) . (A.24)
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Then, differentiating with respect to f :

d

df
GF (f |n,w, γ) = −(w + γ)

− exp(−f)

1 + exp(−f)
− (n− w + γ)

exp(f)

1 + exp(f)

= (w + γ)
1

1 + exp(f)
− (n− w + γ)

1

1 + exp(−f)

= (w + γ)logistic(−f)− (n− w + γ)logistic(f)

= (w + γ)(1− logistic(f))− (n− w + γ)logistic(f)

= (w + γ)− (n+ 2γ)logistic(f).

(A.25)

Then, setting to zero:

(n+ 2γ)logistic(f) = w + γ (A.26)

Let f = logit(p). Then logisticf = p and:

p =
w + γ

n+ 2γ
. (A.27)

Since this is the only solution to the equations the negative log-likelihood has one ex-

trema. Since the posterior has decaying tails and the negative log-likelihood is convex (see

Section A.5) this extrema must be a minimizer of the negative log-likelihood. Therefore

the MAP estimator for f is the logit of the expected win probability given the data, and

is equal to the logit of the win frequency after adding γ fictitious wins and losses to the

record.

fMAP(n,w, γ) = logit(E[P |n,w, γ]) = ln

Å
w + γ

n− w + γ

ã
. (A.28)

634



A.4.2 Conditional Expectation

The conditional expectation of the log-odds given the data and prior is:

fexp(n,w, γ) = E[logit(P )|w] = E[ln(P )|w]− E[ln(1− P )|w] (A.29)

We know that the win probabilities P , and loss probabilities 1−P , are beta distributed

when conditioned on the data with parameters w + γ, n − w + γ and n − w + γ, w + γ

respectively. The expectation of the log of a beta distributed random variable is given by

the digamma function (see Equation (A.6)). Thus:

fexp(n,w, γ) = (ψ(w + γ)− ψ((w + γ) + (n− w + γ)))

− (ψ(n− w + γ)− ψ((n− w + γ) + (w + γ)))

= ψ(w + γ)− ψ(n+ 2γ)− ψ(n− w + γ) + ψ(n− w + γ).

(A.30)

Therefore the conditional expectation of F given the data is:

fexp(n,w, γ) = E[F |n,w, γ] = ψ(w + γ)− ψ(n− w + γ). (A.31)

The digamma function ψ(x) = d
dx

ln(Γ(x)) is the logarithmic derivative of the gamma

function. The digamma function satisfies the recursion:

ψ(x+ 1) = ψ(x) +
1

x
. (A.32)

This gives the following recursion for the conditional expectation of the log-odds that

can be updated live each time a win or loss is observed:

Let h index the game observed. Let wh be the number of wins observed in the first h
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games. Initialize fexp(h,wh, γ) = 0. Then:

if win: fexp(h+ 1, wh + 1, γ) = fexp(h,wh, γ) +
1

wh + γ

if lose: fexp(h+ 1, wh, γ) = fexp(h,wh, γ)− 1

n− wh + γ
.

(A.33)

That is, for every win we increase the conditional expectation by one over the number

of previously observed wins (including fictitious wins), and for every loss we decrease the

conditional expectation by one over the number of previously observed losses (including

fictitious losses). Notice that events that are surprising (events we have not seen yet, or

have seen infrequently) lead to smaller corrections than events that are not surprising.

A.4.3 Comparison

The digamma function has asymptotic expansion:

ψ(x) ∼ ln(x)− 1

2
x+O(x−2) (A.34)

and is bounded by:

ψ(x) ∈ ln(x)−
ï

1

x
,

1

2x

ò
. (A.35)

Thus:

fexp(n,w, γ) ∼ ln(w + γ)− ln(n− w + γ)− 1

2(w + γ)
+

1

2(n− w + γ)

+O((w + γ)−2) +O((n− w + γ)−2).

(A.36)
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Simplifying:

fexp(n,w, γ) ∼ ln

Å
w + γ

n− w + γ

ã
+

1

2

(w + γ)− (n− w + γ)

(w + γ)(n− w + γ)

+O((w + γ)−2) +O((n− w + γ)−2)

= ln

Å
w + γ

n− w + γ

ã
+

1

2

2w − n
(w + γ)(n− w + γ)

+O((w + γ)−2) +O((n− w + γ)−2).

(A.37)

Notice that the logarithmic term is the MAP estimator for the log-odds edge flow. Thus

the conditional expectation differs from the MAP estimator by the bias (2w − n)/((w +

γ)(n−w+γ)), and additional order (w+γ)−2, (n−w+γ)−2 terms. This bias will appear

throughout the subsequent analysis. Since the bias is order (w + γ)−1, (n−w + γ)−1, and

both the number of wins and losses are order n in expectation, the conditional expectation

is expected to converge to the MAP estimator as more events are observed.

By using the bounds on the digamma function we can bound the difference in the

estimators:

fexp(n,w, γ) ≤ ln

Å
w + γ

n− w + γ

ã
− 1

2(w + γ)
+

1

(n− w + γ)

fexp(n,w, γ) ≥ ln

Å
w + γ

n− w + γ

ã
− 1

(w + γ)
+

1

2(n− w + γ)

(A.38)

Therefore the conditional expectation for the log-odds edge flow converges to the MAP

estimator with difference:

fexp(n,w, γ)− fMAP(n,w, γ) =
1

2

2w − n
(w + γ)(n− w + γ)

+O((w + γ)−2) +O((n− w + γ)−2).

(A.39)
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Moreover, the difference in the estimators is bounded by:

fexp(n,w, γ)− fMAP(n,w, γ) ∈1

2

2w − n
(w + γ)(n− w + γ)

+

ï −1

2(w + γ)
,

1

2(n− w + γ)

ò
.

(A.40)

Therefore the conditional expectation for the log-odds edge flow converges to the MAP

estimator with convergence rate O((w)−1) +O((n− w)−1).

A.5 Properties of the Posterior

A.5.1 Tail Behavior

The tails of the posterior distribution of F decay exponentially. As f converges to infinity

logistic(f) converges to one and logistic(−f) converges to exp(−f). As f converges to

infinity cosh(f/2)2 converges to exp(f). Therefore:

lim
f→∞

πF (f |n,w, γ) ∝ lim
f→∞

exp(−(n− w + γ)f)

lim
f→∞

πF (f |n,w, γ) ∝ lim
f→∞

exp(−(w + γ)f)

(A.41)

where the second equation follows by symmetry.

Thus the tails of posterior distribution of F decay exponentially with rates equal to the

number of observed losses plus fictitious losses, (n − w + γ), as f goes to infinity, and

equal to the number of observed wins plus fictitious wins, (w + γ), as f goes to negative

infinity. Therefore each observed loss controls the upper estimate of the log-odds, and each

observed win controls the lower estimate of the log-odds. It also follows that, as long as

γ > 0 the distribution is well defined since it must integrate to a constant.
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A.5.2 Variance

The variance in the posterior for the edge flow, like the mean of the posterior, can be

evaluated using known moments of the beta distribution (see Equation (A.6)). The variance

in the posterior is:

V[F |n,w, γ] = V[ln(P )− ln(1− P )|n,w, γ]

= V[ln(P )|n,w, γ]− 2Cov[ln(P ), ln(1− P )|n,w, γ]

+ V[ln(1− P )|n,w, γ].

(A.42)

If X is beta distributed then the variance in the log of X is ψ(1)(α)+ψ(1)(α+β) where

ψ(1)(x) is the trigamma function (see Equation (A.6)). The covariance is also known:

Cov[ln(X), ln(1−X)] = ψ(1)(α + β). (A.43)

Therefore:

V[F |n,w, γ] =ψ(1)(w + γ) + ψ(1)(n+ 2γ)− 2ψ(1)(n+ 2γ)

+ ψ(1)(n− w + γ) + ψ(1)(n+ 2γ).

(A.44)

Cancelling the repeated terms gives:

V[F |n,w, γ] = ψ(1)(w + γ) + ψ(1)(n− w + γ). (A.45)

Differentiating the asymptotic expansion of the digamma function gives an asymptotic
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expansion for the trigamma function. This yeilds the approximation:

V[F |n,w, γ] ∼ 1

w + γ
+

1

n− w + γ
+O((w + γ)−2) +O((n− w + γ)−2). (A.46)

A.5.3 Convexity

The derivative of the negative log posterior with respect to f was (see Equation (A.25)):

− d

df
GF (f |n,w, γ) = −(w + γ) + (n+ 2γ)logistic(f). (A.47)

Therefore, the second derivative is:

d2

df 2
GF (f |n,w, γ) = (n+ 2γ)

exp(−f)

(1 + exp(−f))2
. (A.48)

The logistic function is monotonically increasing since exp(−f)
(1+exp(−f))2

> 0. Therefore:

− d2

df 2
GF (f |n,w, γ) > 0 (A.49)

It follows that the negative log of the posterior is convex.

A.6 Sample Size Requirements

With the variance and tail behavior of the posterior in hand we can establish some simple

sample size requirements. The tails of the posterior decay exponentially with rate given by

the number of observed wins (plus fictitious wins), and the number of observed losses (plus

fictitious losses). Similarly, the variance converges to one over the number of observed wins

(plus fictitious wins) plus one over the number of observed losses (plus fictitious losses).
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Thus to ensure that the tails decay quickly, and that the variance is sufficiently small, both

the number of observed wins and the number of observed losses must be large.

Suppose that we set an upper bound, ε2, on an acceptable variance in the posterior. Then

on every edge k we require that:

ψ(1)(wk + γ) + ψ(1)(nk − wk + γ) ≤ ε2. (A.50)

This condition can be easily checked given a win record. In essence it requires that

min{wk + γ, nk − wk + γ} ≥ 2/ε2. Note that both the observed wins and losses must

be large to satisfy this requirement.

If P ∼ Beta(γ, γ) then the expected variance on each edge after observing n samples is

E[ψ(1)(Wk+γ)+ψ(1)(nk−Wk+γ)] whereWk is beta-binomial distributed with parameters

nk and γ. Since Beta(γ, γ) is symmetric E[ψ(1)(Wk + γ)] = E[ψ(1)(nk − Wk + γ)] so

E[ψ(1)(Wk + γ) +ψ(1)(nk −Wk + γ)] equals 2E[ψ(1)(Wk + γ)]. Therefore, a lower bound

on the sample size required is given by solving for n such that:

2
n∑

w=0

Ö
n

j

è
B(w + γ, n− w + γ)

B(γ, γ)
ψ(1)(w + γ) < ε2. (A.51)

Thus, the minimum sample size needed to ensure that the expected variance in the

posterior is less than ε2 is:

nmin = min

{
n s. t.

n∑
w=0

Å
n
w

ã
B(w + γ, n− w + γ)

B(γ, γ)
ψ(1)(w + γ) <

1

2
ε2

}
. (A.52)

This sets a minimum sample size we expect to need before observing the win record

(assuming γ is known from prior data).
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In practice we want the expected size of the uncertainty in the posterior on an edge to be

small relative to expected size of the point estimators on the edge. This leads to minimum

sample size requirements of the form:

nmin = min

{
n s. t.

n∑
w=0

Å
n
w

ã
B(w + γ, n− w + γ)

B(γ, γ)

|fexp(n,w, γ)|√
V[F |n,w, γ]

> SNR

}
.

