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Abstract
An essential topic in theoretical ecology is the extinction of populations subject to demographic stochasticity. Mechanistic
models of demographic stochasticity, such as birth-death processes, can be analytically intractable, so are frequently
approximated with stochastic differential equations (SDEs). Here, we consider two pitfalls in this type of approximation.
First, familiar deterministic models are not always appropriate for use in an SDE. Second, the common practice of
starting directly from an SDE without explicitly constructing a mechanistic model leaves the noise term up to the
modeler’s discretion. Since the stability of stochastic models depends on the global properties of both the noise and the
deterministic model, overly phenomenological deterministic models, or heuristic choices of noise, can lead to models that
are unrealistically stable. The goal of this article is to provide an example of how both of these effects can undermine
seemingly reasonable models. Following Dennis et al. (Theor Ecol 9:323–335 2016) and Levine and Meerson (PRE,
87:032127 2013), we compare the persistence of stochastic extensions of standard logistic and Allee models. We show that,
for common choices of noise, stochastic logistic models become exponentially less extinction prone when a strong Allee
effect is introduced. This apparent paradox can be resolved by recognizing that common models of an Allee effect introduce
overcompensation that dominates the extinction dynamics, even when the deterministic model is rescaled to account for
overcompensation. These problems can be resolved by mechanistic treatment of the deterministic model and the noise.

Keywords Extinction time · Allee effects · Stochastic differential equations · Quasi-potentials

Introduction: the paradox

In this article, we will compare the extinction process
of four different stochastic population models. All four
models are constructed directly from deterministic models,
which are then modified by an additional noise term. We
will consider two different deterministic models and two
different choices of noise. These models are intentionally
chosen to illustrate difficulties that arise in the construction
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of stochastic models, even when starting from very familiar
and well-understood deterministic models.

Our deterministic models are defined:
d

dt
x(t) = m(x) (1)

where m(x) is the rate of change of the population x(t).
The first deterministic model we consider is the logistic

model, defined by setting:

m(x) = r

K
x (K − x) . (2)

Here, r represents the per capita growth rate in the
population as x goes to zero and K is the carrying capacity.
This model has two fixed points: the extinction state x = 0
and the carrying capacity x = K . The extinction state is
unstable, and x(t) approaches K from any x(0) �= 0. Notice
that the per capita growth rate, r

K
(K − x), is largest when

the population x is small.
The second model we consider introduces an Allee

effect. An Allee effect modifies the logistic model so
that, for sufficiently small x, the per capita growth rate
decreases as x decreases (Stephens et al. 1999). These
effects often arise from mechanisms that suppress the per
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capita growth rate at low densities (Boukal and Berec
2002; McCarthy 1997). Classic examples include increased
difficulty finding mates, decreased chance of pollination,
loss of genetic diversity, or the collapse of social groups
(Courchamp et al. 1999; Stephens et al. 1999). A strong
Allee effect reduces the per capita growth rate enough that
it falls below zero for x less than some threshold A. Beneath
this threshold the population tends to extinction. Therefore,
the introduction of a strong Allee effect should greatly
increase a population’s risk of extinction by reducing the
scale of fluctuation away from K needed to reach extinction
(Courchamp et al. 1999; Stephens and Sutherland 1999).
As a resu lt, Allee effects are central to the conservation of
populations at low density (Stephens and Sutherland 1999).

Allee effects have been modeled extensively (Boukal
and Berec 2002; Stephens and Sutherland 1999). Here we
consider the simplest Allee model. A strong Allee effect
introduces an Allee threshold A such that for x < A

the population necessarily tends to extinction. This can be
accomplished by replacing the quadratic rate equation used
in the logistic model with a cubic rate equation:

m(x) = r

AK
x(x − A)(K − x) (3)

where A is the Allee threshold (Courchamp et al. 1999;
Poggiale 1998).

Although simple, this model is widely used in the liter-
ature (Amarasekare 1998; Courchamp et al. 1999; Dennis
et al. 2016; Gruntfest et al. 1997; Keitt et al. 2001; Kus-
sell and Vucelja 2014; Lewis and Kareiva 1993; Levine and
Meerson 2013; Poggiale 1998). It is often chosen for its
tractability and familiarity. In fact, it is so ubiquitous that in
some reviews, it is the only Allee model shown explicitly
(Courchamp et al. 1999). Our use follows a pair of recent
papers (Dennis et al. 2016; Lewis and Kareiva 1993) that
adopt this cubic model to study the persistence of fluctuat-
ing populations. Note that this model provides the desired
asymptotic behavior without addressing an explicit underly-
ing mechanism. It is usually used as a “phenomenological”
model when a specific mechanism is either unknown or
not of interest (Boukal and Berec 2002). Alternative mod-
els based on specific mechanisms are studied in Dennis
(1989), Dennis (2002), and McCarthy (1997) and addressed
in Appendix A.6.

While multiplication by themonomial (x−A)/A introduces
a strong Allee effect in the vicinity of A, it also increases the
rate of return toK when x is nearK . This overcompensation
effect is usually counterbalanced by picking the characteris-
tic growth rate r so that the growth rate in the Allee model,
rA, is less than the growth rate in the logistic model, rL
(Dennis 2002; Gruntfest et al. 1997; Lewis and Kareiva
1993; Poggiale 1998). We start with the direct comparison
rA = rL since the results are most apparent in this case.
Our analysis generalizes easily to situations when rA < rL,
for which the qualitative results are largely unchanged (see
Section “Does rescaling resolve the paradox?”).

To study the extinction process we replace our determin-
istic process x(t) with stochastic processes X(t). This is
accomplished by replacing the deterministic ordinary differ-
ential equation (1) with stochastic differential equations of
the form:

dX = m(X)dt + √
2v(X)dW . (4)

Here, m(X) is the infinitesimal change in the expected
population and v(X) is the infinitesimal change in the
population variance. These are the mean drift and diffusion
coefficient respectively. The Weiner increment, dW , is the
accumulation of Gaussian white noise over the interval dt .
Technically (4) is just a shorthand for an integral equation,
which cannot be performed without first choosing an
interpretation of integration over dW (Van Kampen 1980).
Here we follow the Ito convention. As in Dennis (2002)
and Stephens et al. (1999) we do not consider demographic
stochasticity to be an Allee effect.

In order to specify a specific stochastic model for the
process X(t) we need to pick the noise variance v(x). We
will start by considering two common choices, constant
variance v(x) = 1

2σ
2, and linear variance v(x) =

1
2σ

2x. The first represents random, density independent
immigration and emigration, and is often chosen for analytic
convenience (as in Nolting and Abbott 2016). The second is
more realistic in certain general settings (Desharnais Robert
et al. 2006), and is commonly used to model demographic
noise (Dennis et al. 2016; Kamenev et al. 2008; Tier and
Hanson 1981).

To summarize, we consider the four models:

1a. Logistic with Constant Variance: dX = r
K

X(K − X)dt + σdW

1b. Logistic with Linear Variance: dX = r
K

X(K − X)dt + σ
√

XdW

2a. Allee with Constant Variance: dX = r
AK

X(X − A)(K − X)dt + σdW

2b. Allee with Linear Variance: dX = r
AK

X(X − A)(K − X)dt + σ
√

XdW .

(5)

To illustrate the danger of constructing SDEs from
phenomenological models with ad hoc noise terms, we use

these four models to ask: how does the introduction of an
Allee effect change the risk of extinction for populations
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Fig. 1 Sampled first passage times to extinction for models 1a and 2a
(constant variance) r = 0.1, K = 160, σ = 20 and A ∈ [20, 50].
The extinction time for each individual simulation is shown with a col-
ored dot, blue for logistic, red for Allee. The corresponding means are

plotted as thick colored lines (blue for logistic, red for Allee). The ana-
lytic mean times to extinction are shown in black. The intercept in the
analytic first passage times is shown as a dotted black line. For all A

beneath the intercept the Allee model is more stable than the Logistic
model. This is evidence of the paradox

starting at carrying capacity? To answer this question, we
compute the mean time to extinction, τ(K), in all four
models and compare 1a with 2a, and 1b with 2b.

To illustrate the persistence, τ(K), of the four models,
we considered the following example. We set r = 0.1 and
K = 160. For models 1a and 2a (constant variance), we set
σ = 20 and varied A from 20 to 50 in increments of 0.5. For
each increment, we ran 200 simulations starting from K . To
simulate the population, we used the Milstein method with
time step dt = 0.01 (Higham 2001). Each simulation was
terminated once the stochastic process reached an extinction
threshold (X(t) < ε for ε = 10−8). The time increment
was chosen by gradually decreasing dt until the empirical
mean stopped changing (within uncertainty in the mean).
We then computed the mean time to extinction and variance

in time to extinction for each A. The mean and variance
in simulated extinction times closely matched analytic
predictions from an exponentially distributed extinction
process (for analytical details see Sections “Theory”—
“How to avoid the paradox”). Results are shown in Fig. 1.

Figure 1 reveals the paradox: for A � 37 the mean time
to extinction in the Allee model is greater than the mean
time to extinction in the logistic model. This difference
becomes larger as A becomes smaller. For A � 25 the
mean time to extinction in the Allee model is ten to a
hundred times larger than the mean time to extinction in the
logistic model. This directly contradicts the intuition that the
introduction of an Allee effect should make a population at
carrying capacity less stable. It also contradicts results for
discrete time population models, where an Allee effect has

Fig. 2 Sampled times to
extinction for models 1b and 2b
(linear variance) r = 0.1,
K = 160, σ = 20 and
A ∈ [20, 50]. The extinction
time for each individual
simulation is shown with a
colored dot, blue for logistic, red
for Allee. The corresponding
means are plotted as thick
colored lines (blue for logistic,
red for Allee). The analytic mean
times to extinction are shown in
black. The intercept is shown as
a dotted black line. For all A
beneath the intercept the Allee
model is more stable. This is
further evidence of the paradox
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been shown to greatly decrease the mean time to extinction
(Stephan and Wissel 1994).

The same comparison was repeated for the two linear
variance models (1b and 2b) to much the same effect. Here
the parameters r and K were kept the same, the noise
intensity was reduced to σ = 3, and we let A range
from [15, 50] (Fig. 2). While the effect is less pronounced,
the difference in mean extinction times is well beyond the
empirical uncertainty in the mean extinction times, and for
small A leads to a separation of close to an order of magnitude.

