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Capacity of a Simple Intercellular Signal
Transduction Channel

Peter J. Thomas and Andrew W. Eckford, Senior Member, IEEE

Abstract— We model biochemical signal transduction, based on
a ligand-receptor binding mechanism, as a discrete-time finite-
state Markov channel, which we call the binding in discrete time
channel. We show how to obtain the capacity of this channel, for
the case of binary output, binary channel state, and arbitrary
finite input alphabets. We show that the capacity-achieving input
distribution is identically and independently distributed. Further-
more, we show that feedback does not increase the capacity of this
channel. We show how the capacity of the discrete-time channel
approaches the capacity of Kabanov’s Poisson channel, in the
limit of short time steps and rapid ligand release.

Index Terms— Biological information theory, Biological signal-
ing, Biological signal transduction, Channel capacity, Molecular
communication, Synthetic biology.

I. INTRODUCTION

A. Overview

RESEARCH at the intersection of biology and information
theory stretches back almost to Shannon’s founding

papers, with notable work by Yockey et al. [1], [2],
Attneave [3], Barlow [4], and Berger [5]. After long remaining
on the margins of the wider information theory community,
this research area finds itself newly in the limelight due
to the convergence of two recent trends. First, quantitative
biologists increasingly apply information-theoretic methods to
the analysis of high throughput, individually resolved labora-
tory data [6], [7]; second, “mainstream” information theorists
increasingly explore biological applications (e.g., [8]–[12]),
obtaining results in fields such as molecular biology and
neuroscience. These two trends have developed alongside
increasing interest in the mathematical and conceptual foun-
dations of biology, as well as interest in biologically-inspired
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communication systems [13], [14], further accentuating the
importance of information theory in biology.

The current paper focuses on communication systems
that employ chemical principles, broadly known as molecular
communication [15]. Recent work in molecular communica-
tion can be divided into two categories. In the first cate-
gory, work has focused on the engineering possibilities: to
exploit molecular communication for specialized applications,
such as nanoscale networking [15], [16]. In this direction,
information-theoretic work has focused on the ultimate capac-
ity of these channels, regardless of biological mechanisms
(e.g., [11], [12]). In the second category, work has focused
on analyzing the biological machinery of molecular communi-
cation (particularly ligand-receptor systems), both to describe
the components of a possible communication system [17] and
to describe their capacity [8], [18]–[21]. Our paper, which
builds on work presented in [19], fits into the second category,
and many tools in the information-theoretic literature can be
used to solve problems of this type. Related work is also
found in [20], where capacity-achieving input distributions
were found for a simplified “ideal” receptor; that paper also
discusses but does not solve the capacity for the channel model
we use.

Our contribution in this paper is to prove several important
properties of capacity for a two-state signal transduction
channel, which we refer to as the “Binding IN Discrete
time” (BIND) channel, as found in the Dictyostelium model
organism [22], [23] as well as in models of neural communi-
cation systems taking into account refractoriness or synaptic
dynamics [24], [25]. The BIND channel, introduced formally
in §II, is a discrete-time analog of a ubiquitous biochemical
signal-transduction mechanism, described in §I-B. We show
that the capacity-achieving input distribution of the BIND
channel, which is a discrete-time Markov chain model, is
identically and independently distributed (IID), with all the
probability weight on the minimum and maximum possible
ligand concentrations. Further, we show that feedback does not
increase the capacity of the BIND channel. Finally, given an
IID input distribution, we give a simple closed-form expression
for the mutual information, which can be maximized to find
capacity. In addition to the capacity results, we discuss the
mutual information of the BIND channel when the channel
inputs are Markov distributed, and we compare our capacity
results to earlier known results on the capacity of Poisson
counting channels. We focus on the capacity of a single recep-
tor, leaving the problem of multiple receptors to future work.

Indecomposable discrete time finite state channels, of which
the BIND channel is an example, have been studied
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extensively [26]. Although the capacity is unknown for the
general case, many special cases have been examined, some
related to biological signaling. The trapdoor channel, intro-
duced by Blackwell [27], has been generalized as a model
for communication mediated by diffusion of chemical signals,
feedback capacity and zero-error feedback capacity of which
has been solved [28]. Channels with internal states provide
models for systems with memory effects, intersymbol inter-
ference, or both [29, Ch. 4.6]. In some cases, the capacity
of finite state channels can be increased by feedback. For
example, feedback has been shown to increase the capacity
for a class of finite state Markov channels in which the
channel state transition probabilities are independent of the
input (see, e.g., [30]). Finite state channel models for which
feedback does not increase capacity are therefore of interest.