(A.53)

This condition ensures that the expected signal to noise ratio (conditional expectation

divided by standard devitation) is greater than a desired SNR. Numerical tests show that

the minimum sample size scales in the desired SNR squared, and grows linearly in γ. The

required sample size increase with increasing γ despite the fact that increasing gamma

decreases the variance since increasing γ also decreases the average size of the signal

(conditional expectation).

A.7 Asymptotic Expansion of Expectation

Suppose that the number of observed events is large. Then the distribution ofW/n becomes

increasingly tightly concentrated around its mean (variance order n−1/2). Our estimators

can be expressed as smooth functions of W/n. Therefore, if the true f was known the

expected value of our estimators could be approximated analytically in the large n limit.

Then by comparing the expected value of the estimators to the true f we can identify

sources of bias in the estimation, and how quickly they converge to zero as the number of

events grows. Similar analysis can be used to compute the variance in the estimators given

a true log-odds f and number of events.

These analyses rely on the following analytical method for the asymptotic expansion of

expectation.
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Let X(n) be a random variable which takes on values in Rd and n is a sample size.

Suppose that the hth central moments of X are O(n−dh/2e). Then the variance is order −1

in n, so the distribution is concentrating about its mean. Let x̄(n) = E[X(n)]. We will

usually assume this is independent of n so will omit the dependence on x̄ unless necessary.

Let g(X) be a continuously differentiable function with a convergent Taylor series in

an open neighborhood containing x̄.

Let α be a multi-index α = α1, α2, ...αd. Let |α|=
∑d

j=1 αj be the magnitude of the

multi-index. Let xα denote
∏

j x
αj
j . Then let Mα[X] = E[(X − x̄)α] denote the α central

moment, and Mh[X] denote the tensor consisting of all |α|= h order moments. Similarly

let ∂αg(x) = ∂α1
x1
...∂αdxd g(x), and ∂hg(x) be the tensor containing all |α|= h order partial

deriviatives of g(x).

Then, Taylor expanding g(x) about x̄ gives:

g(x) =
∞∑
h=0

1

h!
〈∂hg(x̄), (x− x̄)h〉 (A.54)

for x inside the radius of convergence of the power series. Here 〈A,B〉 denotes the tensor

inner product:

〈∂hg(x̄), (x− x̄)h〉 =
∑

α||α|=h

∂αg(x̄)(x− x̄)α (A.55)

Therefore, the expected value of g(X(n)) is:

E[g(X(n))] =
∞∑
h=0

1

h!
〈∂hg(x̄),Mh[X(n)]〉 (A.56)

This gives the approximation:

E[g(X(n))] = g(x̄) +
1

2
〈∂2g(x̄),V[X(n)]〉+O(n−2). (A.57)
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In this equation ∂2g(x̄) is the Hessian of g(x) at x̄. Therefore, all that is needed to apply

this approximation is the expected value of X(n), the covariance matrix of X(n), and the

Hessian of g(x) at x̄.

The same framework can be used to approximate the variance in g(X(n)). Squaring

the Taylor expansion of g(x) gives:

g(x)2 = g(x̄)2 + 2g(x̄)〈∂g(x̄), (x− x̄)〉+ 〈∂g(x̄), (x− x̄)〉2

+ 2g(x̄)〈∂2g(x̄), (x− x̄)2〉+O((x− x̄)3)

(A.58)

Therefore:

E[g(X(n))2] = g(x̄)2 + E
[
〈∂g(x̄), (X(n)− x̄)〉2

]
+ 2g(x̄)〈∂2g(x̄),V[X(n)]〉+O(n−2).

(A.59)

Then, subtracting off the asymptotic approximation to E[g(X(n))]2 leaves:

V[g(X(n))] = E
[
〈∂g(x̄), (X(n)− x̄)〉2

]
+O(n−2). (A.60)

This can be written more cleanly by letting∇g(x) = ∂g(x̄) be the gradient. Then:

V[g(X(n))] = 〈∇g(x̄)∇g(x̄)T ,V[X(n)]〉+O(n−2)

= ∇g(x̄)TV[X(n)]∇g(x̄) +O(n−2).

(A.61)

Thus, if X(n) has central moments order n−dh/2e, E[X(n)] = x̄, and g(x) is analytic
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about x̄ then:

E[g(X(n))] = g(x̄) +
1

2
〈∂2g(x̄),V[X(n)]〉+O(n−2)

V[g(X(n))] = 〈∇g(x̄)∇g(x̄)T ,V[X(n)]〉+O(n−2)

= ∇g(x̄)TV[X(n)]∇g(x̄) +O(n−2).

(A.62)

A.8 Asymptotic Bias and Uncertainty in Point Estimators

Given a true f what is the expected value of the point estimators given a sample of n events?

What is the variance in the point estimators given a sample?

To compute the expected value and the variance we will use Equation (A.62) where

X(n) = W/n and g(X) is a point estimator (either the MAP estimator A.28 or the

conditional expectation A.31).

Fix f and set p = logistic(f). Then W is binomially distributed so X(n) has mean

p, variance p(1 − p)/n and higher order central moments that are order n−2 or higher. In

terms of X the estimators are:

fMAP(n, nX(n), γ) = ln

Å
X(n) + γ/n

1−X(n) + γ/n

ã
fexp(n, nX(n), γ) = ψ(n(X(n) + γ/n))− ψ(n(1−X(n) + γ/n)).

(A.63)

A.8.1 MAP Estimator

First let’s find the expected value of the MAP estimator for f given f . This will require

differentiating fMAP(n, nx, γ) in x:

∂xfMAP(n, nx, γ) =
n

n(x+ γ/n)
− −n
n(1− x+ γ/n)

=
1

x+ γ/n
+

1

1− x+ γ/n

=
1 + 2γ/n

(x+ γ/n)(1− x+ γ/n)
.

(A.64)
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The second derivative is:

∂2
xfMAP(n, nx, γ) =

−1

(x+ γ/n)2
+

1

(1− x+ γ/n)2

= −(1− x+ γ/n)2 − (x+ γ/n)2

(x+ γ/n)2(1− x+ γ/n)2

= −((1 + 2γ/n)− (x+ γ/n))2 − (x+ γ/n)2

(x+ γ/n)2(1− x+ γ/n)2

= −(1 + 2γ/n)2 − 2(1 + 2γ/n)(x+ γ/n)

(x+ γ/n)2(1− x+ γ/n)2

= −(1 + 2γ/n)((1 + 2γ/n)− 2(x+ γ/n))

(x+ γ/n)2(1− x+ γ/n)2

= − (1 + 2γ/n)(1− 2x)

(x+ γ/n)2(1− x+ γ/n)2

(A.65)

Therefore, using equation A.62:

E[fMAP(n,W, γ)|p] = fMAP(n, np, γ) +
1

2

(1 + 2γ/n)(1− 2p)

(p+ γ/n)2(1− p+ γ/n)2

p(1− p)
n

+O(n−2)

= ln

Å
p+ γ/n

1− p+ γ/n

ã
− 1

2

(1 + 2γ/n)(1− 2p)

(p+ γ/n)2(1− p+ γ/n)2

p(1− p)
n

+O(n−2).

(A.66)

Since we only desire an order n−2 accurate approximation the coefficient appearing in

front of the middle term only needs to be approximated to order 1 accuracy in n. Since γ

is fixed γ/n vanishes as n gets large. Therefore:

E[fMAP(n,W, γ)|p] = ln

Å
p+ γ/n

1− p+ γ/n

ã
− 1

2

(1− 2p)

(p)2(1− p)2

p(1− p)
n

+O(n−2)

= ln

Å
p+ γ/n

1− p+ γ/n

ã
− 1

2

(1− 2p)

p(1− p)
1

n
+O(n−2)

(A.67)
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Next, expand the first term in small γ/n. This gives:

ln

Å
p+ γ/n

1− p+ γ/n

ã
= = ln

Å
p

1− p

ã
+

1

p

γ

n
− 1

1− p
γ

n
+O(n−2)

= ln

Å
p

1− p

ã
+

1− 2p

p(1− p)
γ

n
+O(n−2).

(A.68)

Therefore:

E[fMAP(n,W, γ)|p] = ln

Å
p

1− p

ã
+

(1− 2p)

p(1− p)
γ

n
− 1

2

(1− 2p)

(p)2(1− p)2

p(1− p)
n

+O(n−2)

= ln

Å
p

1− p

ã
+

(1− 2p)

p(1− p)
(γ − 1/2)

n
+O(n−2)

= logit(p)− (2p− 1)

p(1− p)
(γ − 1/2)

n
+O(n−2).

(A.69)

Let’s express this in terms of f . First, logit(p) = f so the first term is the true log-odds.

This leaves the second term (order n−1 term). Substituting in p = logistic(f) gives:

1

p(1− p)
= (1 + exp(−f))(1 + exp(f)) = exp(f) + 2 + exp(−f)

= 2(1 + cosh(f/2)) = (2 cosh(f/2))2

(2p− 1) =
2

1 + exp(−f)
− 1 =

1− exp(−f)

1 + exp(−f)

=
exp(f/2)− exp(−f/2)

exp(f/2) + exp(−f/2)
= tanh(f/2)

2p− 1

p(1− p)
= (2 cosh(f/2))2 sinh(f/2)

cosh(f/2)
= 4 cosh(f/2) sinh(f/2) = 2 sinh(f).

(A.70)

Therefore, in the limit of large n the expected value of the MAP estimator for the log-

odds given true log-odds f is:

E[fMAP(n,W, γ)|f ] = f − 2 sinh(f)
(γ − 1/2)

n
+O(n−2) (A.71)
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Here we can clearly see that the MAP estimator has two primary sources of bias. The

first, −2 sinh(f)γ/n is the bias due to the prior. The prior assumes that it is more likely to

sample small f than large f , hence the MAP estimator errs on the side of underestimating f .

Since sinh(f) is positive when f is positive and negative when f is negative this bias makes

f smaller in magnitude. The larger γ the tighter the prior is distributed about f = 0, so the

stronger the bias introduced. This bias decreases order n−1 as the more events are observed

the more the MAP estimate is informed by the observed data than by prior expectation.

The second source of bias comes from the fact that W/n has nonzero variance, and

fMAP is a nonlinear function of W/n that is concave up when W/n > 1/2 and concave

down when W/n < 1/2. Thus, sampling error leads to a systematic overestimate of the

magnitude of f when using the MAP estimate.

These two biases balance out when γ = 1/2 (Jefferys’ prior). Then any bias in the

MAP estimator is O(n−2).