In sum, these seemingly reasonable stochastic differen-
tial equations lead to highly illogical results. Adding an
Allee threshold to our models extended their persistence by
orders of magnitude, with stronger effect at lower thresh-
olds. This is in direct contrast to the biology the Allee
models are meant to represent, wherein the presence of an
Allee threshold heightens extinction risk and the signifi-
cance of having an Allee effect should be greater the farther
the threshold is from zero (Stephens et al. 1999).

The rest of this paper is devoted to explaining this para-
dox and showing that it reflects a more general problem in
the construction of stochastic population models. Namely,
when introducing an effect to a model one must be careful to
not accidentally introduce an additional effect which leads
to a wrong conclusion. The analytic method for solving
for τ(K) is discussed in Section “Theory.” From the exact
expression, we derive an intuitive extinction time estima-
tor that simplifies the discussion. This intuition will depend
heavily on a physical analogy and offers a clear qualitative
understanding of the paradox (see Appendix A.5). The esti-
mators are applied to the four models in Section “Analysis’.
There, we establish an asymptotic bound for A given large
K beneath which the Allee models are exponentially more
stable than the logistic models. With the estimators in hand,
we can easily consider other scalings of the Allee model that
set rA < rL. We show that rescaling the deterministic model
alone may not resolve the paradox, and often introduces new
problems. In addition, when the noise is scaled commen-
surately, the rescaling never resolves the paradox. We then
show that the paradox arises both from cavalier treatment
of v(x), and from differences between the construction of
deterministic models and stochastic models. In particular,
phenomenological stochastic models should be constructed
with global stability in mind, not just the location of saddles
and the local stability of equilibria. Based on these consider-
ations we introduce two simple guidelines for constructing
models that avoid the paradox (Section “How to avoid the
paradox”). These guidelines lead to a natural bound on the
asymptotic scaling of mean times to extinction that matches
results reported in the literature (Foley 1994; Kamenev et al.
2008; Lande 1993; Ovaskainen and Meerson 2010).

Theory

We interpret the four models introduced in the previous
section (4) using Ito’s integration rule. Assume that m(x)

scales with a parameter r as in Eq. 2 and v(x) scales with σ 2

as in Eq. 5. Under these assumptions, the probability density
π(x, t) that X(t) = x evolves according to the Ito form of
the Fokker-Planck equation (Van Kampen 1980):

∂

∂t
π(x, t) = − ∂

∂x
(rm(x)π(x, t))+ σ 2

2

∂2

∂x2
(v(x)π(x, t)). (6)

Technically, the following analysis finds the mean first
passage time to a neighborhood of extinction of size ε;
however, for small ε, this analysis is biologically equivalent
to finding the time to extinction.

The first passage time into ε is defined as the earliest time
at which X(t) reaches ε. Since X(t) is a stochastic process
the first passage time is a random variable. As discussed
in Section “Introduction: the paradox,” the distribution of
extinction times is exponential and thus determined entirely
by the mean first passage time to ε.

Denote the mean first passage time (MFPT) from a state
x to the final state ε as τε(x). Given infinitesimal mean
rm(x) and variance σ 2v(x)/2 > 0 the MFPT τε(x) is the
solution to the backward equation:

rm(x)
∂

∂x
τε(x) + σ 2

2
v(x)

∂2

∂x2
τε(x) = −1 (7)

with boundary conditions τε(ε) = 0 and limx→∞ ∂xτε(x) =
0 (Allen and Allen 2002; Bresloff 2014; Tier and Hanson
1981).

Assume that v(x) > 0 for all x > 0.1 Then, Eq. 7 can be
rewritten:

∂2

∂x2
τε(x) + 2r

σ 2

m(x)

v(x)

∂

∂x
τε(x) = − 2

σ 2

1

v(x)
. (8)

Let f (x) = m(x)
v(x)

and let T = σ 2

2r . These are analogous to
forces and temperature in thermodynamic systems governed
by the same equation (4) (Hong et al. 2002). For details on
the physical analogy, see Section “A.5 Physical analogy.”
Loosely speaking, the population tends to grow when
f (x) > 0 and to decrease when f (x) < 0. When the
temperature, T , is large, the process is noisy and is more
likely to move against f (x). When the temperature is small,
the process is close to deterministic.

1If extinction is absorbing then v(0) = 0 and the process X(t) is a
singular diffusion (Tier and Hanson 1981). This motivates the choice
0 < ε ≤ 1.



Theor Ecol

Let yε(x) = ∂
∂x

τε(x). Then:

∂

∂x
yε(x) + 1

T
f (x)yε(x) = − 2

σ 2

1

v(x)
. (9)

This is an inhomogeneous first-order equation, which can
be solved by integrating factors:

yε(x) = c1 exp
(
− 1

T

∫ x

ε
f (s)ds

)
−

exp
(
− 1

T

∫ x

ε
f (s)ds

) ∫ x

ε
2
σ 2

1
v(s)

exp
(

1
T

∫ s

ε
f (ζ )dζ

)
.

(10)

This solution can be rewritten in terms of a potential function
(Dennis et al. 2016), S(x), that provides a convenient
summary of the models’ tendency to move towards K:2

S(x) = −
∫ x

0
f (s)ds. (11)

Then:

yε(x) = exp
(
1
T

(S(x) − S(ε))
)
×

[
c1−

∫ x

ε
2
σ 2

1
v(s)

exp
(
−1

T
(S(s)−S(ε))

)
ds

]
.

(12)

If the population has a carrying capacity (above which
m(x) < 0) and the ratio m(x)/v(x) does not converge to
zero as x goes to infinity (the general case provided v(x)

is of the same order in x as m(x)) then S(x) diverges to
positive infinity as x goes to infinity. Therefore, the integral
∫ x

ε
1

v(s)
exp

(
− 1

T
(S(s) − S(ε))

)
ds converges to a constant

as x goes to infinity. So, to enforce the second boundary

condition set c1 = ∫ ∞
ε

1
v(s)

exp
(
− 1

T
(S(s) + S(ε))

)
ds.

Then:

yε(x) =
∫ ∞

x

2

σ 2

1

v(s)
exp

(
1

T
(S(x) − S(s))

)
ds. (13)

Now, to recover the first passage time integrate yε(x):

τε(x)=
∫ x

ε

∫ ∞

s

2

σ 2

1

v(ζ )
exp

(
1

T
(S(s)−S(ζ ))

)
dζds+c2

(14)

The first boundary condition τε(ε) = 0 requires c2 = 0.
Therefore:

τε(x) =
∫ x

ε

∫ ∞

s

2

σ 2

1

v(ζ )
exp

(
1

T
(S(s)−S(ζ ))

)
dζds. (15)

Before developing the analytic estimators that will be
used to explain the paradox, it is helpful to gain some
insight into the physical analogy suggested by the potential
S(x). The deterministic process d

dt
x = m(x) always

2The potential S(x) is equivalent to the Friedlin-Wentzell quasi-
potential (Nolting and Abbott 2016). It appears in exact solutions to
the backward equation (7), so it is important in computing first passage
time statistics (Tier and Hanson 1981).

moves “downhill” on the quasi-potential surface. Therefore,
a valley, or basin of attraction, associated with a local
minimum of the potential corresponds to a region inside
which the deterministic system is guaranteed to approach
a stable fixed point at the minimum (Nolting and Abbott
2016). As a result, probability tends to accumulate at the
bottom of wells in the quasi-potential. If the distribution
π(x, t) approaches a quasi-stationary distribution πq(x)

such that π(x > ε, t) ≈ πq(x) exp(−t/τ ) for some large
τ then the potential is large where the quasi-stationary
distribution is small, and small where the quasi-stationary
distribution is large. In fact, it can be easily shown from
the Fokker-Planck equation (6) that if π(x, t) approaches a
quasi-stationary distribution πq(x), then:

S(x) ∝ − lim
σ→0

T log
(
πq(x)

)
. (16)

Given a notion of energy, S(x), it is handy to have a
notion of work that is the amount of energy the system needs
to walk any trajectory X(t). A natural notion of work along
a pathX(t), t ∈ [0, tfinal]with respect to a potential function
S(x) is:

W(X|S) = max
t<s∈[0,tfinal]

{S(X(s)) − S(X(t))}. (17)

Thus, the work needed for a population trajectory to
follow a particular path is given by the maximum difference
in the potential achieved along the path. Trajectories that
manage to escape a basin of attraction (move against f (x))
are generally unlikely, with probability proportional to the
minimum work needed to escape the basin. As a result,
deeper basins are generally more stable (Nolting and Abbott
2016).

We can use these observations about the potential to
form analytic approximations to the mean first passage
time. In all four models, K is a stable attractor of the
deterministic dynamics, so corresponds to a well in the
potential. Therefore, in order for X(t) to reach extinction
starting from K the process must first escape the basin
surrounding K . This requires climbing the potential, either
all the way to ε or, in the case of the Allee models, until
reaching the saddle at x = A. In either case, if the well
is deep enough, this occurrence is extremely unlikely and
the mean time to extinction is dominated by the time it
takes to escape this well. In general, the time it takes
to escape the well is much longer than the time scale
of the fluctuations inside the well, and the time scale
of the fluctuation that carries X(t) to extinction, so the
corresponding time to extinction follows an approximately
exponential distribution.

To turn these observations into an estimator, notice that
the exact expression for the mean first passage time (15) is
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a double integral over an exponential of differences in the
potential. It follows that the dominant contribution to the
MFPT comes from s, ζ where the difference in potential,
S(s) − S(ζ ), is largest. Since S(ζ ) is minimized at ζ = K

this difference is maximized when s ∈ [0, K] maximizes
S(s) − S(K). This difference is precisely the work it takes
to escape the well. Therefore, the mean first passage time
scales exponentially in the work it takes to escape the well:

τε(K) ≈ exp

(
1

T
max

ε<s<K
{S(s) − S(K)}

)
= exp

(
1

T
W(K → 0)

)
. (18)

Here, W(K → 0) denotes the work to go from carrying
capacity to extinction (the depth of the potential well at
carrying capacity).