Berger, Chen, and Yin studied a general class of unit output
memory (UOM) finite state channels for which feedback does
not increase capacity [31], [32]. In these models, the channel
state and channel output are isomorphic, and the channel
output is fed back to the transmitter with unit time delay.
A key feature of UOM channels is that the feedback-capacity-
achieving input distribution has a simple form. As we will
show in §II, the BIND model falls within this class if feedback
is introduced, and we use this fact to show that the capacity
and feedback capacity are the same. Relatedly, but distinctly,
Permuter and colleagues introduced the Prior Output is
the STate (POST) channels, a class of UOM channels for
which capacity and feedback capacity may be readily eval-
uated [33], [34], again showing that capacity and feedback
capacity are the same for many POST channels. We discuss
the distinctions and relationship between the BIND and the
POST(α) and POST(a, b) channels in §V-A.

B. Biological Motivation

As some readers of the Transactions may be unfamiliar with
the details of biological signal transduction, we devote the
remainder of the introduction to an overview of such systems.

Living cells communicate with one another through a web
of biochemical interactions referred to as signal transduc-
tion networks [35]–[37]. These biochemical networks allow
individual cells to perceive, evaluate and react to chemical
stimuli [38], [39]. Examples include chemical signaling across
the synaptic cleft connecting the axon of one nerve cell to
the dendrite of another [40], calcium signaling within the
postsynaptic spines of a dendrite [41], pathogen localization
by migratory cells in the immune system [42], growth-cone
guidance during neuronal development [43], phototransduction
in the retina [44], and gradient sensing by the social amoeba
Dictyostelium discoideum [45].

Signal transduction at the cellular and subcellular level
typically involves a complex macromolecular apparatus com-
prising multiple proteins. For example, transmission of neural
signals often depends on diffusion of neurotransmitter mole-
cules across a narrow gap (the synaptic cleft) to receptor
proteins on the postsynaptic membrane. These neurotrans-
mitter receptors are connected to large protein “signaling
machines” [46] that control the downstream effects of

Fig. 1. An example of a two-state binding and unbinding process of the
receptor. If the receptor is unbound (U), then a ligand can be absorbed by
the receptor; this process occurs at rate k+c(t), proportional to the ligand
concentration c(t). If the receptor is bound (B), it reverts to the unbound
state at rate k−, independent of ligand concentration.

neurotransmitter signaling, including signaling mediated by
the influx of extracellular calcium ions. In general, activation
of a receptor will produce second messengers within the cell,
which control its behaviour.

In this paper we are most interested in the process at the
receiving end of signal transduction, where a signaling mole-
cule (ligand molecule) binds to a receiver molecule (protein)
at a destination cell. Despite the apparent complexity of this
process, a key simplifying observation is that the receptor
proteins are driven through a finite series of states by the
presence of signaling molecules [47].

A two-state example, where the receptor can be either
bound to the ligand (signaling) molecule or else unbound, is
shown in Figure 1: if the receptor is unbound, an available
ligand can bind with it, changing its state; the receptor
must then go through an “unbinding” process, processing
the ligand and reverting to the initial state, before it can
bind with another ligand. This two-state, bound-unbound
receptor model is appropriate for the 3’-5’-cyclic adenosine
monophosphate (cAMP) receptor in the Dictyostelium amoeba,
which is used as a model organism for studies of signal
transduction [19], [48], [49]. This is the simplest nontrivial
example of a ligand binding to a receptor, and forms the basis
for the results in this paper.

The complexity of these systems can be much higher.
In many instances, signal transduction molecules possess a
number of sites at which ligand molecules can bind to the
receiver protein. A protein with k binding sites, each either
bound or unbound, can have 2k distinct binding states.