Next we compute the variance in the MAP estimator given f in the limit of large n. To

compute this variance we use Equation (A.62). This gives:

V[fMAP(n, nX(n), γ)|p] =

Å
(1 + 2γ/n)

(p+ γ/n)(1− p+ γ/n)

ã2 p(1− p)
n

+O(n−2). (A.72)

Again, only keeping terms up to O(n−1):

V[fMAP(n, nX(n), γ)|p] =
1

p(1− p)
1

n
+O(n−2). (A.73)

Then, substituting in (p(1 − p))−1 = (2 cosh(f/2))2 gives the following result, in the

limit of large n the variance in the MAP estimator for the log-odds given true log-odds f
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is:

V[fMAP(n,W, γ)|f ] = (2 cosh(f/2))2 1

n
+O(n−2) (A.74)

A.8.2 Conditional Expectation

The same types of calculations can be performed for the conditional expectation of the

log-odds. This can be streamlined by recalling that the conditional expectation only differs

from the MAP estimate by a term which is O(n−1). In particular:

fexp(n,W, p) = fMAP(n,W, p) +
1

2

2W/n− 1

(W/n+ γ/n)(1−W/n+ γ/n)

1

n
+O(n−2) (A.75)

Since this difference is already O(n−1) we only need to approximate to O(n−1) which

is equivalent to approximating the prefix to order 1 in n. This means we simply replace

W/n with its expectation, p, and then drop the vanishing γ/n terms. This gives the familiar

form:

E[fexp(n,W, p)|p] = E[fMAP(n,W, p)|p] +
1

2

2p− 1

p(1− p)
1

n
+O(n−2) (A.76)

This also implies that, to order O(n−1) the variance in the conditional expectation

equals the variance in the MAP estimator. Therefore, in the limit of large n the variance in

the MAP estimator for the log-odds given true log-odds f is:

E[fexp(n,W, γ)|f ] = f − 2 sinh(f)
(γ − 1)

n
+O(n−2)

V[fexp(n,W, γ)|f ] = (2 cosh(f/2))2 1

n
+O(n−2)

(A.77)

So, in the limit of large n the only order n−1 difference in the expectation of the two

point estimators is how strongly the uncertainty in the sampled W/n couples with the
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nonlinearity in the estimator. This coupling is slightly larger for the conditional expectation

than the MAP estimator, hence the estimate has a larger bias due to sampling uncertainty.

The conditional expectation is asympotitically unbiased to order n−1 if γ = 1, that is for

the Bayes (uniform) prior.

A.8.3 Asymptotic Correctors and Additional Sample Size Require-

ments

Can we correct for the biases in the estimators?

The bias in the estimators are:

E[fMAP(n,W, γ)|f ]− f = −2 sinh(f)
(γ − 1/2)

n

E[fMAP(n,W, γ)|f ]− f = −2 sinh(f)
(γ − 1)

n
.

(A.78)

These could be computed explicitly if f was known, however the entire motivation for

the estimation framework is that f is unknown. However, if we only want to eliminate

the bias to order O(n−1) then we only need an order O(n−1) accurate approximation of

the bias. Since the bias is a smooth function of f tomes 1/n this only requires an order 1

accurate approximation to f . Either of the estimators give an order 1 approximation to f

so we can define de-biased estimators:

fMAP∗(n,W, γ) = fMAP(n,W, γ) + 2 sinh(fMAP(n,W, γ))
(γ − 1/2)

n

fexp∗(n,W, γ) = fexp(n,W, γ) + 2 sinh(fexp(n,W, γ))
(γ − 1)

n

. (A.79)

These estimators will have the same variance (to order n−1) as the original estimators

650



since the correction is the addition of an order n−1 term. Then the debiased estimators:

fMAP∗(n,W, γ) = fMAP(n,W, γ) + 2 sinh(fMAP(n,W, γ))
(γ − 1/2)

n

fexp∗(n,W, γ) = fexp(n,W, γ) + 2 sinh(fexp(n,W, γ))
(γ − 1)

n

. (A.80)

have identical expectations and variances to order n−1 and:

E[fMAP∗(n,W, γ)|f ] = f +O(n−2)

E[fexp∗(n,W, γ)|f ] = f +O(n−2)

V[fMAP∗(n,W, γ)|f ] = (2 cosh(f/2))2 1

n
+O(n−2)

V[fexp∗(n,W, γ)|f ] = (2 cosh(f/2))2 1

n
+O(n−2).

(A.81)

Therefore, when n is large we can de-bias the point estimators to order n−1.

Note that this only ensures that the point estimators have the correct expected value

to order n−2, and not that they are guaranteed to have the correct value, nor the correct

expectation for finite n. Moreover this analysis has only followed the order n−1 terms

explicitly, and that the order n−2 terms could be large if n is not sufficiently large. Finally,

this de-biasing removes the principle influence of the prior on the estimators. The prior

induces more conservative point estimators since it hedges our bet towards more likely

values of f (smaller f ). Therefore the bias it induces should only be removed if n is large

enough that the bias induced is small. We could only remove the component of the bias

associated with the sampling error in W/n if the bias due to the prior is desired.

For all of these reasons the asymptotically debiased estimators should be used with

caution. That said, estimating the value of the two components of the bias (bias due to

prior, bias due to sampling) is useful as it gives a better understanding of how large the

biases in the point estimator are relative to the value of the point estimator, and, as a result,
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whether the sample size is sufficiently large.

Another reason that these asymptotic correctors are not essential for point estimation

is that we never have more than one sample W (since if we had multiple sampled runs of

events they should be collated into one cumulative observation). It follows that we get, at

most, one sample from the distribution of possible point estimators. The standard deviation

in this distribution is O(n−1/2), so the sampling error is expected to decay slower than the

bias as n gets large. Therefore the bias correction is expected to be small relative to the

error from finite sample size.

This leads to another set of sample size requirements. In particular, for an edge with

true log-odds f it would be natural to require a minimum sample size n such that:

nmin =

{
n such that

2|sinh(f)|γ
n

< ε|f | and
2 sinh(f)

n
< εf

}
(A.82)

This leads to the minimum sample size:

nmin ≥
max{γ, 1}

ε

2 sinh(f)

f
. (A.83)

Similarly, requiring that the variance in the point estimators is smaller than a fixed

threshold gives:

nmin ≥
(2 cosh(f/2))2

ε2
. (A.84)

Or, requiring that the signal to noise ratio in the point estimators is greater than a desired

SNR gives:

nmin ≥ SNR
√

2 cosh(f/2)

|f |
(A.85)

Notice that the first two sample size requirements require more samples as f gets larger,

while the last sample size requirement requires more samples if f gets either sufficiently
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large, or sufficiently small. We do not expect the last requirement to be satisfied by all

edges, however we do expect that it is satisfied on at least some edges.

A.9 Point Estimators for the HHD

The HHD is a decomposition of the edge flow. This decomposition is linear. Define

the gradient operator G. Then define the transitive projector Pt which is the orthogonal

projector onto the range of G. Let Pc = I − Pt be the projector onto the cyclic subspace

(subspace perpendicular to the range of G). Then the interesting components of the HHD

are:
r = (GTG)†GTf

ft = Ptf

fc = Pcf

(A.86)

where r is the rating, † denotes the pseudo-inverse, ft is the transitive component, and fc is

the cyclic component.

A.9.1 Point Estimation of Components

Point estimation of the components of the HHD is easy since all of the components are

linear functions of the edge flow. Therefore the conditional expectation, and MAP for each

components can be computed by applying the HHD to the corresponding estimators for the

flow. The variance in the posterior for each component can also be computed directly from

the variance in the posterior for the flow. The edges were assumed to be independent, thus

V[F |n,w, γ] is diagonal with diagonal entries equal to ψ(1)(wk + γ) + ψ(1)(nk − wk + γ).

Then:

V[AF |n,w, γ] = AV[F |n,w, γ]AT . (A.87)
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Therefore the MAP estimator and conditional expectation of the components of the

HHD are:
rMAP(n,w, γ) = (GTG)†GTfMAP(n,w, γ)

ftMAP(n,w, γ) = PtfMAP(n,w, γ)

fcMAP(n,w, γ) = PcfMAP(n,w, γ)

rexp(n,w, γ) = (GTG)†GTfexp(n,w, γ)

ftexp(n,w, γ) = Ptfexp(n,w, γ)

fcexp(n,w, γ) = Pcfexp(n,w, γ)

(A.88)

and the variance in the posterior for each component is:

V[R|n,w, γ] = (GTG)†GTV[F |n,w, γ]G(GTG)†

V[Ft|n,w, γ] = PtV[F |n,w, γ]P T
t

V[Fc|n,w, γ] = PcV[F |n,w, γ]P T
c

(A.89)

A.9.2 Point Estimation of Measures

What remains is to work out point estimators for the measures. The measures are:

mtotal(f) = ||f ||2

mtrans(f) = ||ft||2

mcyc(f) = ||fc||2

mrelative(f) = ||fc||2/||f ||2

(A.90)

The measures are not linear functions of the flow, so the MAP estimator, or conditional

expectation of the measures is not given by applying the measures to the corresponding

estimator for the flow. Nevertheless, the measures may be estimated by applying the
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measures to the point estimators for the flow. This is natural as these point estimators

are also the point estimators for the components of the HHD measured by the measures.

We will show that working with the marginal posterior distributions for the measures can

be misleading as uncertainty in the edge flow introduces biases in the marginal posterior

distributions of the measures.

Applying the measures to our point estimators for the edge flow is trivial, and consists

only of plugging the point estimators in for f in Equation (A.90).

An alternative approach is to approximate the posterior distribution for each measure by

sampling edge flows from the posterior distribution of edge flows. This will be discussed

in the next section. Asymptotic biases will also be discussed in the next section.

A.10 Sampling Methods

A.10.1 Sampling Edge Flows

Edge flows, F , can be sampled from the posterior distribution of edge flows by sampling

win probabilities, P , from the posterior distribution of win probabilities and then comput-

ing F = logit(P ). The win probabilities are easy to sample as each win probability is

independent of the others and is beta distributed. As a consequence the win probabilities

can be sampled from a beta random number generator. To sample the edge flow on edge k

from the posterior:

1. Sample Pk ∼ Beta(wk + γ, nk − wk + γ),

2. Set Fk = logit(Pk).
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A.10.2 Sampling Ratings and Components

The components of the HHD and the ratings are all given by the product of the edge

flow with a matrix. This product gives the solution to a linear system whose right hand

side depends on the edge flow. Therefore, when the network is sufficiently small the

components of the HHD and ratings can be sampled simply by multiplying a sampled

F by the appropriate matrix. If the network is too large for direct multiplication to solve

the linear systems a linear system can be solved for each sampled edge flow using a linear

system solver.

Let F = [F (1), F (2), ...F (N)] whereN is a number of realizations and F (j) is a single

realization. Then sampled HHD components are given by:

R = (GTG)†GF

Ft = PtF

Fc = PcF = F − Ft.