The difference in potential is maximized by s in the
vicinity of either ε or A (depending on the model) and by ζ

in the neighborhood ofK . Following Bresloff (2014) we can
fine tune our estimator by Taylor expanding the potential
near 0, A, and K . This introduces a prefactor to Eq. 18.
Details are provided in Appendix A.1. In general, these
estimators can be written in the form:

τε(K) ≈ C(K) exp

(
1

T
W(K → 0)

)
(19)

where C(K) is a prefactor that is generally much smaller
than the exponential term. For all the models we consider,
the work to escape carrying capacity will be a polynomial
in K , whose order depends on the choice of m(x) and
v(x), while the prefactor C(K) will be rational in K and is
proportional to 1/r . Since the exponential term dominates
for large K we can study the asymptotic behavior of
τε(K) purely by considering the work to escape carrying
capacity. This greatly simplifies the overall analysis. For
completeness, the prefactors are computed in Appendix A.2.

Most first passage times to extinction reported in the
literature have the form:

τε(K) ≈ C(K) exp
( a

T
K

)
(20)

for some constant a (Foley 1994; Lande 1993; Leigh
1981; Ovaskainen andMeerson 2010; Kamenev et al. 2008).
In Foley (1994) and Lande (1993), this exponential scaling
is due to the fact that m(x) is set to be linear in x (density
independent growth) up until x = K . In Kamenev et al.
(2008), this exponential scaling arises naturally from the
order of m(x) relative to v(x) in a model similar to 1b.

For general m(x) and v(x), there is no reason why the
linear exponential scaling law in Eq. 20 must hold. In fact,
the work to escape carrying capacity can be quadratic, cubic,
or even quartic in K . This leads to super-exponential scaling
of the mean time to extinction. In Section “Theory,” we will
compute potentials for the four models and show that it is
this super-exponential scaling that allows for the paradox
when the cubic Allee model is used. In Section “Analysis,”
we will show that super-exponential scaling of this type is
unrealistic for SDEs derived from birth-death processes, so
is a canary in the coal mine for these models.

Analysis

Consider the four models introduced in Eq. 5. The associated
forces are:

1a. f (x) = 1
K

x(K − x)

1b. f (x) = 1
K

(K − x)

2a. f (x) = 1
AK

x(x − A)(K − x)

2b. f (x) = 1
AK

(x − A)(K − x).

(21)

Fig. 3 Potentials for all four
models given A = 35 and
K = 250. In both panels the
potential well for the Allee
models is deeper at x = K than
the potential well for the
corresponding logistic models.
This is the source of the
paradox; even though the Allee
models introduce a saddle at
x = A they also deepen the
potential well at x = K
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The associated potentials are given by integrating the
forces (see Eq. 11):

1a. S(x) = − 1
K

x2
(
1
2K − 1

3x
)

1b. S(x) = − 1
K

x
(
K − 1

2x
)

2a. S(x)=− 1
AK

x2
(
− 1

4x
2 + 1

3 (A + K)x − 1
2AK

)

2b. S(x) = − 1
AK

x
(
− 1

3x
2 + 1

2 (A + K)x − AK
)
.

(22)

Examples of these potential functions are shown in
Fig. 3. Notice that the Allee model (red dashed line) has a
deeper potential well at carrying capacity for both constant
and linear variance.

Evaluating the potentials at extinction, K , and A

respectively:

1a. S(0) = 0, S(K) = − 1
6K

2

1b. S(0) = 0, S(K) = − 1
2K

2a. S(A) = 1
6AK

A3
(
K − 1

2A
)

, S(K)= 1
6AK

K3
(
A − 1

2K
)

2b. S(A) = 1
2AK

A2
(
K − 1

3A
)

, S(K)= 1
2AK

K2
(
A − 1

3K
)
.

(23)

Therefore, the work needed to move from K to extinc-
tion is:

1a. W(K → 0) = 1
6K

2

1b. W(K → 0) = 1
2K

2a. W(K → 0) = 1
6AK

[
A3

(
K− 1

2A
)
−K3

(
A − 1

2K
)]

2b. W(K → 0)= 1
2AK

[
A2

(
K− 1

3A
)
−K2

(
A − 1

3K
)]

.

(24)

This gives extinction time estimates:

1a. τ(K) ≈ C(K) exp
(

r
3σ 2 K2

)

1b. τ(K) ≈ C(K) exp
(

r
σ 2 K

)

2a. τ(K) ≈ C(A,K) exp
(

r

3σ 2

[
A2

(
1 − 1

2
A
K

)
+ K2

(
1
2

K
A

− 1
)])

2b. τ(K) ≈ C(A,K) exp
(

r

σ 2

[
A

(
1 − 1

3
A
K

)
+ K

(
1
3

K
A

− 1
)])

.

(25)

The exact value of the C(K) varies depending on the
model, in particular, with the curvature of the potential at
x = K (see Appendix A.2).

There are clear differences in the scaling of each model’s
potential in K . The logistic model with constant variance
scales quadratically in K , while the Allee model with
constant variance scales cubically in K . The logistic model
with linear variance scales linearly in K , while the Allee
model with linear variance scales quadratically in K . The
depth of the potential well in the Allee model always scales
by a polynomial of higher order than the equivalent logistic

model. This is a natural and inevitable consequence of
modeling the Allee effect by multiplying the logistic m(x)

by a factor of (x−A)/A. It follows that for sufficiently large
K − A (that is, a sufficiently small Allee threshold relative
to carrying capacity), the Allee model is not just more stable
than the equivalent logistic model, it is much more stable,
with an exponentially longer mean time to extinction.

This is the paradox. The presence of an Allee threshold
makes these models substantially less extinction prone
and the Allee and logistic models become less similar in
their behavior as the Allee threshold approaches zero. This
directly contradicts the intended biology.

While the models introduced so far are simplistic, they
are not special cases. Uncontrolled scalings of this type are
difficult to avoid if the variance is chosen independently of
the deterministic model, or if m(x) is defined only by the
location of its roots in mind.

For example, suppose we wanted to model a process with
multiple stable equilibria x = [a1, a2, ...an] separated by
saddles at x = [b1, b2, ..bn−1]. The easiest way to construct
an ODE of this type would be to set:

m(x) = r

n∏

j=1

(aj − x)

n−1∏

j=1

(x − bj ). (26)

The Allee model, Eq. 3, is defined in exactly this way,
with n = 2, a1 = 0, a2 = K , and b1 = A.

In some cases, this is sufficient for phenomenological
models of deterministic processes since it guarantees the
process will have basins of attraction (−∞, b1), (b1, b2),
..., (bn−1, ∞) each associated with a stable equilibrium aj .
This fixes the distance we can perturb x away from a given
equilibrium aj while ensuring the process will return to
aj . Note that the introduction of a new saddle or stable
equilibrium only changes the boundaries of the nearest
neighboring basins of attraction, so the introduction of new
saddles or nodes only changes the resilience of the closest
equilibria. In this sense, introducing each root to m(x) only
affects the qualitative dynamics in a local way.

In a stochastic setting, the location of the stable equilibria
and saddles remains important, but it is the depth of each
potential well that is essential. The polynomial model (26)
does not leave any freedom to vary the relative depths of
the individual wells, since these are entirely specified by
the locations of the wells. The introduction of a saddle or
node at any point x changes the depth of every other well.
Even worse, the farther removed the newest saddle or stable
equilibrium is from any given well, the more dramatically it
changes the depth of that well. This follows naturally from
the fact that |x − ai | is monotonically increasing the farther
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Fig. 4 Sample polynomial m(x)

before and after the introduction
of a new root (extremum in the
potential). Notice that the
introduction of the new root
does not change the roots of
m(x), but does stretch m(x) so
that its value away from the new
root is generally much larger
than its value before the root
was introduced. The first panel
shows the original m(x) in blue.
The second compares the
original (thin blue line) to the
new m(x) thick red line. The
new root is introduced at x = 15

x is from ai . As a result, the introduction of a root in m(x)

affects the global stochastic dynamics of the entire process,
and has a larger effect the farther we move away from the
root (Fig. 4). This will necessarily lead to unintended side-
effects if the root was introduced with the intent of modeling
dynamics only in its vicinity, not over the entire domain.

This is the heart of the paradox. Introducing the Allee
threshold at A by mutliplying m(x) with a monomial
increases the polynomial order of m(x) thereby deepening
the potential well at x = K . This makes the carrying
capacity exponentially more stable.

To test our analytic approximations (25) numerically,
we computed the exact solution to the backward equation
(7) for ε = 1. The exact solution is expressed as a
double integral. These integrals were computed numerically
in MatLab using built-in numerical integrators. This was

also the technique used to solve for the analytic mean first
passage times shown in the Figs. 1–2. As expected, our
analytic expressions capture the essential scaling of the
mean first passage time to extinction as K becomes large
(see Fig. 5).

To start, we considered the constant variance case for
A = K/5, r = 0.1, and σ = 20. The noise variance
was intentionally set large so that the τε(K) did not exceed
floating point accuracy for large K . The mean extinction
time as a function of K ∈ [10, 400] is shown for model 1a
and 1b along with the corresponding analytic estimators in
Fig. 5. The exact mean extinction time is compared in Fig. 6.
For K > 90, the Allee model is more stable than the logistic
model, and the difference in extinction time between the
two models becomes more exaggerated for larger K . This
reflects the difference in scaling between the two models.

Fig. 5 Exact mean time to
extinction τε(K) (MTE) and
analytic approximations for the
logistic model. Left panel:
constant variance and r = 0.1
and σ = 20. Right panel: linear
variance with r = 0.1 and σ = 3
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Fig. 6 Exact mean time to
extinction for the logistic and
Allee models. Left Panel:
constant variance,
A = K/6, r = 0.1, and σ = 20.
Notice that the Allee model has
exponentially longer extinction
times for K > 90 (marked with
a dashed black line). Right
Panel: linear variance,
A = K/6, r = 0.1, and σ = 3.
Notice that the Allee model has
exponentially longer extinction
times for K > 125 (marked with
a dashed black line)

The same analysis was repeated for the linear variance
case, for A = K/10, r = 0.1, and σ = 3. Results are shown
in Fig. 6. Here, the noise variance does not need to be as
large as in the constant variance case to prevent the MTE
from exceeding floating point accuracy. Once again, the
Allee model is exponentially more stable than the logistic
model for large K , with larger MTE for K > 150.