The signal is expressed through the time-varying concentra-
tion c(t) of ligand molecules, which affects the binding rate of
the receptor (as in Figure 1). We assume throughout the paper
that the binding of ligand molecules to a receptor protein obeys
the familiar law of mass action [50], [51], namely, that the rate
of the reaction

Ligand + Unbound Receptor → Bound Receptor (1)

proceeds at a rate proportional to the product of the
concentration of the reactants, i.e.

rbinding = k+[Ligand][Unbound Receptor].
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Here k+ is the rate constant for the forward (binding) reac-
tion, and [A] is the concentration of chemical species A,
typically measured in nM (10−9 moles per liter). For the
cyclic AMP (cAMP) molecule binding to the cAMP recep-
tor in the Dictyostelium amoeba, k+ is on the order of
4 × 10−2(sec nM)−1. The reverse reaction also occurs:

Bound Receptor → Ligand + Unbound Receptor (2)

with rate

runbinding = k−[Bound Receptor].
Ueda et al. measured the distribution of binding durations
of individual cAMP receptors and found the release time
following binding is well approximated by an exponential
waiting time distribution with rate k− ≈ 1/sec [52]. The law
of mass action thus dictates that the concentration of bound
receptors [B] obeys the differential equation

d[B]
dt

= k+[Ligand][U] − k−[B]. (3)

The signal available to the cell from its surroundings
takes the form of the time varying ligand concentration,
c(t) = [Ligand]. This time-varying concentration serves as the
input of the channel we consider. For a given cell, the total
number of bound and unbound receptors is a fixed constant,
[U]+[B] = [Total]. Dividing by the total number of receptors,
and setting y(t) = [B]/[Total] to be the fraction of receptors
that are bound to ligand at time t , the law of mass action
translates into a first order affine linear differential equation

dy
dt

= k+c(t)(1 − y) − k−y. (4)

Such a differential equation is a simple example of a chemical
master equation [53].

We focus now on a single receptor, binding and releasing
ligand independently of the other receptors. At the single pro-
tein level mass action kinetics translates into a well established
stochastic representation [54]. Let p(t) be the probability that
the receptor’s binding site is occupied by a ligand molecule at
time t . Then p(t) evolves according to a master equation of
the same form as (4)

dp
dt

= k+c(t)(1 − p) − k− p. (5)

This system may naturally be viewed as a communications
channel in which the input is the time varying concentra-
tion c(t), and the output is the receptor state (bound or
unbound).

The BIND channel, introduced in §II, is a discrete time
analog of this system. Both the continuous and discrete time
versions of the ligand-binding channel share an important
asymmetry. When the receptor is in the unbound state, its tran-
sition rate is sensitive to the input signal (the ligand concen-
tration). When the receptor is in the bound state, it cannot
bind a second ligand molecule until releasing the one it has
already bound: the channel must leave the bound state before
becoming sensitive to the input again. This asymmetry reflects
the different roles of the signal in reactions (1) and (2).
In the forward reaction (binding: reaction 1) the ligand is a

reactant, and the rate of reaction is proportional to the ligand’s
concentration. In the backward reaction (unbinding: reaction 2)
the ligand is instead a product. The reaction rate is a function
of the reactant concentrations, not the product concentrations,
so the unbinding reaction proceeds at an instantaneous rate
that does not depend on the input signal concentration. This
asymmetry occurs naturally in any model of ligand-mediated
biochemical signal transduction, but is absent from other
binary channel models with memory, such as the trapdoor,
Ising, Glenn-Elliott, or POST(α) channels [27], [28], [33],
[55], [56]. Thus ligand-receptor binding presents a novel, and
intrinsically biological, type of communications channel.

Basic mechanisms of signal transduction have been known
for decades [57], [58]. However, recent technological advances
have dramatically increased the ability to manipulate and
measure the signals entering and leaving signal transduction
networks at the molecular level. These advances create an
opportunity for quantitative understanding of molecular com-
munication. For example, microfluidics combined with cell-
by-cell single track measurements have been used to estimate
the mutual information between a chemical gradient and the
motile response of the Dictyostelium amoeba [59], [60]. Single
molecule fluorescence methods have allowed visualizing the
binding and unbinding of signaling molecules to single recep-
tors in real time [52]. High throughput measurements have led
to sufficiently precise capacity estimates, for a cancer-related
signaling network, to extract information about the network
topology [61]. Optogenetics methods have created a new
paradigm for manipulating molecular communication devices
using applied light sources [62]. Thus, our results come at
an opportune time for biological researchers, both in terms
of their analytical capabilities and their interest in exploiting
information theory. At the same time, development of novel
communications models based on biological systems has been
identified as an important growth area by the information
theory community.1