(A.91)

Each sampled rating generates a sampled ranking (list of competitors in order of de-

creasing rating). These sampled ratings can be compared using either the Kendall tau

measure, or Spearman rank correlation. These measure how much variation there is in the

ranking across the samples.

Another useful technique is to record the fraction of samples in which a given com-

petitor is assigned a given rank. This gives the posterior distribution for the rank of

each competitor. These can be represented conveniently with a matrix whose columns

correspond to competitors, and whose rows correspond to rank. Then the entries are the

fraction of samples in which competitor i was assigned rank j. If the competitors are

ordered in the ranking associated with one of the point estimators for the ratings then
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this matrix has entries close to one near its diagonal, and entires close to zero off its

diagonal when the ranking is unambiguous. When there is uncertainty in ranking a group

of competitors these form a block in the matrix.

A.10.3 Sampling Measures

Once the components of the HHD have been sampled the measures can be sampled by

evaluating the measures on each sampled component. This gives a collection of samples of

possible values of measures when evaluated on sampled edge flows from the posterior for

the edge flow. A histogram of the samples can then give an approximation to the posterior

distribution for each measure. Further, the conditional expectation of the value of the

measure can be approximated by averaging the sampled values of the measure. Confidence

intervals on the value of the measure can be also be established from the samples.

The use of this technique for estimation of the value of the measures is discouraged for

the following reason: the posterior distribution for the measures is biased by uncertainty

in the posterior distribution for the edge flow. Moreover this bias is not equal amongst the

different measures, and typically leads to overestimation of the cyclic component relative

to the transitive component.

To see why uncertainty biases point estimates for the measures it is helpful to take a

step back and consider the big picture. The absolute measures are distances from either

the origin, the cyclic subspace, or the transitive subspace. Let PS represent an orthogonal

projector onto a subspace S. Then let F be an edge flow sampled from some distribution

of edge flows (not necessarily the posterior). Then:

E[||PSF ||2] = ||PSE[F ]||2+〈PS,V[F ]〉. (A.92)
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Therefore variance in F biases the expected value of the squared measure associated with

the projection onto subspace S. The size of the bias depends on the size of the covariance,

and the dimension of the subspace. The larger the dimension of the subspace, the larger

〈PS,V[F ]〉 usually is.

Now let’s compare two different approaches for estimating the measures. The first

is to apply the measure directly to one of the point estimators for the edge flow. The

second is to average the measure over the posterior distribution of edge flows. This can

be approximated empirically by sampling F , evaluating the measure for each sample, then

averaging the sampled measures values.

In the former case the edge flow measured is f∗(n,W, γ) where ∗ stand for MAP, exp

or either of the asymptotically corrected measures. In each case E[f∗(n,W, γ)] differs from

the true f by a term O(n−1) or O(n−2). If an asymptotically corrected estimator is used

this bias is O(n−2). Let b∗(n, γ|f) be the corresponding bias to O(n−1). The variance in

all of the point estimators given f is the same to order n−1 and is:

V[f∗(n,W, γ)|f ] = (2 cosh(f/2))2 1

n
+O(n−2). (A.93)
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Thus, using one of the point estimators for the edge flow, the expected error is:

E
[
||PSf(n,W, γ)||2|f

]
− ||PSf ||2 =

(
||PS(f + b∗(n, γ|f))||2−||PSf ||2

)
+ 〈Ps, diag((2 cosh(f/2))2 1

n
)〉+O(n−2)

=
(
2b∗(n, γ|f)TPsf + ||PSb∗(n,W, γ|f)||2

)
+

E∑
k=1

(2 cosh(fk/2))2

nk
+O(n−2)

= 2b∗(n, γ|f)TPsf

+
E∑
k=1

(Ps)kk
(2 cosh(fk/2))2

nk
+O(n−2)

= 2b∗(n, γ|f)TPsf

+ |S|
E∑
k=1

(Ps)kk
trace(PS)

(2 cosh(fk/2))2

nk
+O(n−2).

(A.94)

The first term in this equation is the expected error due to the bias in the estimator for

the edge flow. The second term is the expected error due to sampling error in the value of

the estimator. Both of these errors areO(n−1). For most choices of γ the bias b∗(n,W, γ|f)

is negative when f is positive, and positive when f is negative, thus the first error is usually

negative. The latter error is strictly positive since the diagonal entries of an orthogonal

projector are strictly nonnegative, and is equivalent to the dimension of the subspace S

times a weighted average of the variance in the posterior for the edge flow on each edge.

Now suppose that, instead of evaluating the measure on a point estimator for the edge

flow we average the measure (squared) over its posterior. This is equivalent to finding the

average value of the measure applied to F when F is sampled from its posterior. That is

E[||PSF ||2|f ]. Note that the posterior for f depends onthe sampled win record, W , which

is a random variable.
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First, the expected value of F given f is the expected value of F conditioned on

sampling W = w, averaged over the probability of sampling W = w. That is, the expected

value of fexp(n,W, γ). Therefore:

E[F |f ] = E[fexp(n,W, γ)|f ] = f + bexp(n, γ|f) +O(n−2). (A.95)

Therefore the expected value of F given f has the same bias as the conditional expecta-

tion when averaged over possible samples, so is not any more accurate in expectation than

the point estimators, and is less accurate (asymptotically) than the corrected estimators.

To compute the variance we use the law of total variance:

V[F |f ] = E[V[F |W ]] + V[E[F |W ]]. (A.96)

The second term is the sampling variance in any of the point estimators:

V[E[F |W ]] = V[fexp(n,W, γ)|f ] = V[f∗(n,W, γ)|f ] = (2 cosh(f/2))2 1

n
+O(n−2).

(A.97)

The first term is:

E[V[F |W ]] = E[ψ(1)(W + γ) + ψ(1)(n−W + γ)|f ]

= ψ(1)(pn+ γ) + ψ(1)((1− p)n+ γ) +O(n−2)

=
1

pn+ γ
+

1

(1− p)n+ γ
+O(n−2)

=

Å
1

p
+

1

1− p

ã
1

n
+O(n−2)

=
1

p(1− p)
1

n
+O(n−2)

= (2 cosh(f/2))2 1

n
+O(n−2)

(A.98)
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where the first simplification follows from our general technique for approximating expec-

tations using an asymptotic expansion in the moments. Note that this is the same asymptotic

form as the variance in the point estimators. Therefore:

The expected error in the estimated value of the measure ||PSF ||2 has the same error due

to bias if F is one of the point estimators, or if the measure is averaged over the posterior,

however the error due to sampling variance is twice as large if the measure is averaged over

the posterior than if it is evaluated at a point estimator since the variance in F when F is

sampled from the posterior given f is twice the variance in the point estimators for f given

f (to order n−2).

Therefore applying the measures directly to the point estimators will lead to a smaller

error due to sampling variance.

One might hope that the shift in the posterior distribution for each measure due to the

uncertainty in the edge flow is accompanied by an equivalent increase in the variance in

the posterior distribution such that the uncertainty in the posterior for the measure reflects

the shift in the measure due to uncertainty. This is emphatically not the case when the

uncertainty in F is sufficiently large. In practice we observe that the shift due to the variance

is larger than the standard deviation in the posterior for the measures.

A.11 Summary:

A.11.1 Methods:

So far we have developed a series of point estimators for the edge flow, HHD components,

and measures. These are complemented by sampling methods which can be used to ap-

proximate averages over the posterior distribution, or the posterior distribution itself, of the
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rankings and measures. These are summarized below:

Summary: (Point Estimators and Sampling)

Let nk be the number of events observed between a pair of competitors i(k), j(k). Let

wk be the number of times i(k) beat j(k). Let n be the vector of event counts, and w the

vector of win counts. Let γ be the prior parameter (see A.2.1 for instructions on choice of

γ). Then:

1. The win probabilities are beta distributed given the data with: Pk ∼ Beta(wk +

γ, nk − wk + γ). Thus the conditional expectation for the win probabilities is:

E[Pk|nk, wk, γ] = (wk + γ)/(nk + 2γ).

2. The log-odds on edge k are distributed according to:

πFk(f |n,wγ) =
logistic(f)wk+γlogistic(−f)nk−wk+γ

B(wk + γ, nk − wk + γ)
. (A.99)

3. Thus, the log-odds can be estimated by:

fMAP(nk, wk, γ) = logit(E[Pk|nk, wk, γ]) = ln

Å
wk + γ

nk − wk + γ

ã
fexp(nk, wk, γ) = E[Fk|nk, wk, γ] = ψ(wk + γ)− ψ(nk − wk + γ).

(A.100)

The conditional expectation is equivalent to:

fexp(nk, wk, γ) =

wk∑
w=0

1

w + γ
−

nk−wk∑
l=0

1

l + γ
(A.101)

thus can be updated recursively by adding 1/(wk + γ) when a win is observed, and

subtracting 1/(nk − wk + γ) when a loss is observed. Finally these two estimators
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converge to each other in the limit of large w and n− w with:

fexp(n,w, γ)− fMAP(n,w, γ) =
1

2

2w − n
(w + γ)(n− w + γ)

+O((w + γ)−2) +O((n− w + γ)−2)

fexp(n,w, γ)− fMAP(n,w, γ) ∈ 1

2

2w − n
(w + γ)(n− w + γ)

+

ï −1

2(w + γ)
,

1

2(n− w + γ)

ò
.

(A.102)

4. The posterior distribution for the log-odds is unimodal, has convex negative log-

likelihood, and has tails that decay exponentially according to:

lim
f→∞

πF (f |n,w, γ) ∝ lim
f→∞

exp(−(n− w + γ)f)

lim
f→−∞

πF (f |n,w, γ) ∝ lim
f→−∞

exp(−(w + γ)f)

(A.103)

thus skews negative if fewer wins than losses are observed, and skews positive if

fewer losses than wins are observed. The variance in the posterior distribution for

the log-odds is:

V[F |n,w, γ] = ψ(1)(w + γ) + ψ(1)(n− w + γ)

∼ 1

w + γ
+

1

n− w + γ
+O((w + γ)−2) +O((n− w + γ)−2).

(A.104)

Therefore the variance in the posterior is only small if both the observed number of

wins and the observed number of losses is large. Sample size requirements can be

derived by bounding this variance, or by bounding the expected size of this variance

relative to the expected size of the point estimators when P = logistic(F ) is sampled

from the prior Beta(γ, γ).
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5. In the limit of large sample size the expected error in the point estimators given the

true f is:

E[fMAP(n,W, γ)|f ]− f = −2 sinh(f)
(γ − 1/2)

n
+O(n−2)

E[fexp(n,W, γ)|f ]− f = −2 sinh(f)
(γ − 1)

n
+O(n−2).

(A.105)

and the variance in the point estimators is:

V[fMAP(n,W, γ)|f ] = (2 cosh(f/2))2 1

n
+O(n−2)

V[fexp(n,W, γ)|f ] = (2 cosh(f/2))2 1

n
+O(n−2).