Define the ratio R(A, K) of the mean extinction time of
the Allee model to the mean extinction time of the logistic
model, given Allee threshold A and carrying capacity K .
If R(A, K) < 1, then the logistic model is less extinction
prone, and if R(A, K) > 1, the Allee model is less
extinction prone. The ratio R(A, K) was computed for all
A ≤ K and K ∈ [0, 400]. A contour plot of R(A, K)

is provided in Fig. 7 for both constant and linear variance.

The blue region above the white line corresponds to A, K

such that the logistic model is more stable (less extinction
prone) and the purple to red region beneath the white line
corresponds to A, K such that the Allee model is more
stable. By comparing the depths of the potential wells, we
find that, for constant variance and large K , the Allee model
is exponentially more stable if A < aK where a ≈ 0.2574
satisfies: a4 − 2a3 + 4a − 1 = 0.

Notice that, regardless of the variance, for any choice
of A, there exists a sufficiently large K such that the
Allee model is orders of magnitude more stable than the
logistic model. Also notice that once K is sufficiently large
the extinction time for the Allee model increases much
faster than the extinction time for the corresponding logistic
model.

Fig. 7 Contours for the ratio of the exact mean time to extinction
(MTE) for Allee and logistic models for A ≤ K ∈ [0, 400], r = 0.1.
The left panel corresponds to constant variance with σ = 20. The right
panel corresponds to linear variance with σ = 3. In both the white
line represents all A, K such that the two models have the same first
passage time. Each black line above the white line represents a factor

of ten increase in the MTE of the logistic model relative to the Allee
model, and each black line beneath the white line represents a factor
of ten increase in the MTE of the Allee model relative to the logis-
tic model. The purple-red region beneath the white line is the region
where the paradox is observed. The ratio is only calculated up to 1012

to avoid numerical errors. This introduces the solid red plateau
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This completes the story when rA = rL = r . Multiplying
the logistic model by the monomial (x − A)/A increases
the depth of the potential well, thereby increasing the
passage time to extinction. This effect can be predicted
from the deterministic models simply by considering the per
capita growth rate away from A. In the cubic model, the
introduction of the monomial increases the magnitude of the
per capita growth rate for x −A > A. Therefore, if K > 2A
the per capita growth rate around x = K is increased
when moving from the logistic model to the Allee model.
In a deterministic setting, this overcompensation effect is
usually resolved by rescaling rA so that rA < rL. In the
next section, we discuss the effects of rescaling on mean
time to extinction and show that rescaling does not offer a
satisfactory resolution to the paradox in a stochastic setting.

Does rescaling resolve the paradox?

Here, we generalize the analysis to rA < rL. Our goal is to
determine whether or not the paradox can be resolved based
on the standard choices of rescaling used to avoid excess
overcompensation in deterministic Allee models.

In principle, there are three choices of rescaling that
can be motivated by deterministic reasoning. First, if rA
is interpreted as the maximum per capita growth rate,
then rA should be chosen so that the Allee model has
the same maximum per capita growth rate as the logistic
model (Gruntfest et al. 1997; Lewis and Kareiva 1993). This
requires setting rA = 4AK

(K−A)2
rL (see Appendix A.3 for

details). Plugging into Eq. 24 and considering the limit of
large K − A, we find that the work to escape K is twice
as large in the Allee model than in the logistic model when
v(x) is constant, and is 4/3rds times as large in the Allee
model when v(x) is linear. The prefactors also depend on
the rescaling; however, for large K − A, the exponential
term still dominates. Therefore, since the work to escape the
carrying capacity in the Allee model is greater than the work
to escape the carrying capacity in the logistic model, the
Allee model is still more persistent than the logistic model.
Moreover, since the depth of both wells scales quadratically
in K , the difference in the extinction times still grows
super-exponentially in K . Therefore, rescaling in this way
to account for overcompensation in the deterministic model
does not resolve the paradox.

Given that this rescaling failed to resolve the paradox,
it is natural to consider stronger rescalings. Instead of
choosing rA so that the Allee model has the same maximum
per capita growth rate as the logistic model, rA can be
chosen so that both have the same maximum growth rate.
For large K − A, this scaling is approximated by rA =
16
27

(K+ 1
2A)

K
(K−A)2

AK
rL. Then, for large K and constant noise,

the work to escape the carrying capacity in the Allee model
is approximately 7/8 times the work to escape the carrying
capacity in the logistic model. For linear noise, the work
to escape in the Allee model is approximately 9/16 times
the work to escape in the logistic potential. Since the work
to escape the Allee model is smaller than the work to
escape the logistic model, the Allee model is less stable
and has shorter mean time to extinction. However, the
work to escape the carrying capacity in the Allee model
now converges to a fixed proportion of the work to escape
the carrying capacity in the logistic model for large K .
This is biologically unreasonable since it implies that for
arbitrarily small A, and arbitrarily large K , the introduction
of an Allee threshold reduces the extinction time by a fixed
power. This means that the purportedly local Allee effect
is globally destabilizing. A truly local Allee effect would
only destabilize the population when A is reasonably near
K , and for large K − A, both models should have close to
the same persistence. This is the behavior observed in the
mechanistic Allee models examined in the next section and
Appendix A.6. Therefore, although this rescaling resolves
the paradox, it still does not produce a stochastic model that
behaves reasonably.

Finally, instead of requiring that the two models share
the same maximum growth rates, we could require that
they share the same local stability at K . Then, in the
deterministic sense, the two models would be equally stable.
This requires setting rA = A

K−A
rL. For large K − A and

constant noise, the work to escape carrying capacity in the
Allee model converges to one half the work required in the
logistic model. For linear noise, the work to escape in the
Allee model converges to one-third the work required for
the logistic model. Therefore, for large K , the Allee model
is less persistent than the logistic model so the paradox is
resolved. However, as in the previous case, the persistence
of the Allee model converges to a fixed power of the
persistence of the logistic model when K − A is large.
Therefore, this rescaling resolves the original paradox, but
also does not produce a model that behaves reasonably.

In all three cases, rescaling reduced the order of the work
to escape the Allee potential so that it was comparable to a
fixed factor times the work to escape the logistic potential.
This resolves the most egregious scaling error apparent in
the direct comparison but does not necessarily resolve the
paradox, and still fails to restrict the impact of the Allee
effect to small populations. Moreover, without stochastic
models, it is likely impossible to predict a priori whether or
not a rescaling will resolve the paradox, since the answer
may well depend on the choice of variance. This is because
the rescalings were based on deterministic criteria that
fixed some feature of the models to be the same at some
specific point (or pair of points). The persistence of the
stochastic models depends globally on the ratio m(x)/v(x)
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so introducing a global rescaling based on a deterministic
local criteria cannot be expected to correctly treat the
persistence of the stochastic models. This is apparent in the
last rescaling, where the two models have the same local
stability near K , but completely different persistences.

Finally, if the noise is derived implicitly from a pair of birth
and death rates, as will be illustrated in the following section,
then a rescaling of m(x) is typically due to a rescaling of the
underlying birth and death rates that give rise to r . In that
case, the noise intensity is the sum of these underlying rates
(Bresloff 2014; Samuel and Taylor Howard 1981), so σ 2

should scalewith r (see Section “How to avoid the paradox”).
In particular, if the birth and death rates are scaled by some
constant α, then both r and σ 2 are scaled by α. Since the
potential depends on the ratio of the deterministic part to
the noise, this rescaling does not change the potential. If
we revisit any of the above scalings and properly rescale
both r and σ 2, then for all three scalings, the work to
escape carrying capacity in the Allee model would remain
an order larger in x than the corresponding work for the
logistic model. It follows that scaling would only resolve
the paradox if it changed C(A, K) enough to counter the
exponential of the difference in work to escape the two
wells. This is only feasible for small K − A, since for
large K − A, it would require an unreasonably large,
noise-dependent, rescaling that could not be justified on
mechanistic grounds.

In conclusion, rescaling the deterministic part alone may
account for overcompensation in the deterministic model, but
cannot be regarded as a satisfactory resolution of the paradox.

How to avoid the paradox

There are two simpleways to avoid the extinction time paradox.
The first is to model m(x) with global stability in mind.

If one constructs m(x) in a way that fixes both the locations
and the depths of the potential wells, then the global stability
of each well is controlled a priori. This would require using
a more complicatedm(x) than the polynomial (26). It would
be natural to use saturating functions instead of monomials
when introducing new extrema, which would only affect
m(x) locally, thereby avoiding accidental global changes.

Most mechanistic Allee models make this type of local
modification by introducing a term that only effects the
growth rate at low populations. For example, if the Allee
effect arises from difficulty-finding mates, then it is natural
to introduce a function P(x) which gives the probability of
a female finding a mate (per unit time) given population
size x. It is usually assumed that P(0) = 0, P (∞) = 1
and P(x) is monotonically increasing (Boukal and Berec
2002). The specific choice of P(x) depends on the model
for mate finding; however, common choices are P(x) =

1 − exp (−ax), P(x) = 1 − (1 − z)x , and P(x) = x
θ+x

for some a, z, θ > 0 (Boukal and Berec 2002; Dennis 1989;
2002; Stephan and Wissel 1994). If each mated female has
fecundity β, then we can modify the logistic m(x) so that:

m(x) = βP (x)x−δ0x−δ1x
2 = δ1

(
β − δ0

δ1
− x

)
x−β(1−P(x))x. (27)

This resolves the extinction time paradox by restricting
the modification to the logistic model to small populations.
That said, it does not constrain the scaling of mean time to
extinction in any way, so allows for mean extinction times
that increase super-exponentially in K . We will show that
this sort of super-exponential scaling is unrealistic for an
SDE that is intended to approximate a birth-death process.
Therefore, while this modification of m(x) resolves the
paradox, it does not resolve the underlying problem with our
models. The potentials corresponding to specific P(x) are
explored in the Appendix A.6.