C. Capacity Problem for a General Point Process Channel

We now introduce a general description of the continuous
time signal transduction channel with arbitrary (bounded)
scalar input and discrete output. Finite state Markov processes
conditional on an input process provide models of signal
transduction and communication in a variety of biological sys-
tems, as detailed in the preceding section. Typically, a single
ion channel, or receptor, is in one of n states. The states
form a finite directed graph Y with n vertices, with edges
connecting states that intercommunicate through a conforma-
tional or chemical change, or ligand-binding/unbinding event.
The receptor performs a continuous-time random walk on the
graph, with one or more transition rates being influenced by
the external input signal, X (t). The input signal can be the
concentration of a diffusing signaling molecule for a ligand-
gated receptor; it can be the transmembrane electrical potential
for a voltage-gated receptor [64].

12014 Report of the IEEE Information Theory Society Committee on New
Directions [63].
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There is a rich literature on the use of master equations for
representing stochastic chemical reactions [54] and algorithms
for generating sample trajectories [65]–[67]. In the master
equation representation of a signal transduction channel, the
instantaneous transition rate matrix Q = [q jk] depends on the
external input X (t). The probability, pk , that the channel is in
state Y (t) = k for some k ∈ Y evolves according to

dpk

dt
=

n∑

j=1

p j (t)q jk(X (t)) (6)

where for ( j ̸= k), q jk ≥ 0 is the input-dependent rate at
which the receptor transitions from state j to state k, and
q j j = − ∑

k,k ̸= j q jk . Taking {X (t)}T
t=0 as the input, and the

receptor state Y (t) ∈ Y as the output, gives a channel model,
the capacity of which is of general interest.

We emphasize that equation (5) corresponds to (6) in the
case n = 2. Let Y = {U, B} be the state graph and let
pU and pB be the probability of the receptor being in the
unbound and bound states, respectively. Set

qUB(c(t)) = k+c(t), qBU = k−, (7)

and identify X (t) = c(t) as the input signal. The correspon-
dence follows, since the equations

dpB

dt
= −pBqBU + pUqUB(X (t)) (8)

dpU

dt
= pBqBU − pUqUB(X (t)) (9)

are equivalent to equation (5), given pB(0) + pU(0) ≡ 1.
The majority of biological signal transduction systems

operate without regulation by a fast clock, i.e. they operate
as continuous-time stochastic systems. Nevertheless, discrete
time channel models arise as approximations to continuous
time systems by fixing a small time step. While most of our
analysis falls in the discrete time framework, we discuss the
relation to continuous time systems further in §IV.

A related classical Poisson channel was solved by
Davis [68] and Kabanov [69]. In the limit as k− → ∞, in
which transition from the bound state back to the unbound
state is instantaneous, the ligand-binding channel becomes a
simple counting process, with the input encoded in the time
varying intensity. This situation is exactly the one considered
in Kabanov’s analysis of the capacity of a Poisson channel,
under a max/min intensity constraint [68], [69]. For the
Poisson channel, the capacity may be achieved by setting the
input to be a two-valued random process fluctuating between
the maximum and minimum intensities. If the intensity is
restricted to lie in the interval [1, 1 + c], the capacity is [69]

CKab(c) = (c + 1)1+1/c

e
−

(
1 + 1

c

)
ln(c + 1). (10)

As shown by Wyner [70], [71], Kabanov’s formula may be
obtained (nonrigorously) by restricting the input to a two-state
discrete time process with IID input X (t) taking the values
X lo = 1 and Xhi = 1 + c. In addition, Kabanov proved that
the capacity of the Poisson channel cannot be increased by
allowing feedback.

Kabanov’s approach, focusing on instantaneous unbinding
and restricted intensity, is not directly applicable to molec-
ular signal transduction. However, our long-term goal is to
obtain expressions analogous to (10) for the continuous-time
systems (5) and (6). As a first step, we restrict attention to
a discrete time analog of the two-state system (5). As we
show in §IV-B, our channel model can be seen as a natural
generalization of Kabanov’s counting process channel model.

In the next section we define and analyze the BIND channel,
a two-state signal-transduction channel model in discrete time
based on ligand-mediated biochemical signal transduction, and
we rigorously find its capacity.