(A.106)

Therefore the asymptotic bias in the point estimators is O(n−1), while the standard

deviation in the point estimators is O(n−1/2). Therefore, in the limit of large sample

size the bias in the expected value of the point estimators vanishes faster than the

standard deviation in the point estimators. This bias can be corrected with the point

estimators:

fMAP∗(n,W, γ) = fMAP(n,W, γ) + 2 sinh(fMAP(n,W, γ))
(γ − 1/2)

n

fexp∗(n,W, γ) = fexp(n,W, γ) + 2 sinh(fexp(n,W, γ))
(γ − 1)

n

. (A.107)

for which the expected error is order n−2 and the variance is unchanged to order n−1.

Additional sampling size requirements can be introduced to ensure that the expected

bias and uncertainty are sufficiently small.

6. The MAP estimators and conditional expectations of the components of the HHD are
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given by:

rMAP(n,w, γ) = (GTG)†GTfMAP(n,w, γ)

ftMAP(n,w, γ) = PtfMAP(n,w, γ)

fcMAP(n,w, γ) = PcfMAP(n,w, γ)

rexp(n,w, γ) = (GTG)†GTfexp(n,w, γ)

ftexp(n,w, γ) = Ptfexp(n,w, γ)

fcexp(n,w, γ) = Pcfexp(n,w, γ)

(A.108)

and the variance in the posterior for each component is:

V[R|n,w, γ] = (GTG)†GTV[F |n,w, γ]G(GTG)†

V[Ft|n,w, γ] = PtV[F |n,w, γ]P T
t

V[Fc|n,w, γ] = PcV[F |n,w, γ]P T
c

(A.109)

7. The measures can be estimated by evaluating:

mtotal(f) = ||f ||2

mtrans(f) = ||ft||2

mcyc(f) = ||fc||2

mrelative(f) = ||fc||2/||f ||2

(A.110)

where either fMAP or fexp is used for the edge flow f . This maintains consistency

with the estimators for the components of the HHD. Alternatively the measures

can be estimated by sampling from the posterior distribution of edge flows (see

below), evaluating the measure for each sampled edge flow, and averaging. This

is discouraged as it is expected to double the bias in the estimated measure due
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to sampling uncertainty. The variance in the posterior can also be estimated by

sampling.

8. We can sample from the posterior for the edge flow by sampling Pk ∼ Beta(wk +

γ, nk−wk+γ), then letting Fk = logit(Pk). By multiplying by the appropriate matrix

this gives samples from the posterior distribution for each component of the HHD.

By evaluating the measures at the sampled F this gives samples from the posterior

distribution for the measures. These could be compared to samples from the prior

(draw Pk from Beta(γ, γ)) to understand how the data has changed the distribution

of each measure. The Kolmogorov distance, or an estimator for the KL distance, can

be used to quantify how much has been learned about the measures from the data.

9. For each sampled F a rating R and associated ranking can be computed. This gen-

erates sampled ratings from the posterior distribution for the ratings. The Spearman

rank correlation and Kendall tau measure can be computed for the list of sampled

ratings in order to quantify our certainty in the ratings. Histograms for the ratings of

each competitor can be used to approximate the posterior distribution of ratings, and

can be collected into a confusion matrix.

A.11.2 Limitations and Challenges:

The summary presented above gives a complete estimation protocol for estimating the edge

flow, components of the HHD, and measures. The estimation protocol has two primary

limitations:

1. The tails of the posterior for F decay exponentially with rates proportional to the

number of observed wins for negative F , and number observed losses for positive

F . Therefore, if the observed number of wins, or observed number of losses, is
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small then the posterior has a large variance, and at least one slowly decaying tail.

That is: if we do not observe many losses it is hard to put an upper bound on the

log-odds of winning, and if we do not observe many wins it is hard to put a lower

bound on the log-odds of losing. Thus rare events make point estimation difficult.

This difficulty can lead to surprising limitations. For example, suppose we observe a

competitor win 10 of 10 events against an opponent. Then it is clear that they likely

have a win probability greater than 1/2. But how much greater? This question is not

easy to answer since we have not observed any losses, so have no data to bound the

win probability above. Instead we are forced to rely entirely on the prior to put an

upper bound on the estimated win probability. This is not a serious problem when

estimating the win probabilities since probabilities are bounded above and below

by 1 and 0. It is a problem when estimating the log-odds since the log-odds are

unbounded (map 1 tp infinity and 0 to negative infinity). Therefore we should not

expect to be able to make confident point predictions of the value of the log-odds

without sufficiently many wins and losses. As a result, even if we see A beat B 10

out of 10 games, B beat C 10 out of 10 games, and C beat A 10 out of 10 games, we

cannot reach a confident estimate of how cyclic the system is. It is clearly cyclic, but

how cyclic?

2. The analysis described above is entirely Bayesian. The point estimators are limited

in that they are points representing a distribution, but even if we sample from, or

compute the posterior explicitly, the posterior is only appropriate for answering some

questions. The posterior gives the probability that a certain edge flow is the true edge

flow (under the chosen prior - which is itself a modelling assumption) given the data.

When the data is insufficient to keep the variance in the posterior small a wide range

of possible edge flows could correspond to the data, and the shape of the posterior
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depends heavily on the choice of prior. The prior assumed the edge flow on each

edge is independent of the flow on the other edges, and that logistic(F ) is distributed

according to Beta(γ, γ). The more the posterior resembles the prior the more our

predictions based on the posterior reflect the prior assumptions. We have shown

that assuming independent edges promotes cyclic competition as the cyclic subspace

usually has larger dimension than the transitive subspace. As a result, even if the true

edge flow is on the transitive subspace, but the too few events are observed to resolve

the posterior, the point estimators for the measures will usually predict a large cyclic

component, since, given limited data, the average edge flow that could correspond

to the data has a large cyclic component. This is a fundamental limitation to the

Bayesian approach. It can only tell us what edge flows might correspond to the data

- thus, since most edge flows have a larger cyclic component, when we are uncertain

what edge flow might correspond to the data we find that the most edge flows that

could match the data are moderately to highly cyclic.

Moving beyond these limitations requires asking different questions. These questions

are:

1. Is there a perfectly transitive edge flow that could plausibly match the data observed?

Is there a perfectly cyclic edge flow that could plausibly match the data observed?

2. What is the smallest intransitivity such that there is an edge flow that could plausibly

match the data? What is the smallest transitivity such that there is an edge flow that

could plausibly match the data?

If we can answer these questions then we can move beyond the two limitations listed

above as an edge flow could plausibly correspond to the observed data without resembling
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most of the other edge flows that could match the data, and we may be able to bound the

measures without needing a precise estimate of the measures. Our approach to answering

these questions is described in the next two sections.
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Appendix B

Hypothesis Testing Details

In this section we develop tools for testing the hypotheses: Ht„ the tournament is perfectly

transitive and Hc the model is perfectly cyclic, against the null hypothesis H0 the tourna-

ment is not necessarily perfectly transivie or perfectly cyclic. In terms of the edge flow

these hypotheses are:

1. Ht: f ∈ range{G} = null{C}

2. Hc: f ∈ null{GT} = range{CT}.

Notice that both of these hypotheses are subsets of H0. Therefore Ht and Hc can be

considered models that are nested within the generic model in which f can be any vector

in RE . In this context a natural way to test hypothesis is to compute either the likelihood-

ratio or the AIC (Aikake Information Criterion). Other test statistics will be considered in

subsequently.

The likelihood-ratio is a test statistic, that is, a function of the sampled data that used to

test a hypothesis. Let F be a subset of RE . Let L(f |n,w, γ) be the likelihood F = f given
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W = w. Then the likelihood-ratio is defined:

LRF(W |n, γ) = −2 ln

Ç
supf∈F L(f |n,W, γ)

supf∈RE L(f |n,W, γ)

å
= 2

Ç
ln(L(fMAP (n,W, γ)|n,W, γ))− sup

f∈F
ln(L(f |n,W, γ))

å
.

(B.1)

The likelihood-ratio is the difference between the log-likelihood of the MAP estimator

and the MAP estimator constrained to the space F . It is always positive since F ⊆ RE .

A large likelihood-ratio (large the log-likelihood difference) indicates a large discrepancy

between the data and the best model given the hypothesis relative to what is expected under

the null hypothesis.

A limitation of the likelihood-ratio is that it does not account for the difference in

number of degrees of freedom between H0 and the hypothesis we are testing. Both Ht

and Hc have fewer than E degrees of freedom, thus are expected to provide a worse fit

to the data. Let |F| be the cardinality of F (number of degrees of freedom in f given

hypothesis H). Then the AIC is defined:

AICF(W |n, γ) = 2

Ç
|F|− ln(sup

f∈F
L(f |n,W, γ))

å
. (B.2)

Hypothesis can then be compared by comparing AIC values.

B.1 Constrained MAP Estimation

A first step towards computing either the log likelihood ratio or the AIC is to find the MAP

estimate for the edge flow constrained to a subspace. This is done numerically.
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The function to be maximized is:

ln (πF (f |n,w, γ)) =
E∑
k=1

ln(πFk(f |n,w, γ)) (B.3)

Since ln(πFk(f |n,w, γ)) equals−
∑E

k=1(wk+γ) ln (1 + exp(−fk))+(nk−wk+γ) ln (1 + exp(fk))

up to addition by a constant an equivalent problem is to minimize:

ln (πF (f |n,w, γ)) =
E∑
k=1

(wk + γ) ln (1 + exp(−fk))

+ (nk − wk + γ) ln (1 + exp(fk)) .

(B.4)

So, given a linear subspace F the constrained MAP or MLE estimate is given by

solving:

argminf∈F

{
E∑
k=1

(wk + γ) ln (1 + exp(−fk)) + (nk − wk + γ) ln (1 + exp(fk))

}
(B.5)

Since all affine subspaces are convex, and since the cost function is convex (log-posterior

or log-likelihood), this is a convex optimization problem. Note that the MLE estimate is

given by solving the same type of problem as the MAP estimate, only with γ = 1.

B.1.1 Comparison to Least Squares Rating

What is the MAP rating if we constrain to the transitive subspace? This is the set of ratings

r that solve the optimization problem given in Equation (B.5) with fk = ri(k) − rj(k). How

do these ratings compare to log least-squares ratings?

Log least-squares ratings are given by solving for a rating r that minimizes the (possibly

weighted) least-squares distance between Gr and f for some edge flow f . Least squares
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ratings can include a regularization term to avoid excessively large ratings.

Finding the MAP rating when f is constrained to the transitive subspace requires min-

imizing the posterior over the transitive subspace. The posterior is not quadratic, how-

ever may be approximated by a quadratic function near fMAP (n,w, γ). Therefore, if

fMAP (n,w, γ) is close to the transitive subspace the value of the log-likelihood can be

approximated with a quadratic function. This produces a least squares problem that is an

approximation to the true optimization problem.