The second, and more complete, solution is to choose
v(x) in a way that reflects the mechanisms that give rise to
the stochastic process. Since we are modeling populations
subject to demographic stochasticity, it is natural to model
birth and death as independent random events. Under
minimal assumptions (Patrick 1995) these events occur at
exponentially distributed intervals with density dependent
rates. Then, the population, X(t), is an integer-valued
continuous-time stochastic process. Assume that the birth
and death rates, λ and μ, are non-negative continuously
differentiable functions of population size. Let pi(t) be the
probability that the population has i individuals at time t .
Then, pi(t) obeys the master equation:

d
dt

pi(t) = λ(i − 1)pi−1(t) − (λ(i)) + μ(i))pi(t) + μ(i + 1)pi+1(t).

(28)

The first term accounts for birth events from x = i − 1, the
second for birth and death events at x = i, and the third for
death from x = i + 1.

These discrete population models can be difficult to
analyze, so it is natural to make a diffusion approximation
that approximates their behavior with an SDE. Methods for
developing diffusion approximations are outlined in Allen
and Allen (2002), Bresloff (2014), and Higham (2008).
Suppose we refine our integer-valued population model to
include fractional populations, spaced evenly in intervals
x. When refining the discrete model, modify the birth
and death rates so that λ(x) − μ(x) is proportional to x

but λ(x) + μ(x) is unchanged.3 Then, Taylor expanding p

in small x, 1
x

pi(t) converges to π(x, t) where π(x, t)

3This is the standard assumption made when taking the hydrodynamic
limit of a random walk. For details see Appendix A.4.
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obeys a Fokker-Planck equation with infinitesimal mean
m(x) and variance v(x) given by:

m(x) = λ(x) − μ(x)

v(x) = λ(x) + μ(x).
(29)

For details on this approximation, see Appendix A.4.
The observation that the difference in birth and death rates
is associated with m(x) while the sum of the two rates
is associated with v(x) is a familiar feature of birth-death
models (Bresloff 2014; Doering et al. 2005; Samuel and
Taylor Howard 1981; Nisbet and Gurney 1982; Turelli
1977; Wilkinson 2012).

If one starts with a deterministic model and jumps
directly to an SDE, v(x) is not specified by any
underlying noise model. As a result, v(x) is often chosen
for analytic convenience (Allen et al. 2008), or based
on familiar examples in the literature. It is commonly
assumed that processes subject to demographic noise have
instantaneous variance v(x) = σ 2x, and processes driven
by environmental noise have instantaneous variance v(x) =
σ 2x2 (Dennis 2002; Desharnais Robert et al. 2006; Tier
and Hanson 1981); however, these expressions depend on
particular modeling assumptions and by no means apply to
all birth-death processes.4 In contrast, by deriving an SDE
from a diffusion limit of a specified birth-death process
the infinitesimal variance v(x) is determined implicitly by
the choice of birth and death rates. When v(x) is derived
implicitly from birth and death rates, the corresponding
v(x) = λ(x) + μ(x) is just as nonlinear as m(x) =
λ(x) − μ(x), so would rarely be chosen if pulled out of
a hat. In particular, there is no reason why a birth-death
process needs to converge to an SDE with linear v(x) if
λ(x) and μ(x) are nonlinear (for examples see Cresson and
Sonner 2018). This result generalizes to other mechanistic
models of demographic stochasticity, such as discrete time
models for populations with annual birth and death pulses
(Desharnais Robert et al. 2006).5

4Note that v(x) will typically depend on both x and the model
parameters. Therefore, when considering scaling in system size it
is more clear to write v(x,K) where v(x,K) is the instantaneous
variance at x given a carrying capacity K . It is generally true
that v(x,K) scales linearly in K both for physical systems and
for populations subject to demographic stochasticity (Bresloff 2014;
Desharnais Robert et al. 2006); however, this does not require that
v(x,K) is also linear in x.
5For example, consider a discrete time model representing a
population with annual birth and death stages. Suppose that the
expected change in population after one year is E[Xt+1 − Xt ] =
m(Xt ). Suppose that, as in Desharnais Robert et al. (2006), the actual
change is Poisson distributed so that Xt+1 = Xt + Zt where Zt is
a Poisson distributed random variable with mean m(Xt ). Then, the
variance in Xt+1 − Xt is m(Xt ). So, if m(x) is nonlinear then the
variance v(x) is also nonlinear, and, as in the birth-death process, v(x)

scales with m(x).

Suppose that we pick λ(x), μ(x) to give a particular
m(x). Then, the noise will often inherit much of the
behavior of m(x). In particular, if m(x) is large, then the
noise will be larger (after scaling by T ) since the sum of two
positive numbers is always greater than their difference. As
a result, the forces f are bounded by:

|f (x)| =
∣∣∣∣
λ(x) − μ(x)

λ(x) + μ(x)

∣∣∣∣ ≤ 1 (30)

with equality if and only if either λ(x) or μ(x) is zero.
Constructed this way, the forces are saturating in both λ(x)

and μ(x). If either birth or death dominates, then the forces
approach 1 or −1. Since the force f is a derivative of the
potential, it follows that the potential is Lipschitz continuous
with a constant one (has slope of magnitude < 1 for all x):

|S(x + h) − S(x)| ≤ h. (31)

This translates immediately into a limit on how the mean
extinction time τ(K) can scale with K − A. Equation 31
implies S(0)−S(K) ≤ K and S(A)−S(K) ≤ K −A < K

so W(K → 0) ≤ K . This means that τ(K) is, at most,
exponential in K as suggested in Eq. 20:

τ(K) � C(K) exp

(
1

T
K

)
(32)

for some rational C(K). This is not quite as restrictive
as it seems since the temperature T depends on the limiting
procedure used to approximate the birth-death model with
an SDE. However, it is enough to suggest that the original
four models (except perhaps the logistic model with linear
variance and r fixed) have unrealistic noise assumptions.
This underscores the importance of deriving an SDE from
an explicit mechanistic model (in this case, specific birth
and death rates) (Nisbet and Gurney 1982; Wilkinson 2012).

For an example of how modeling birth and death sep-
arately produces noise variance that bounds the associated
first passage time to extinction, consider the birth and death
rates (Cresson and Sonner 2018; Doering et al. 2005):

λ(x) = βx

μ(x) = δ0x + δ1x
2.

(33)

These lead to logistic m(x) and quadratic noise variance
v(x) = (β + δ0)x + δ1x

2.6 Because we assume that all

6Note that there are infinitely many ways to decompose m(x) =
λ(x) − μ(x) into a particular λ(x) and μ(x), and that these models
will not all share the same first passage time statistics (Allen and Allen
2002). For example in the logistic model derived from a simple S-I-
S infection model the quadratic competition term is moved into birth
rather than death (Doering et al. 2005). We follow Nisbet and Gurney
(1982) and assume that any positive term in m(x) is associated with
birth and any negative is associated with death. This differs from the
implementation in Doering et al. (2005) and Kamenev et al. (2008)
but ensures all the rates are positive for all x. An equivalent model
is studied in both Tier and Hanson (1981) and Leigh (1981), albeit
derived from different assumptions. A careful analysis of extinction
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parameters have constant values, this model includes only
demographic noise, not environmental noise. Importantly,
had we used the usual assumption that demographic noise
gives linear v(x) (as in model 1b) we would have been
studying an SDE that did not correspond to the underlying
birth-death process.

The potential associated with Eq. 33 is:

S(x) = x − 2δ0
δ1

log

(
1 + δ1

β + δ0
x

)
. (34)

The work needed to escape the well is still linear in
K = β−δ0

δ1
:

S(0)−S(K)=
[
(1 + T ) log

(
1 + T

T

)
−1

]
K ≤ 1

T
K (35)

with T = σ 2

2r = β+δ0
β−δ0

. It follows that the mean first
passage time to extinction scales exponentially, not super-
exponentially, in K .

This example reveals that the usual assumption that v(x)

is linear for demographic noise is not true for general birth-
death processes, and had we assumed v(x) was linear,
we would have vastly overestimated the persistence of the
population. In fact, the only way that v(x) can be lower
order than λ(x) andμ(x) is if λ(x) andμ(x) are chosen with
a particular symmetry so that λ(x)+μ(x) is lower order than
either λ(x) or μ(x) (Kamenev et al. 2008). This symmetry
is hard to motivate biologically since it is hard to imagine
a realistic scenario in which the birth and death processes
conspire to cancel their highest order term, and it typically
leads to either a negative birth rate or a negative death rate
for large x.

Therefore, for most birth-death processes, it is likely that
the scaling law (20), given by Ovaskainen and Meerson
(2010), holds. This can serve as a check to make sure the
assumed v(x) is reasonable and motivates modeling from a
birth-death process before moving to an SDE.

Conclusion

For naively chosen mean population change rate m(x)

and instantaneous variance v(x), the introduction of an
Allee effect to a stochastic logistic model can exponen-
tially increase the mean first passage time to extinction. This
apparent paradox illustrates two major conceptual differ-
ences between deterministic and stochastic modeling. First,
stability of a stochastic model depends on the global behav-
ior of the model, so phenomenological models, and local
corrections, may lead to unexpected dynamics. Second, it

times for birth-death processes of this type is available in Doering et al.
(2005).

is important to build stochastic models that are mechanis-
tically plausible. Modeling the process from separate birth
and death mechanisms resolves the paradox by introducing
a natural limit on the steepness of the potential wells. This
limit introduces a scaling law for first passage times that can
be used to check whether or not a particular choice of v(x)

could plausibly arise from a birth-death process, and sug-
gests that heuristic choice of the noise may lead to extreme
overconfidence in the persistence of fluctuating populations.
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Appendix

A.1 Extinction time estimators

In Section “Theory,” we derived an exact expression
for the first passage time from carrying capacity, K , to
extinction, then introduced a series of estimators based on
the exact solution. These estimators were formed by Taylor
expanding the potential near populations 0, A, and K . The
details are provided here.

First, consider the logistic models. Let ζ = K + h for
some small h < δζ and ε < s < δs be small. Following the
approach of Bresloff (2014) we can approximate the mean
first passage time (15) by:

τε(x)≈
∫ δs

ε

∫ K+δζ

K−δζ

2

σ 2

1

v(ζ )
exp

(
1

T
(S(s)−S(ζ ))

)
dζds.