II. CAPACITY OF THE BIND CHANNEL, A DISCRETE

INTERCELLULAR SIGNAL TRANSDUCTION CHANNEL

In this section, we introduce the BIND channel and prove
our main capacity results. A roadmap for these results is given
as follows:

1) In (46), we give a closed-form expression for the mutual
information of the BIND channel if the inputs are IID.
This expression can be maximized to find capacity with
input distribution constrained to be IID (the IID capac-
ity, see (47)), but IID capacity is not available in closed
form.

2) In Theorem 1, we show that the IID capacity of the
BIND channel is achieved when only the minimum and
maximum possible ligand concentrations are used, and
no intermediate concentration. (This theorem is given
first as it simplifies the proof of the main result.)

3) In Theorem 2, we then show that capacity of the BIND
channel is achieved by the IID input distribution, with
inputs only on minimum and maximum ligand concen-
tration. We do so by showing that the feedback capacity
of the channel is satisfied by an IID input distribution,
relying on the important results on feedback capacity
from [31] and [72].

4) Finally, in Corollary 1, combining Theorems 1 and 2
with Equation (47), IID capacity is given by (82).
An illustration is given in Figure 3.

A. Discrete-Input, Discrete-Time Model

The BIND channel is a discrete-time, two-state Markov
channel representation of the signal reception process,
an example of which may be found in the Dictyostelium cAMP
receptor. The channel input, channel output, and input-output
relationship are described as follows.

Channel Input: The channel input is the local concentration
of ligands at the receptor: at the interface between the receptor
and the environment, the receptor is sensitive to the concen-
tration of ligands, binding more frequently as concentration
increases. We assume that the input concentration c j is one
of m discrete levels, and without loss of generality, we will
assume c1 ≤ c2 ≤ . . . ≤ cm . The lowest concentration c1
and highest concentration cm are especially important in our
analysis; we will give them the special symbols cL := c1 and
cH := cm . Thus, the input (concentration) alphabet is

X = {cL, c2, c3, . . . , cm−1, cH}. (11)



7362 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 12, DECEMBER 2016

Fig. 2. State transition diagram for the BIND model. Channel state
Y ∈ {U, B} determines sensitivity to input (U: Unbound receptor, sensitive
to input. B: Bound receptor, insensitive to input). Ligand concentration cX is
the input, with cL ≤ cX ≤ cH . (cL = lowest allowed input concentration.
cH = highest input concentration.) Input binding probability αX = k+cX"t
depends on the input concentration. Unbinding probability β = k−"t is
independent of input concentration.

Further, let Xn−1
0 = [X0, X1, . . . , Xn−1] ∈ X n represent a

sequence of inputs to the receptor.2

Channel Output: The channel output is the state of the
receptor.3 As in Figure 1, the receptor may either be in an
unbound state, in which the receptor is waiting for a molecule
to bind; or in a bound state, in which the receptor has captured
a molecule, and cannot capture another until the molecule
is degraded or released. Thus, channel output is binary: let
Y = {U, B} represent the output alphabet, where U represents
the unbound state and B represents the bound state. Further, let
Y n

1 = [Y1, Y2, . . . , Yn ] ∈ Yn represent a sequence of receptor
states. (Note the offset of index compared with Xn−1

0 , clarified
in the diagram below.)

Input-Output Relationship: Figure 2 illustrates the state tran-
sitions of the BIND model. The dependencies of the transition
probabilities can be illustrated graphically as follows:

X0 X1 X2 X3 X4 · · ·
↓ ↓ ↓ ↓ ↓

Y0 −→ Y1 −→ Y2 −→ Y3 −→ Y4 · · ·
The state of the receptor is dependent on the previous input
and the previous state, forming a Markov transition PMF
pYi |Xi−1,Yi−1(yi | xi−1, yi−1). Following the discussion in the
previous section, if Yi−1 = U, i.e. the receptor was previously
unbound, then the distribution of Yi depends on the input con-
centration Xi−1. However, if Yi−1 = B, then Yi is independent
of Xi−1.

Thus, the Markov transition PMF pYi |Xi−1,Yi−1

(yi |xi−1, yi−1) has m + 1 parameters: the m-dimensional
vector α = [α1,α2, . . . ,αm ] of binding rates, where

α j := pYi |Xi−1,Yi−1(B | c j , U); (12)

and β, the unbinding rate, independent of input signal
concentration, where

β := pYi |Xi−1,Yi−1(U | c j , B) (13)

which is constant for all c j ∈ X . This may also be written as
a state transition probability matrix

PY |X=c j =
[

1 − α j α j
β 1 − β

]
. (14)

2We offset the indices of input and output because the pair (xi , yi ) can
jointly form a Markov chain; see the discussion in the next section. Thus,
it is more natural for the input xi to affect the output yi+1.