To approximate the log-posterior with a quadratic function Taylor expand the log-

posterior about fMAP . The gradient of the log-posterior is given by Equation (A.25):

∂k(− ln(L(f |n,w, γ))) = −(wk + γ) + (nk + 2γ)logistic(fk). (B.6)

Since the kth partial of the log-likelihood only depends on fk the Hessian of the cost

function is diagonal with diagonal entries:

∂2
k(− ln(L(f |n,w, γ))) = (nk + 2γ)∂fk logistic(fk) = (nk + 2γ)

exp(−fk)
(1 + exp(−fk))2

= (nk + 2γ)
1

1 + exp(−fk)
exp(−fk)

1 + exp(−fk)

= (nk + 2γ)logistic(fk)logistic(−fk)

= (nk + 2γ)logistic(fk)(1− logistic(fk)).

(B.7)

Notice that this is the variance in the binomial distribution for W if the win probability is

set to logistic(fk) and nk + 2γ games are observed. The MAP estimator for f is equivalent

to logit(E[P |n,w, γ]) therefore logistic(fMAP(n,w, γ)) = (w + γ)/(n + 2γ). Therefore,
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the Hessian evaluated at fMAP(n,w, γ) is:

H(n,w, γ) = diag
Å

(w + γ)(n− w + γ)

n+ 2γ

ã
. (B.8)

It follows that the quadratic approximation to the negative log-likelihood about the

MAP estimate, fMAP(n,w, γ), is:

− ln(L(f |n,w, γ)) '− ln(L(fMAP(n,w, γ)|n,w, γ))

+
1

2

E∑
k=1

(wk + γ)(nk − wk + γ)

nk + 2γ
(f − fMAP(n,w, γ))2.

(B.9)

Therefore, the log-least squares approximation to the MAP estimate of the ratings for

f constrained to the transitive subspace is:

argminr|∑m
j=1 rj=0

{
E∑
k=1

(wk + γ)(nk − wk + γ)

nk + 2γ

Å
(ri(k) − rj(k))− ln

Å
wk + γ

nk − wk + γ

ãã2
}

(B.10)

or, in terms of fMAP(n,w, γ):

argminr|∑m
j=1 rj=0

{
E∑
k=1

nk + 2γ

cosh(fMAP(nk, wk, γ)/2)2

(
(ri(k) − rj(k))− fMAP(nk, wk, γ)

)2

}
.

(B.11)

Here γ acts to both increase the weights in the sum of squares and to reduce the

magnitude of the MAP estimate of f . This in turn reduces the estimated ratings, so acts

like a regularizer on the ratings. The least squares approximation to the MAP ratings with

f constrained to the transitive subspace can be written more succinctly as the solution to:

argminr|∑m
j=1 rj=0

{
||V(W |n, p = E[P |n,w, γ])(Gr − logit(E[P |n,w, γ]))||2

}
. (B.12)
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This only differs from the MAP ratings by the weights associated with the variance.

B.1.2 The Likelihood-Ratio as a KL divergence

The log-likelihood of an edge flow f and the MLE edge flow fMLE are:

ln(L(f |w, n)) =

|E|∑
k=1

ln

Ç
nk

wk

å
− wk ln(1 + exp(−fk))− (nk − wk) ln(1 + exp(fk)).

ln(L(fMLE|w, n)) =

|E|∑
k=1

ln

Ç
nk

wk

å
+ wk ln

Å
wk
nk

ã
+ (nk − wk) ln

Å
nk − wk
nk

ã
(B.13)

Therefore the log likelihood ratio is:

− 2
E∑
k=1

wk log

Å
logistic(fk)

wk/nk

ã
+ (nk − wk) log

Å
logistic(−fk)
(nk − wk)/nk

ã
= −2

E∑
k=1

nk

ï
wk
nk

log

Å
logistic(fk)

wk/nk

ã
+

(nk − wk)
nk

log

Å
logistic(−fk)
(nk − wk)/nk

ãò
= 2

E∑
k=1

nkDKL

Å{
wk
nk
,
nk − wk
nk

}
||{logistic(fk), logistic(−fk)}

ã (B.14)

which is the twice a weighted sum of the KL-divergence between the observed win fre-

quency, and the predicted win frequencies given edge flow f on each edge, where the

weights are the number of events observed on each edge.

B.2 Test Statistics

Now, to compute the likelihood-ratio or AIC for either the perfectly transitive or perfectly

cyclic hypothesis minimize the negative log-likelihood constrained to the appropriate sub-
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space. An initial guess at the constrained MAP edge flow can be given by the corresponding

component of the MAP estimate of the edge flow. Then by evaluating the log-likelihood,

or by comparing the AIC of the constrained models to the AIC of the MAP estimate, we

can sustain or reject the perfectly cyclic or transitive hypotheses.

In addition to the log-likelihood and AIC other test statistics can be used to evaluate

whether or not the data could have been plausibly generated by a given edge flow. Since

we are already computing the log-likelihood and AIC it is natural to seek test statistics that

have the following property:

A natural alternative test statistic is the probability of sampling a win record W given

n and f that would be more or equally surprising as the true win record:

p-value(f |n,w) = Pr {Pr{W |n, logistic(f)} ≤ Pr{w|n, logistic(f)}} . (B.15)

The p-value of a given edge-flow can be easily estimated numerically by sampling.

Given an edge flow f set the win probabilities to logit(f) then sampleW ∼ binomial(n, p).

Evaluate the probability of sampling w given n, p and evaluate the probability of sampling

W for each sample. Then count the fraction of the samples that were less likely than w.
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Appendix C

Estimation Details using a Poisson

Scoring Model

C.1 The Model

Here we will introduce a simple probabilistic model for baseball. Similar models could

be developed for other sports in which the team with the most points wins, and where the

game is divided into multiple scoring periods with overtime used to resolve ties. The goal

of this model is to allow us to estimate baseball win probabilities from observed line scores

(runs per inning).

The model is as follows:

1. Let RA(j) be the number of runs scored by team A against B in inning j. Similarly

let RB(j) be the number of runs scored by team B against A in inning j.

2. Assume that RA(j) are all drawn identically and independently from a Poisson dis-

tribution with parameter λAB. Similarly assume that RB(j) are all drawn identically
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and independently from a Poisson distribution with parameter λBA.

3. Both teams play at least nine innings. If, after nine innings one of the teams has

accumulated more wins then they are the winner. If they are still tied after nine

innings they continue to play extra innings until one team has a lead, at which point

the game ends and the team with the lead is the winner.

C.2 Win Probabilities

Given λAB and λBA what is the probability team A beats team B (denoted A > B)?

There are two possible ways in which A can beat B. Either A wins in nine innings and

the game does not go into extra innings, or A wins in extra innings. Let N be the number

of innings played. Since these two outcomes are disjoint so:

Pr{A > B} = Pr{A > B ∩N = 9}+ Pr{A > B ∩N > 9}. (C.1)

In order for the game to go into extra innings the two teams must have been tied at

the 9th inning. Therefore the probability A beats B in extra innings is independent of the

scores of the two teams at the 9th inning. Moreover, in order for A to beat B in inning

N = n > 9 the teams must have been tied up to inning n− 1, so the probability A beats B

in inning n is independent of the teams scores up to inning n− 1. That is, all a team needs

to do to win in extra-innings is win the last of the extra-innings. Since we assumed the runs

scores in each inning are i.i.d this is the same as the probability that A scores more than B
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in any single inning conditioned on them not tying. Therefore:

Pr{A > B} =Pr{
9∑
j=1

(RA(j)−RB(j)) > 0}

+ Pr{RA(1) > RB(1)|RA(1) 6= RB(1), N > 9}Pr{N > 9}.

(C.2)

Let SA(j) =
∑j

i=1 RA(j) and SB(j) =
∑j

i=1 RB(j) be the cumulative scores of each

team after j innings. Let LAB(j) = SA(j)− SB(j) be team A’s lead at inning j. Now:

Pr{A > B} = Pr{LAB(9) > 0}+ Pr{LAB(1) > 0|LAB(1) 6= 0}Pr{LAB(9) = 0}. (C.3)

So, in order to compute the win probability all we need is the cumulative distribution

function of LAB(j) at j = 1 and j = 9.

First, LAB(1) = RA(1) − RB(1). Both RA(1) and RB(2) are Poisson, and they are

independent of each other. Therefore LAB(1) is Skellam distributed:

Pr{LAB(1) = l} = e−(λAB+λBA)

Å
λAB
λBA

ãl/2
Il(2
√
λABλBA). (C.4)

Here Iν(x) is the modified Bessel function of the first kind. Unfortunately the cdf of

the Skellam distribution is not known in closed form. Therefore, in its simplest form:

Pr{LAB(1) > 0} = e−(λAB+λBA)

∞∑
l=1

Å
λAB
λBA

ãl/2
Il(2
√
λABλBA). (C.5)

The probability that the two teams tie in a single inning is:

Pr{LAB(1) = 0} = e−(λAB+λBA)I0(2
√
λABλBA). (C.6)
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Therefore the probability they don’t tie is:

Pr{LAB(1) 6= 0} = 1− e−(λAB+λBA)I0(2
√
λABλBA). (C.7)

This gives the probability that team A scores more than team B in any inning, thus the

probability of A winning in extra innings if the game goes to extra innings. To find out the

probability the game goes into extra innings, or that A wins in 9 innings, we need to know

how LAB(9) is distributed.

The sum of independent Poisson distributed random variables is Poisson distributed

with mean equal to the sum of the means of each random variable. Therefore SA(9) is

Poisson distributed with mean 9λAB and SB(9) with mean 9λBA. Therefore LAB(9) is also

Skellam distributed, only with means 9λAB and SB(9). It follows that:

Pr{LAB(9) = 0} = e−9(λAB+λBA)I0(18
√
λABλBA) (C.8)

and:

Pr{LAB(9) > 0} =
∞∑
l=1

e−9(λAB+λBA)

Å
λAB
λBA

ãl/2
Il(18

√
λABλBA). (C.9)

So, letting:

Skellam(l|µ, λ) = e−(λ+µ)

Å
λ

µ

ãl/2
Il(2
√
λµ). (C.10)

Then, the probability A beats B is:

Pr{A > B} =
∞∑
l=1

Skellam (l|9λAB, 9λBA)

+
Skellam (0|9λAB, 9λBA)

1− Skellam (0|λAB, λBA)

∞∑
l=1

Skellam (l|λAB, λBA)

(C.11)
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Figure C.1: Win probability for team A against team B if team A scores with rate λA
against team B, and team B scores with rate λB. Blue represents low probability, yellow
represents high probability. Notice that the win probability function is a smooth step
function, with low probability if λB is sufficiently greater than λA, and high probability
otherwise.

The win probability function defined by Equation (C.11) is illustrated in Figure C.1.

C.3 Estimation

C.3.1 Estimating λ

How can we estimate λAB and λBA given data?