(36)

Now, since the intervals do not overlap we can separate
the two integrals:

τε(x) ≈
∫ δs

ε

exp

(
1

T
S(s)

)
ds × . . .

. . .

∫ δζ

δζ

2

σ 2

1

v(K + h)
exp

(
1

T
(−S(K + h))

)
dh. (37)

Since S(x) is minimized at x = K and is twice
differentiable, it has a Taylor expansion of the form:

S(K + h) = S(K) + 1

2
S′′(K)h2 + O(h3). (38)

Therefore, the second integral can be rewritten:

exp

(
− 1

T
S(K)

) ∫ δζ

−δζ

2

σ 2

1

v(K + h)
exp

(
1

T

(
− 1

2T
S′′(K)h2

))
dh

(39)
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Provided S′′(K) is large enough, this integrand decays
rapidly for large h. As a result, we can approximate the
integral by replacing the bounds with −∞ and ∞ and
replacing 1

v(K+h)
with 1

v(K)
− v′(K)

v(K)
h:

2

σ 2

exp
(
− 1

T
S(K)

)

v(K)

∫ ∞

−∞

[
1 − v′(K)

v(K)
h

]
exp

(
1

T

(
− 1

2T
S′′(K)h2

))
dh.

(40)

Notice that the exponential term is Gaussian. Therefore,
the integral can be rewritten:

2

σ 2

exp
(
− 1

T
S(K)

)

v(K)

√
2πT

|S′′(K)|E
[
1 − v′(K)

v(K)
h + O(h2)

]
(41)

where the expected value is evaluated over a Gaussian
distribution. Since the Gaussian distribution is symmetric,
all odd order terms in the expansion vanish. Therefore, to
second order accuracy in h:

τε(x) ≈ 2

σ 2

√
2πT

|S′′(K)|
exp

(
− 1

T
S(K)

)

v(K)

∫ δs

ε

exp

(
1

T
S(s)

)
ds. (42)

The remaining integral can be handled in much the same
way. If the potential is approaching a local maximum at x =
0 then replace S(s) with a second order Taylor expansion
about s = 0. This gives:

τε(x)≈ 2

σ 2

2πT√|S′′(0)||S′′(K)|
exp

(
1
T

(S(0)− S(K))
)

v(K)
. (43)

If S(s) is not approaching a local maximum as s goes to
zero then the derivative of S(s) does not vanish at s = 0, so
the Taylor expansion is dominated by the first order term.

This approximates S(s) with an exponentially decaying
function, and gives:

τε(x)≈ 2

σ 2

T

|S′(0)|

√
2πT

|S′′(K)|
exp

(
1
T

(S(0)−S(K))
)

v(K)
. (44)

The same technique can be applied for the Allee models,
expanding about s = A instead of s = 0. Since S(x) is
maximized at x = A for both Allee models we approximate
S(s) near A with a second order Taylor expansion to get
(Bresloff 2014; Nolting and Abbott 2016):

τε(x)≈ 2

σ 2

2πT√|S′′(A)||S′′(K)|
exp

(
1
T

(S(0)−S(K))
)

v(K)
. (45)

These three Eqs. 43, 44, 45 all fit the general form Eq. 19.

A.2 Prefactors

In Section “Theory” we derived first passage time estimators of
the general form Eq. 19. The qualitative behavior of the
extinction times reflects the exponential scaling in this formula,
independent of the prefactors C(K) or C(A, K). Neverthe-
less, these factors are important for quantitative agreement
between theory and simulation (see Fig. 5). Here we compute
the prefactors for each of the four models. The prefactors
generally depend on the first or second derivatives of the poten-
tial at 0, A, or K . For the four models, the prefactors are:

1a. C(K) = 2
σ 2

1
v(K)

2πT√|S′′(0)||S′′(K)|
1b. C(K) = 2

σ 2
1

v(K)
T

|S′(0)|
√

2πT
|S′′(K)|

2a. C(A, K) = 2
σ 2

1
v(K)

2πT√|S′′(A)||S′′(K)|
2b. C(A, K) = 2

σ 2
1

v(K)
2πT√|S′′(A)||S′′(K)| .

(46)

The derivatives evaluated at 0, A, and K are:
1a. S′′(x) = 1

K
(2x − K), |S′′(0)| = 1, |S′′(K)| = 1

1b. S′(x) = 1
K

(x − K), |S′(0)| = 1, S′′(x) = 1
K

= |S′′(K)|
2a. S′′(x) = 1

AK
[(x − A)(K − x) + 2x − (K + A)] , |S′′(A)| = 1

AK
|K − A| = |S′′(K)|

2b. S′′(x) = 1
AK

[2x − (K + A)] , |S′′(A)| = 1
AK

|K − A| = |S′′(K)|.
(47)

Therefore, the prefactors are:

1a. C(K) = 4πT

σ 2

1b. C(K) = 2T
σ 2

√
2πT
K

2a. C(A, K) = 4πT

σ 2
AK

K−A

2b. C(A, K) = 4πT

σ 2
A

K−A
.

(48)

Or, substituting T = σ 2

2r :

1a. C(K) = 2π
r

1b. C(K) = 1
r

√
2πT
K

2a. C(A, K) = 2π
r

AK
K−A

2b. C(A, K) = 2π
r

A
K−A

.

(49)
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Notice that the prefactors for both Allee models diverge
if A approaches K . The prefactor diverges because models
2a and 2b have quartic and cubic potentials (respectively).
As A approaches K the second derivative of the potential at
A andK vanishes, so a second order Taylor expansion about
S(A) and S(K) is not accurate. Therefore we restrict to
A � K/2. More accurate approximations could be made by
carrying the Taylor expansions out to higher order; however,
since the potentials are polynomials this is equivalent to
solving for the first passage times exactly.

A.3 Rescaling

In Section “Analysis,” we discussed three rescalings of
m(x). This Appendix derives the necessary rescalings, and
analyzes their effect on the persistence of the Allee model.
In general, consider rA = s(K, A)rL where s(K, A) is some

scaling factor. We will consider s(K, A) such that the two
models have the same:

1. maximum per capita growth rate (Gruntfest et al. 1997),
2. maximum absolute growth rate, or
3. linear stability at carrying capacity.

The per capita growth rate for the logistic model is rL(K−
x)/K and is maximized at x∗ = 0. Therefore, the maximum
per capita growth rate for the logistic model is rL. The
per capita growth rate for the Allee model is the quadratic
rA(x−A)(K−x)/(AK) and is maximized halfway between
the Allee threshold and the carrying capacity at x∗ = (K +
A)/2. Therefore, the maximum per capita growth rate for
the Allee model is rL(K − A)2/(4AK). It follows that the
Allee model has the same maximum per capita growth rate
as the logistic model if s(A, K) = 4 AK

(K−A)2
.

Plugging into Eq. 25, the arguments of the exponential
term in the extinction times (work to extinction divided by
temperature) become:

2a. 2s(A,K)rL
σ 2 W(K → 0) = 2rL

σ 2
4AK

(K−A)2
1

6AK

[
A3

(
K − 1

2A
)

− K3
(
A − 1

2K
)]

2b. 2s(A,K)rL
σ 2 W(K → 0) = 2rL

σ 2
4AK

(K−A)2
1

2AK

[
A2

(
K − 1

3A
)

− K2
(
A − 1

3K
)] (50)

For largeK−A, both of these polynomials are dominated
by the second term in the brackets, so taking the limit as K

goes to infinity:

2a. lim
K→∞

2s(A,K)rL
σ 2 W(K → 0) = lim

K→∞
2rL
σ 2

4AK

(K−A)2
1

6AK
K3

(
1
2K − A

)

2b. lim
K→∞

2s(A,K)rL
σ 2 W(K → 0) = lim

K→∞
2rL
σ 2

4AK

(K−A)2
1

2AK
K2

(
1
3K − A

) (51)

ReplacingK−AwithK , 12K−Awith 1
2K , and canceling

constants gives:

2a. lim
K→∞

2s(A,K)rL
σ 2 W(K → 0) = lim

K→∞
rL
σ 2

2
3K

2

2b. lim
K→∞

2s(A,K)rL
σ 2 W(K → 0) = lim

K→∞
rL
σ 2

4
3K .

(52)

Notice that both of these arguments are one order lower
when compared to the same terms in the unscaled models.
On the other hand, the arguments of the exponential terms
in the logistic models are:

1a. lim
K→∞

2rL
σ 2 W(K → 0) = lim

K→∞
rL
σ 2

1
3K

2

1b. lim
K→∞

2rL
σ 2 W(K → 0) = lim

K→∞
rL
σ 2 K .

(53)

Therefore, the argument of the exponential term in
the Allee models converges to twice the argument of the

exponential term in the logistic model when the noise is
constant, and four-thirds the argument when the noise is
linear. The prefactors for the rescaled Allee models are
C(A, K) = 2π

rL
(K − A) and C(A, K) = 2π

rL

K−A
K

. As
usual these are rational in K and A, so are dominated by
the exponential terms when K is large. Therefore, while the
scaling successfully reduces the order of the argument of the
exponential term in the Allee models, it does not resolve the
paradox.

The same analysis can be repeated for the second
rescaling. The logistic growth rate is quadratic and is
maximized at x∗ = K/2. Therefore, the maximum absolute
growth rate for the logistic model is rLK/4. The Allee
growth rate is cubic, and is maximized at x∗ = 1

3 [(K +
A) + √

K2 + KA − A2]. For large K − A, this approaches
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x∗ ≈ 2
3K + 1

3A. Therefore, the maximum absolute growth
rate of the Allee model is approached (from below) by

2rA
27AK

(K − A)2(2K + A). Therefore, the scaling s(A, K)

approaches 27
8

AK2

(K−A)2(2K+A)
from below when K is large.

Plugging into Eq. 25 and taking the limit of large K gives:

2a. lim
K→∞

2s(A,K)rL
σ 2 W(K → 0) = lim

K→∞
rL
σ 2

27
96K

2 = lim
K→∞

rL
σ 2

9
32K

2

2b. limK→∞ 2s(A,K)rL
σ 2 W(K → 0) = lim

K→∞
rL
σ 2

27
48K = limK→∞ rL

σ 2
9
16K .