Line score data (runs scored in each inning for each team) is widely available for MLB

games, and has been collated on sabermetrics sites. For example, retrosheet.org provides

the line scores of every MLB game in 2019, as well as extensive historical data.
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In order to estimate λAB and λBA we assume that these are fixed over the course of

a season. That is, we assume that the expected number of runs hit by team A’s offense

against team B’s defense is constant over the season.

Let nAB(y) be the total number of innings seen played between A and B in year y.

Let {rAB(y)j}j = 1nAB(y) be the runs scored by A against B in the jth inning they played

during year y. Since it is assumed that each inning is independent of each other inning, and

the runs scored in each inning are Poisson:

Pr{RAB(y) = rAB(y)} =

nAB(y)∏
j=1

λAB(y)rAB(y)j

rAB(y)j!
e−λAB(y). (C.12)

This is the likelihood.

We now need a prior on λAB(y). We will assume that all λij(y) are sampled i.i.d from a

gamma distribution with parameters α and β since the gamma distribution is the conjugate

prior to the Poisson distribution. Then:

Pr{ΛAB(y) = λ} =
βα

Γ(α)
λα−1e−βλ. (C.13)

Then the posterior distribution for ΛA,B(y) is proportional to:

Pr{ΛAB(y) = λ|rAB(y), α, β} ∝ βα

Γ(α)

nAB(y)∏
j=1

λrAB(y)je−λ

λα−1e−βλ (C.14)

or, equivalently:

Pr{ΛAB(y) = λ|rAB(y), α, β} ∝ βα

Γ(α)
λ
∑nAB(y)
j=1 rAB(y)j+α−1e−(nAB(y)+β)λ. (C.15)

Therefore the posterior distribution for Λ is a gamma distribution with parameters
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∑nAB(y)
j=1 rAB(y)j + α and nAB(y) + β:

ΛAB(y) ∼ Gamma

Ñ
nAB(y)∑
j=1

rAB(y)j + α, nAB(y) + β

é
. (C.16)

This gives an intuitive interpretation of the prior parameters. The first prior parameter,

α, is a fictitious number of runs added to the total number of runs scored by A against

B in year y. The second parameter, β, is a fictitious number of innings across which the

fictitious runs occurred. Moreover, since the posterior is a gamma distribution it is easy to

sample from.

The mean, variance, and mode of gamma distributions are easy to evaluate. The mode

and mean give the MAP estimator for ΛAB(y) and its conditional expectation. The variance

is the uncertainty in these estimates:

λMAP (r, n, α, β) =

∑n
j=1 r(j) + α− 1

n+ β

λexp(r, n, α, β) = E[Λ|r, n, αβ] =

∑n
j=1 r(j) + α

n+ β
= λMAP (r, n, α, β) +

1

n+ β

Var[Λ|r, n, α, β] =

∑n
j=1 r(j) + α

(n+ β)2
=

E[Λ|r, n, αβ]

n+ β
.

(C.17)

C.3.2 Estimating the prior parameters

How should we estimate the prior parameters α, β?

Assume that the prior parameters are fixed for some series of seasons Y . This could be

a single season or multiple seasons. Then the probability of observing the line scores of
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each pair of teams during those seasons is:

Pr{data(Y )|α, β} =
∏
y∈Y

∏
(ij)∈V E(y)

∫ ∞
0

nij(y)∏
k=1

Pr{Rij(y)k = rij(y)k|λij(y) = λ}


× Pr{λij(y) = λ|α, β}dλ.

(C.18)

Here V E(Y ) denotes the set of all pairs of teams who competed in year y (this is the set of

edges of the network associated with year y).

The inner pair of probabilities are the likelihood we already evaluated so the integral is:

βα

Γ(α)

1∏n
k=1 rk!

∫ ∞
0

λ
∑n
k=1 rk+α−1e−(n+β)λdλ =

Γ (
∑n

k=1 rk + α)∏n
k=1 rk! Γ(α)

βα(n+ β)−(
∑n
k=1 rk+α).

(C.19)

Therefore:

Pr{data(Y )|α, β} =
∏

y∈Y,(ij)∈V E(Y )

Γ
Ä∑nij(y)

k=1 rij(y)k + α
äÄ∏nij(y)

k=1 rij(y)k!
ä

Γ(α)
βα(nij(y)+β)

−
(∑nij(y)

k=1 rij(y)k+α
)

(C.20)

Notice that the prefactor involving the gammas is essentially a multinomial. For concision

let r̄ij(y) =
∑nij(y)

k=1 rij(y)k be the total runs batted by team i against team j in year y.

Then the negative log likelihood of α, β given data(Y ) is (up to an additive constant):

− log (Pr{α, β|data(Y )}) =
∑
y∈Y

∑
(ij)∈V E(y)

log (Γ (r̄ij(y) + α))− log (Γ(α))

+ α log(β)− (r̄ij(y) + α) log(nij(y) + β) + C

(C.21)

where C is some additive constant that depends on the normalization.

Let G(α, β|data(Y )) = − log (Pr{α, β|data(Y )}) without the added constant C. We

can find the MLE for α, β by minimizing the G(α, β|data(Y )). In practice this will be
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Figure C.2: Gamma prior distribution for baseball scoring rates in 2019 using MLE
parameter estimates for α and β. The horizontal axis represents the expected number of
runs per inning. The vertical axis represents the probability density.

done numerically however we can take some steps towards minimizing the negative log

likelihood analytically. An example prior with MLE parameters is shown in Figure C.2.

First, the gradient of the negative log likelihood is:

∇G(α, β|data(Y )) = −
∑

y∈Y,(ij)∈V E(Y )

 ψ(r̄ij(y) + α)− ψ(α) + log(β)− log(nij(y) + β)

(α/β)− (r̄ij(y) + α)/(nij(y) + β)


(C.22)

where ψ(x) = d
dx

log(Γ(x)) is the digamma function.

Settings the bottom partial to zero requires:

α

β
=

1

|data(Y )|
∑
y∈Y

∑
(ij)∈V E(y)

r̄ij(y) + α

nij(y) + β
(C.23)

where |data(Y )| is the total number of innings observed in the data. Notice that this requires

that the ratio of total fictitious runs to fictitious innings equals the average over the data set
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of the ratio of runs plus fictitious runs to innings plus fictitious innings. This shows that

α/β must be consistent with the average runs per inning across the data set.

This is a linear equation in α∗ so we can solve for α∗(β) such that at α∗(β), β the partial

derivative with respect to β of G is zero. Rearranging:Ñ
1

β
− 1

|data(Y )|
∑
y∈Y

∑
(ij)∈V E(y)

1

nij(y) + β

é
α =

1

|data(Y )|
∑
y∈Y

∑
(ij)∈V E(y)

r̄ij(y)

nij(y) + β

(C.24)

Therefore:

α∗(β) =
1

|data(Y )|
β

−
∑

y∈Y
∑

(ij)∈V E(y)
1

nij(y)+β

∑
y∈Y

∑
(ij)∈V E(y)

r̄ij(y)

nij(y) + β
. (C.25)

This is the only solution where the partial with respect to β of the negative log likelihood

is zero, so the minimum must lie on the curve (α∗(β), β). This turns the optimization

problem for the prior parameters into a one-dimensional problem.

If the total number of runs observed is large and the fictitious number of runs observed

is large we can approximate the digamma’s in the partial with respect to α as log(r̄ij(y)+α)

and log(α) (accurate to order 1/(r̄ij(y) + α) and 1/α respectively). Then, setting the top

row to zero gives the approximate relation:

α

β
'

Ñ∏
y∈Y

∏
(ij)∈V E(y)

r̄ij(y) + α

nij(y) + β

é1/|data(Y )|

(C.26)

where this relation becomes true in the limit as α and r̄ij(y) go to infinity. Therefore, when

enough runs are observed the ratio of the MLE estimates of fictitious runs to fictitious

innings must match both the arithmetic and geometric average of the ratio of (runs +

fictitious runs) to (innings + fictitious innings).
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We can also compute the Hessian of the negative log likelihood analytically. This is:

H(α, β|data(Y )) =
∑
y∈Y

∑
(ij)∈V E(Y )

 ψ(1)(α)− ψ(1)(r̄ij(y) + α) 1
nij(y)+β −

1
β

1
nij(y)+β −

1
β

α
β2 −

r̄ij(y)+α
(nij(y)+β)2


(C.27)

where ψ(1)(x) is the trigamma function.

Given the gradient and the Hessian analytically Newton’s method can be used ef-

ficiently to solve for the minimizer of the negative log likelihood (since this is a two

dimensional system we can even invert the Hessian analytically). Since α, β > 0 the

minimizer used is a constrained version of Newton’s method. We can also easily compute

the eigenvalue of the Hessian to check that it is positive definite (and hence that the negative

log likelihood is convex).

The minimization is made easier by the fact that we have a good guess at the location of

the minimizer. In general α/β should be close to the average runs scored per inning across

the data set, so we pick initial estimates for the parameters so that their ratio matches

the average runs scored per inning. In our experience setting β equal to the average

number of innings played per pair, divided by two, gives a close initial estimate to the

MLE parameters. This method has proved very fast and robust in all the examples tested.

If desired we could even reduce the problem to a one dimensional problem by setting α

equal to α∗(β) and performing the minimization in β alone.

C.4 Sampling Win Probabilities

We would like to be able to sample win probabilities from the posterior distribution of win

probabilities given the data. This sampling can be done by first sampling prior parameters

from the posterior distribution of prior parameters, then, given the prior parameters sam-
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pled, sampling λ from the corresponding gamma distribution, and plugging the sampled

λ’s into the formula for computing win probabilities. Therefore the only new machinery

we need in order to sample win probabilities from their posterior is a method for sampling

the prior parameters.

This can be done efficiently using importance sampling. In importance sampling the

samples are drawn from a proposal distribution that is designed to mimic the true distri-

bution, but with a larger variance. Then, when averaging over the samples each sample is

reweighted by its importance so that the weighted average mimics an average over the true

distribution. If p(x) is the true distribution, and q(x) is the proposal distribution (which

is supported everywhere p(x) is supported) then using weights w(x) = p(x)/q(x) and

sampling X ∼ q gives:

Ep[f(X)] '
∑

j f(Xj)w(Xj)∑
j w(Xj)

. (C.28)

In our case this is an attractive sampling scheme since we do not need to know the nor-

malizing constant of the true distribution (the weighted average is invariant under scaling

by a constant), and we can use the Hessian to get a reasonable proposal distribution.