(54)

Once again, rescaling lowers the order of the argument of
exponential term in the Allee models. Compared to the equiva-
lent logistic models, the argument of the exponential term in
the Allee models converge to 28/32 = 7/8 times the argu-
ment in the logistic model with constant noise, and 9/16 times
the argument in the logistic model with linear noise. Since both
of these factors are less than one, the exponential term in the
Allee model is smaller than in the logistic model, resolving the
paradoxwhenK is large enough thatC(A, K) can be ignored.

Equating the linear stability of the two models at carrying
capacity requires rescaling the Allee model so that the
derivative of the absolute growth rate at x = K is equal
to the derivative of the absolute growth rate of the logistic
model at x = K . At x = K the logistic growth rate has
slope −rL. At x = K the growth rate of the Allee model
has slope −rA

K−A
A

. Therefore s(A, K) = A
K−A

.
Plugging into Eq. 25 and taking the limit of large K gives:

2a. lim
K→∞

2s(A,K)rL
σ 2 W(K → 0) = lim

K→∞
rL
σ 2

1
6K

2

2b. lim
K→∞

2s(A,K)rL
σ 2 W(K → 0) = lim

K→∞
rL
σ 2

1
3K .

(55)

The comparable terms in the logistic model are twice and
three times as large; therefore, the logistic model is more
stable when K is large enough that C(A, K) can be ignored.

A.4 Diffusion approximation

In Section “How to avoid the paradox” we showed that the
extinction time paradox is resolved by deriving the SDE
models from birth-death processes, without discussing the
details of the approximations involved. This is a well studied
area, and there are multiple ways of constructing such an
approximation. Accordingly, this appendix will distinguish
which of these methods is most appropriate in the context
of this paper.

The most familiar method for approximating a birth-
death process with an SDE is a system size expansion (Van
Kampen 1992). The system size expansion assumes that
both the birth and death parameter scale naturally in some
system size,� taken to represent a characteristic population.
In our case � could be set to either the carrying capacity
or the Allee threshold. By rescaling the population in the
system size it is often possible to perform an asymptotic
expansion of the birth-death process. As � becomes large,
the master equation converges to a Fokker-Planck equation

(Van Kampen 1992). This Fokker-Planck equation governs
the diffusion of probability for an SDE with instantaneous
drift m(x) = λ(x) − μ(x) and diffusion coefficient v(x) =
1
�

(λ(x) + μ(x)) (Bresloff 2014).
Notice that this method assumes that the system size is

large. As a result, it is only appropriate if the dynamics of
interest occur at large populations. This is not the case for
an extinction process since a population must necessarily be
small before going extinct. Albeit, if the Allee threshold, A,
is large, then the extinction process can be separated into
two phases. First, the population escapes from the carrying
capacity to the Allee threshold; then, after crossing the
Allee threshold, it goes extinct with high probability. In
general, the escape process is much slower than the process
of descending from the Allee threshold to extinction.
Therefore, the mean extinction time of an Allee model is
dominated by the model’s behavior at populations near, or
greater than, the Allee threshold. In that case, if A is large,
it is possible to approximate the mean extinction time based
solely on the behavior at large populations. Then, a system
size expansion is appropriate. However, our goal is to
compare extinction times between Allee models and logistic
models. The logistic model does not have a threshold past
which extinction becomes highly likely. As a result, mean
extinction times for the logistic model depend critically
on the behavior of the model at small populations, even
if the carrying capacity is large. Therefore, a system size
expansion is not appropriate. In some cases, it is possible
to use a system size expansion coupled to a small system
correction (Ovaskainen and Meerson 2010); however, this is
unnecessarily complicated in the context of this paper.

Also notice that the mean drift and diffusion coefficient
scale differently in �. Unlike the mean, the diffusion coeffi-
cient is vanishing as � becomes large (Bresloff 2014).7 As
a result, large system size implies low temperature, and long
extinction times. This limit is counterproductive since our
goal was to study the roles of K, A, and temperature sep-
arately. Moreover, if the system size is greater than one it
leads to an SDE that is artificially less noisy than the orig-
inal birth-death process. One solution is to take the system
size limit to derive expressions for m(x) and v(x) in terms
of λ(x), μ(x) and �, then set � = 1. This, however, defeats

7This motivates the use of WKB approximations in Dykman et al.
(1994) and Kamenev et al. (2008).
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the purpose of the system size expansion since the system
size expansion is only accurate8 if it is assumed that� is large.

Lastly, there exists a discrete potential for any birth-
death process (see Eq. 64) analogous to the continuous
potentials discussed in Section “Analysis.” This discrete
potential does not match the continuous potential at small
populations when the continuous potential is derived from a
system size expansion (Bresloff 2014). As a result, both the
potentials and the passage time statistics of the SDE differ
from the potential and passage time statistics of the original
birth-death process (Doering et al. 2005).

In summary, the system size approximation constructs a
family of discrete birth-death processes indexed by a param-
eter that converge to an SDE in a limit. The discrete process
is closely approximated by an SDE when the parameter
is near its limiting value. This ensures that the SDE is a
good approximation for the system in a particular limit;
however, it does not guarantee that the birth-death process
in that limit closely approximates the original birth-death
process. In particular, there is no guarantee that a birth-death
process with a large system size gives a good approximation
for a birth-death process at small or finite system sizes.

An alternative approach is proposed in Allen and
Allen (2002) and Cresson and Sonner (2018). Instead of
approximating the discrete process in a particular limit
where it converges to an SDE, we could attempt to
approximate the original process with an SDE without
taking a limit. There is no guarantee that this approximation
will be accurate, since the discrete process is not an SDE;
however, this approach avoids introducing errors due to an
artificial system size. In fact, since the discrete process is not
an SDE there will necessarily be error in any approximation,
so the choice of SDE is not unique. In Allen and Allen
(2002) Allen proposes a tried-and-true heuristic for picking
a SDE that is conceptually consistent with the original
birth-death process, which we now describe.

Any SDE is uniquely specified by its mean drift m(x)

and diffusion coefficient v(x). Let x̄ = E[X]. If the initial
state of the system is known then m(x) = d

dt
E[X] and

v(x) = d
dt
E[(X−x̄)2]. Given the initial state it is possible to

compute both the rate of change in the expected population,
and the rate of change of the diffusion coefficient in
population for a birth-death process. Therefore, it is natural
to approximate the birth-death process with an SDE that has
the same mean drift and diffusion coefficient.

Suppose the discrete process is in state x at time 0. Then,
from the master equation, it is easy to check that:

m(x) = d
dt
E[X|X(0) = x] = λ(x) − μ(x)

v(x) = d
dt
E[(X − x)2|X(0) = x] = λ(x) + μ(x).

(56)

8Accurate in the sense that the master equation converges to the
Fokker-Planck equation

This motivates (29). This is philosophically different than
the system size approximation since it uses an SDE to
approximate the discrete birth-death process as it is, not
as it is in a particular limit. When formulated in this way
the passage time statistics for the SDE and the birth-death
processes are generally similar (Allen and Allen 2002).9

Like the system size expansion, it is possible to construct
a family of discrete birth-death processes that converge to
this SDE in a particular limit. Suppose that we refine the
discrete process by introducing fractional populations. By
modifying the birth and death rates at the same time, it
is possible to construct a sequence of refined birth-death
processes whose mean drift and diffusion coefficient do not
depend on the size of the refinement.

Consider a discrete birth-death process where each event
produces 0 ≤ x ≤ 1 individuals. Assume that the birth
and death rates are smooth continuous functions of x, and
let p(x, t) denote the probability that the population has x

individuals at time t . Define the modified rates λ̃(x|x) and
μ̃(x|x) such that λ̃(x|1) = λ(x) and μ̃(x|1) = μ(x).
For concision, we will repress the dependence on x unless
necessary. Then, the refined master equation at x reads:

d

dt
p(x, t) = λ̃(x − x)p(x − x, t) − (λ̃(x)) + μ̃(x))p(x, t)

+μ̃(x + x)p(x + x, t). (57)

Now let x be small. Taylor expanding in x gives:

λ̃(x − x)p(x − x, t) = λ̃(x)p(x, t) − ∂
∂x

λ̃(x)p(x, t)x

+ 1
2

∂2

∂x2
λ̃(x)p(x, t)x2 + O(x3)

μ̃(x + x)p(x + x, t) = μ̃(x)p(x, t) + ∂
∂x

μ̃(x)p(x, t)x

+ 1
2

∂2

∂x2
μ̃(x)p(x, t)x2 + O(x3).

(58)

The zeroth order terms cancel, leaving:

d

dt
p(x, t) = − ∂

∂x

(
(λ̃(x) − μ̃(x))p(x, t)

)
x

+1

2

∂2

∂x2

(
(λ̃(x) + μ̃(x))p(x, t)

)
x2 + O(x3). (59)

Finally, to rewrite in terms of density, ρ(x, t), divide
across by x:

∂

∂t
ρ(x, t) = − ∂

∂x
(λ̃(x) − μ̃(x))ρ(x, t) + 1

2

∂2

∂x2
(λ̃(x)

+μ̃(x))ρ(x, t)x + O(x2). (60)

9This approximation ensures that the discrete process and the
continuous process have the same mean drift and diffusion coefficient;
however, this does not ensure they will have the same higher order
moments. The higher order moments of the SDE are Gaussian, while
the higher order moments of the discrete process are not. Therefore,
this approximation can be viewed as an approximate solution to the
moment closure problem via truncation of the moment hierarchy. Any
error in the approximation arises from the difference in the higher
order moments.
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In the limit of vanishing x, Eq. 60 approaches the Ito
form of the Fokker-Planck equation with infinitesimal mean
and diffusion coefficient:

m(x|x) = λ̃(x|x) − μ̃(x|x)

v(x|x) = x
(
λ̃(x|x) + μ̃(x|x)

)
.

(61)

Now, to ensure the noise intensity, σ 2 does not vanish as
x goes to zero set:

λ̃(x|x) = 1
2x

(λ(x) + μ(x)) + 1
2 (λ(x) − μ(x))

μ̃(x|x) = 1
2x

(λ(x) + μ(x)) − 1
2 (λ(x)− μ(x)) .

(62)

Then, λ̃(x|1) = λ(x), μ̃(x|1) = μ(x) and the
infinitesimal mean and diffusion coefficient of the SDE
match the infinitesimal mean and diffusion coefficient of
the original birth-death process. Defining the modified birth
and death rates in this way ensures that the infinitesimal
mean and diffusion coefficient of the refined process scale
indentically in x. This is accomplished whenever:10

λ̃(x|x) − μ̃(x|x)

λ̃(x|x) + μ̃(x|x)
= O(x). (63)

Condition (63) guarantees that the potential of the birth-
death process converges to the potential of the limiting SDE
(Allen and Allen 2002). This is not true for all diffusion
approximations (Doering et al. 2005), including the systems
size expansion (Bresloff 2014). See Appendix A.5 for an
example of a discrete birth-death process that, when refined,
obeys condition (63) automatically.

A discrete birth-death process has potential:

φ(x) = −1

2

x∑

y=0

log

(
λ̃(y)

μ̃(y + x)

)

(64)

and mean times to extinction (Allen and Allen 2002; Leigh
1981):

τ(K) =
K∑

x=0

∞∑

y=x

exp (2(φ(x) − φ(y))). (65)

Notice the similarity between (65) and (15). Taking x
to zero:

λ̃(x)

μ̃(x + x)
= v(x) + m(x)x

v(x) − m(x)x
=1 + 2

m(x)

v(x)
x + O(x2). (66)

Therefore:

1

2
log

(
λ̃(x)

μ̃(x + x)

)

= m(x)

v(x)
x + O(x2). (67)

10This is a standard assumption used in the “hydrodynamic” limit of a
random walk and is a key part of the “delicate balance” (Gillespie John
1989) discussed in Section “How to avoid the paradox.”

Then:

lim
x→0

j∑

i=0

1

2
log

(
λ̃(x)

μ̃(x + x)

)

= lim
x→0

j∑

i=0

m(x)

v(x)
x

+O(x2) =
∫ x

0

m(s)

v(s)
ds =

∫ x

0
f (s)ds. (68)

Now, from Eq. 11, it follows that the discrete potential
converges to the continuous potential:

lim
x→0

φ = S. (69)

This same technique is used in Leigh (1981) to
approximate φ analytically. As x goes to zero, the double
sum is replaced with a double integral and the extra factor
of 2 is absorbed into the temperature. Then, the mean
extinction time for the discrete model converges to the mean
extinction time for the continuous model.

A.5 Physical analogy

In Section “Theory,” we asserted that the ratios f (x) =
m(x)/v(x) and T = σ 2

2r acted like forces and temperature.
Here, we develop a specific physical system which is
mathematically identical to the population models we
consider. We then show that f (x) and T are force and
temperature in the analogous physical system.

Consider an ion with charge q diffusing down a narrow
channel. The channel could be a pore in a cell membrane.
The ion is subject to constant thermal noise and, in the
absence of a driving potential, would follow a Wiener
process (Brownian motion). Assume that the channel is
kept at fixed temperature T , and there is only one charged
particle in the channel. The channel is not kept at constant
voltage, so for any x, there is a voltage V (x). Therefore, if
the ion is at x it has electrostatic potential energy U(x) =
qV (x).

Coarse grain the channel into a sequence of discrete
intervals with width x. These could correspond to a
sequence of binding sites that are evenly spaced along the
channel. Then, the motion of the ion is closely approximated
by a discrete random walk with exponentially distributed
waiting times. For a given x let λ(x, x), denote the rate
at which the ion hops to x + x and μ(x, x) denote the
rate at which the ion hops to x − x. For concision, we
will suppress λ and μ’s dependence on x except where
necessary. Following (Schnakenberg 1976):

λ(x)

μ(x + x)
= exp

(
1

kBT
(U(x) − U(x + x))

)
(70)

where kB is the Boltzmann constant. This is the essential
physics that will link forces and temperature to ratios of
m(x), v(x), σ 2, and r . In order to study the relationship
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between physical quantities and the SDE, we take a
diffusion limit one side at a time.

The derivative of the potential energy U(x) is a force
f (x), so, by the intermediate value theorem:

U(x) − U(x + x) = −
∫ x+x

x

f (s)ds = f (ζ )x (71)

for some ζ ∈ [x, x + x]. In the limit as x goes to
zero f (ζ ) converges to f (x). Now, Taylor expanding the
exponential in small x:

exp

(
− 1

kBT
f (ζ )x

)
= 1+ 1

kBT
f (ζ )x+O(x2). (72)

This implies that, in the limit as x goes to zero the
ratio λ(x, x)/μ(x + x, x) converges to 1. This, in
turn, implies that (λ(x, x)−μ(x+x, x))/(λ(x, x)+
μ(x + x, x)) is O(x) (converges to zero proportional
to x). Therefore, this discrete process is mathematically
identical to the birth-death process considered in Appendix
A.3. It follows that:

λ(x)

μ(x + x)
= σ 2v(x) + rm(x)x

σ 2v(x) − rm(x)x
=1+2

rm(x)

σ 2v(x)
x+O(x2). (73)

Equating the left and right hand sides:

2r

σ 2

m(x)

v(x)
= 1

kBT
f (x) (74)

This leads immediately to the association:
m(x)
v(x)

= f (x)

σ 2

2r = kBT .
(75)

A.6 Analysis for a saturating Allee effect

In Section “How to avoid the paradox,” we proposed two
different modifications to our Allee model that resolve the
passage time paradox: either modify m(x) = r

K
x(K − x)

with a saturating function or derive v(x) from a birth-death
model. Here, we show that these two modifications lead to
a potential with the same functional form.

First, suppose we set:

m(x)= r
K

x(K−x) − β(1−P(x))x, P (x) = x
θ+x (76)

as in Eq. 27. This model can be derived by assuming
fecundity β, probability of finding a mate P(x), background
per capita death rate δ0 and additional death rate due to
competition δ1 (Boukal and Berec 2002; Dennis 2002;
1989; McCarthy 1997). To convert into r and K set K =
β−δ0

δ1
and r = β − δ0 (see Eq. 27).

The corresponding deterministic model has root where
m(x) = 0. Therefore, the roots occur at 0, some A, and
some K ′ near K . Since the subsequent model will be
analyzed in terms of birth and death rates, and since the

Allee threshold A and carrying capacity K ′ are no longer
explicit parameters of the model it will be convenient to
work with the parameters β, δ0, δ1, θ from now on. The
corresponding birth-death model is:

λ(x) = β x2

θ+x

μ(x) = δ0x + δ1x
2.

(77)

Therefore, the forces are:

f (x) = β x
θ+x

− δ0 − δ1x

β x
θ+x

+ δ0 + δ1x
(78)

which can be simplified by multiplying through by θ + x:

f (x) = βx − δ0(θ + x) − δ1x(θ + x)

βx + δ0(θ + x) + δ1(θ + x)

= − (−β + δ0 + δ1θ)x + δ0θ + δ1x
2

(β + δ0 + δ1θ)x + δ0θ + δ1x2)
. (79)

Let b = β
δ1
, c = δ0

δ1
θ , and d = δ0+δ1θ

δ1
. Then, after

dividing through by δ1 and rearranging:

f (x) = −x2 + (d − b)x + c

x2 + (b + d)x + c
. (80)

The corresponding potential S(x) is:

S(x) =
∫ x

0

s2 + (d − b)s + c

s2 + (b + d)s + c
ds. (81)

To integrate, replace the numerator with s2 + (d + b)s +
c − 2bs. Then:

S(x) =
∫ x

0
1 − 2bs

s2 + (b + d)s + c
ds

= x − 2b
∫ x

0

s

s2 + (b + d)s + c
ds. (82)

Notice that the integrand is vanishing for large s, so
the potential is close to linear in x for large x. This is a
natural feature of f (x) derived from a birth-death model,
and reflects the saturating behavior of f (x). To perform the
integral factor the denominator:

s2 + (b + d)s + c = (s − r1)(s − r2) (83)

where r1, r2 are the roots of the polynomial given by:

r1,2 = − (b + d) ± √
(b + d)2 − 4c

2
. (84)

Notice that since b and d are both positiv, the real part of
the roots is always negative.

Next, we can expand the integrand using partial fractions:

s

s2 + (b + d)s + c
= r1

r1 − r2

1

s − r1
+ r2

r2 − r1

1

s − r2
. (85)
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Now, the integration is easy:

r1

r1 − r2

∫ x

0

1

s − r1
ds + r2

r2 − r1

∫ x

0

1

s − r2
ds = r1

r1 − r2
log

(
− (x − r1)

r1

)
+ r2

r2 − r1
log

(
− (x − r2)

r2

)
. (86)

Therefore:

S(x) = x −
[

r1

r1 − r2
log

(
− (x − r1)

r1

)
+ r2

r2 − r1
log

(
− (x − r2)

r2

)]
. (87)

Notice the immediate similarity with Eq. 35. This is
actually a general form, since any forces that are rational
functions whose numerator and denominator are of the same
order can be analyzed in the same way. Note that if v(x) is
derived from an underlying birth-death model, the birth and
death rates are polynomials or rational functions, and the
higher order terms in the birth and death rates do not cancel
when added or subtracted, then the forces are rational with
numerator and denominator of the same order. For example,
suppose we had started with the birth-death model (Brassil
2001):

λ(x) = β1x
2

μ(x) = δ0x + δ2x
3 (88)

Then:

m(x) = β1x
2 − δ0x − δ2x

3

v(x) = β1x
2 + δ0x + δ2x

3.
(89)

Notice that m(x) is cubic, so could be rewritten m(x) =
r

AK
(x − A)(K − x)x as in models 2a and 2b. The

corresponding forces are:

f (x) = −δ2x
2 − β1x + δ0

δ2x2 + β1x + δ0
(90)

Let b = β1
δ2
, c = δ0

δ2
. Then:

f (x) = −x2 − bx + c

x2 + bx + c
= −1 + 2b

x

x2 + bx + c
(91)

This is essentially the same as the forces we analyzed in
the previous case, only with different coefficients b and c.
The potential can be derived following the same steps as
before, only with roots:

r1,2 = −b ± √
b2 − 4c

2
. (92)

In either case, the potential is linear in x with a loga-
rithmic correction. It follows that the passage time from
carrying capacity to extinction is, at worst, exponential in
K .
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