As a proposal distribution we use the Gaussian approximation to the posterior evaluated

at the MLE parameters, with standard deviation scaled by a scale factor s > 1:

N ((α∗, β∗), s
2H(α∗, β∗)

−1) (C.29)

This ensures that the proposal distribution has the same shape as the posterior about the

maximum likelihood parameters, but is spread more broadly, so samples rare events more

efficiently. An example of the resulting samples and weights is show in Figure C.3

The Hessian typically has one large and one small singular value. The small singular

value corresponds to a singular vector along the direction such that α/β is equal to the
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Figure C.3: Sampled prior parameters using importance sampling. Notice that the
parameters are tightly distributed about the line such that α/β equals the average number of
runs hit per inning in the season. The weights (importance) for each sample are color coded.
Samples with blue weights are of low importance, while samples with yellow weights are
of high importance.

average number of runs per inning. As a result the Gaussian approximation is tightly

distributed perpendicular to this direction, but not in this direction. This anisotropy in

the likelihood is thus captured by the proposal distribution.

In all of our trials we have found that setting s = 2 gives a proposal distribution

such that the weights decay to zero in all directions away from the maximum likelihood

parameter values.
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Appendix D

Building an Optimal Spanning Tree

The steady state of a Markov process in all three strongly forced limits (β → ∞) is

described by the work evaluated over an optimal spanning tree. If β goes to infinity, and

the conductances are held fixed, then the work is evaluated against the edge flow f , and for

each node we seek the directed spanning tree oriented towards that node that maximizes

the work exerted by the edge flow along the path from each leaf of the tree back to the

node of interest. This is, in effect, the total energy exchanged with the reservoir along an

ensemble of relaxation trajectories. The ratio of the steady state probabilities is given by

evaluating the difference in these trees. In the strong rotational and near deterministic limits

the work is evaluated against ∆fij = fij − maxk∈Ni{fik}, and the optimal spanning tree

is the collection of paths which minimize the work exerted by the process to move along

activation trajectories away from a stable cycle or pair of nodes. In each case the value of

the work evaluated over these trees defines a quasipotential like object which converges to

the effective potential (log of the steady state) in the limit.

To compute either of these network quasipotentials one must first construct an optimal
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Figure D.1: An example optimal spanning tree for a two dimensional lattice with x0 =
[50, 50] and with edge rates set to approximate an OU process with constant noise.

spanning tree. A simple algorithm for constructing optimal spanning trees is presented in

this section. An example minimizing the work against f on a lattice with transition rates

chosen to approximate an OU process is shown in Figure D.1.

A network quasipotential is a function on the nodes that is defined by a functional S.

The functional acts on the space of paths and returns a real number. The functional can be

thought of as the action or work associated with specific paths.

In order to ensure that the optimization problem is tractable we require that the func-

tional satisfies certain requirements. The first requirement ensures that we can compute the

value of the functional one step of the path at a time. The second ensures that lengthening

a path always increases or decreases the value of the functional:

1. Let y be a path from a to b. Let c be a neighbor of b. Let y′ be the path from a to c

that follows y to b then the edge from b to c. We require S(y′) = H[S(y), b, c] where

H[s, b, c] is an update function that depends exclusively on the value s and the edge

b, c.
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2. Monotonicity: either H[S(y), b, c] ≤ S1(y) for all S(y), b, c or H[S(y), b, c] ≥ S(y)

for all S(y), b, c. Moreover, if s > t then H[s, b, c] > H[t, b, c] for all s, t, b, c.

These two conditions are satisfied by a variety of natural functionals. Path integrals

over f always satisfy the first condition, and path integrals over min{f, 0} or max{f, 0}

always satisfy the second. Path integrals against ∆f satisfy both. We have seen these path

integrals arise repeatedly when considering the work over paths.

Alternatively, given a skeleton trajectory X consisting of n nodes on a path from a to

b, the probability of walking the trajectory is:

S(X) =
∏
j=1

lxj+1,xj

|lxj ,xj |
(D.1)

Where xj is the jth node in the trajectory.

This satisfies the first condition since:

S([x1, x2, ...xn]) =
lxn,xn−1

|lxn−1,xn−1|
S([x1, x2, ...xn−1]) = H [S([x1, x2, ...xn−1]), xn−1, xn] .

(D.2)

It is also monotonic, since lxj+1,xj ≤ |lxj ,xj |. The probability of walking a specific trajectory

never increases when we add an edge to the trajectory. In a strong forcing limit the log of

this probability converges to the work evaluated against ∆f , the difference between fij and

the largest flow leaving node i.

Next we define the optimal trajectory (or set of optimal trajectories) from a to b given S

to be the trajectory (or set of trajectories) that minimizes S if S is monotonically increasing,

or maximizes S if S is monotonically decreasing. The monotonicity condition is essential

since it ensures that optimal trajectories are never infinitely long , never contain loops, and

never contain any edges in both the forward and backward direction.
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Fix an initial node x0. An optimal spanning tree, denoted T [S1, x0], is a spanning tree

of the network G such that each path in the spanning tree is an optimal path with respect to

S.

It is obvious that any set of optimal paths from x0 to every other node spans the network.

It is not obvious to see that these paths always form a tree. In order to form a tree they need

to be self consistent. That is, the optimal path X = [x0, x1, ...xn] is equivalent when

truncated to xj, j < n, to the optimal path from x0 to xj . It is sufficient to show this

equivalence for j = n− 1, since equivalence for all j follows by induction.

Consider a node xn 6= x0. There always exists at least one optimal pathX from x0 to xn.

Let xn−1 be the node preceding xn in the optimal trajectory X , and X ′ = [x0, x1, ...xn−1].

Let Y ′ denote an optimal trajectory from x0 to xn−1. If Y ′ can always be chosen so that

it is equivalent to X ′ then it is always possible to pick a set of optimal paths that form an

spanning tree. To show that X ′ is always equivalent to some optimal path Y ′ we proceed

by contradiction.

By the first requirement on S:

S[X] = H[S[X ′], xn−1, xn].

Let Y be the path from x0 to xn that follows Y ′ to xn−1 then moves directly from xn−1

to xn. Then, by definition:

S[Y ] = H[S[Y ′], xn−1, xn].

Suppose X ′ is not an optimal path from x0 to xn−1. Then S[X ′] > S[Y ′] for any
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optimal Y . Then by the monotonicity requirement:

S[X] = H[S[X ′], xn−1, xn] > H[S[Y ′], xn−1, xn] = S[Y ].

But Y is a path from x0 to xn so if S[Y ] < S[X] then X is not an optimal trajectory.

Therefore, ifX is an optimal trajectory from x0 to xn thenX ′ must be an optimal trajectory

from x0 to xn−1. It follows by induction that any truncation of the an optimal trajectory X

is itself an optimal trajectory.

So, given an initial node x0 and a functional S that satisfies the first and second require-

ment it is always possible to construct a spanning tree T [S, x0] such that every path in the

tree from x0 to x is an optimal path with respect to S.

Next we need an algorithm for constructing an optimal spanning tree given an action

functional S and an initial node x0. Thankfully, since S is monotonic, and can be computed

one edge at a time, this algorithm is both easy to construct and surprisingly efficient. The

key idea when constructing an optimal spanning tree is that a truncation of an optimal path

is itself an optimal path. It follows that we can build the tree outwards by considering all

optimal paths of a set length, starting with length one, then length two, and so on.

The process is initialized by indexing all the nodes and picking x0. Without loss of

generality assume that S is monotonically increasing as paths grow longer. Define a vector

u with as many entries as there are nodes. Set u(x0) = 0. When considering all paths

length k or less the ith entry of p will correspond to the optimal value of S over all paths

from x0 to the ith node with k or fewer edges.

Any spanning tree is completely specified by listing all of the edges of the spanning

tree. Since there are V − 1 edges we list one edge for every node that is not the root x0. A

convenient way to list the edges is to orient each edge so that it points out from x0, that is
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from the node closer to x0 in the tree to the node farther from x0 in the tree. Then, every

node except x0 has exactly one “parent" node, corresponding to the node one step closer

to x0. Then the entire tree can be stored by a vector with V entries, whose ith entry is an

index corresponding to the parent of i. In this context the node i is the “child" of the node

j. Keeping with the terminology the vector that lists all the parents of each child is the

genealogy vector.

We build the tree by starting with all paths length less than or equal to one, then less

than or equal to two, and so on. Let k represent the length of the largest possible path

considered on the kth iteration. At the end of the kth step the set of all the nodes who are a

distance k from x0 in the current tree are the kth generation.

Suppose that, at the end of step k we have a optimal spanning tree of all the nodes

within k steps of x0 using paths of length k or less. This is stored as the kth iteration of the

genealogy vector. To find the optimal tree of all paths from x0 with length k+ 1 or less we

need only consider paths that extend paths length k. That is, the possible children in the

k+ 1st step must all be neighbors of the nodes in the kth generation. So the list of possible

parents of the k + 1st step is the list of children of the kth step.

Loop over the nodes in the kth generation. Each node is possibly a new parent. Let the

index j refer to the parent. Then loop over all the possible children of each parent. Note

that this includes all neighbors of j except for j’s parent. The index i will refer to a specific

possible child. Since each parent j is included in the spanning tree of paths less than length

k + 1 we know the optimal value of S over all paths length less than k + 1 from x0 to

j. This was stored as uj . Now, given a specific parent j, and given a specific child i, the

optimal spanning tree with paths of length less than or equal to k includes a specific path

with length k+1 from the node x0 to the node j, then to the node i. Denote this path X . To

find the value of S along this path we use the edge based update rule S[X] = H[uj, j, i].
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If the child i has not yet been considered then we automatically add it to the list of

new children, with parent j. If the child has already been considered we compare S[X] to

ui. If S[X] < ui then the path X is preferable to the path we had previously considered

from x0 to i. In that case, switch the parent of node i to node j, and let ui = H[uj, j, i].

Repeating this process for every possible child of every possible parent produces a new

genealogy corresponding to the tree of optimal paths length k + 1 or less. Every node

whose parentage changed in the k+ 1st step is stored as a possible parent for the next step.

This process is repeated until no new nodes are added. The process necessarily stops in

finite time since the monotonicity of S ensures the optimal paths never form loops, and the

longest non-looping path through a network with V nodes has V − 1 edges. Therefore, at

most, the process runs for V − 1 stages.

It is worth noting that this algorithm is entirely general, so can compute optimal span-

ning trees for any appropriate choice of S that is monotonic and can be updated one edge

at a time. It is also worth noting that if there are multiple optimal spanning trees for a

given S, x0 then this algorithm only returns one of the multiple possible trees. To return

all of the trees replace each entry of the genealogy vector with a list of all the possible

parents of the given node corresponding to optimal spanning trees. That is, in the special

case that we find S1[X] = ui simply add the node j to the list of possible parents of i,

instead of clearing the list and using j alone. Since the quasipotential is the value of S over

the optimal trajectories, if there are multiple optimal spanning trees all must have the same

quasipotential, so it suffices to find one optimal spanning tree.

An example optimal spanning tree and quasipotential with S set to the likelihood of

skeleton trajectories is shown in Figure 7.11 along with the associated network quasipoten-

tial. The transition rates are chosen to approximate an OU process, which has linear drift,

so the corresponding potential is approximately quadratic.
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