3In [33] Permuter and colleagues discuss finite state channels in which the
internal state of the receptor is identified with its output. The BIND channel
falls in this general class, although it is distinct from the specific examples
discussed in [33], [34]. For further discussion see §V-A.

Recalling the notation from (11), we write αL and αH for the
lowest and highest binding rates, respectively. Thus, we can
write α = [αL,α2, . . . ,αm−1,αH].

To relate this system to the master equation in (5), time is
discretized into steps of length "t . The parameters α and β
are then obtained from the rates k+ and k− via αi = k+ci"t ,
and β = k−"t . The time step "t has to be small enough that
PY |X=c j is a valid transition probability matrix.

From the above discussion, the sequence Y n
1 , given Xn

1 and
initial input/output pair X0, Y0, forms a time-inhomogeneous
Markov chain with PMF

pY n
1 |Xn−1

0 ,Y0
(yn

1 | xn−1
0 , y0)=

n∏

i=1

pYi |Xi−1,Yi−1 (yi | xi−1, yi−1).

(15)

We give the following expressions and definitions, which
will be useful in the remainder of this section. For an IID
input distribution pX (x), since there are m possible values
for x , we will express pX (x) as a vector p, with elements

p = [p1, p2, . . . , pm] (16)

= [pL, p2, p3, . . . , pm−1, pH]. (17)

For the IID input distribution vector p, let ᾱp represent the
average binding probability, given by

ᾱp =
m∑

j=1

α j p j . (18)

Finally, we give a condition on the parameters that will be
used in many of our results:

Definition 1 (Strictly Ordered Parameters): The
parameters α and β are said to be strictly ordered if
they satisfy

0 < αL < α2 < α3 < . . . < αm−1 < αH < 1 (19)

and

0 < β < 1. (20)

B. Mutual Information and Capacity Under IID Inputs

Let C represent the Shannon capacity of the system;
as the BIND channel is a channel with memory, capacity is
defined by

C = lim
n→∞ max

p
Xn−1

0
(xn−1

0 )

1
n

I (Xn−1
0 ; Y n

1 ), (21)

Let CIID represent the capacity from (21) where
pXn−1

0
(xn−1

0 ) is constrained to be IID, i.e., we can write

pXn−1
0

(xn−1
0 ) = ∏n−1

i=0 pX (xi ).

If the input distribution is IID, then Y n
1 forms a time-

homogeneous Markov chain [31]. To see this, again assuming
for convenience that y0 is given, we start with

pY n
1 ,Xn−1

0 |Y0
(yn

1 , xn−1
0 | y0)

= pY n
1 |Xn−1

0 ,Y0
(yn

1 | xn−1
0 , y0)pXn−1

0
(xn−1

0 ) (22)
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= pY n
1 |Xn−1

0 ,Y0
(yn

1 | xn−1
0 , y0)

n−1∏

i=0

pX (xi) (23)

=
n∏

i=1

pYi |Xi−1,Yi−1(yi | xi−1, yi−1)pX (xi−1), (24)

where (24) follows from (15). Continue by letting

pYi |Yi−1(yi | yi−1)=
∑

xi−1

pYi |Xi−1,Yi−1(yi|xi−1, yi−1)pX (xi−1).

(25)

Finally, marginalizing over Xn−1
0 ,

pY n
1 |Y0(yn

1 | y0)

=
∑

xn−1
0

pY n
1 ,Xn−1

0 |Y0
(yn

1 , xn−1
0 | y0) (26)

=
n∏

i=1

∑

xi−1

pYi |Xi−1,Yi−1 (yi | xi−1, yi−1)pX (xi−1) (27)

=
n∏

i=1

pYi |Yi−1 (yi | yi−1), (28)

which is the distribution of a time-homogeneous Markov
chain. If yi−1 = U,

pYi |Yi−1(B | U) =
∑

xi

pYi |Xi−1,Yi−1 (B | xi−1, U)pX (xi−1)

(29)

=
m∑

j=1

α j p j (30)

= ᾱp, (31)

with pYi |Yi−1 (U | U) = 1 − ᾱp . If yi−1 = B,

pYi |Yi−1(U | B) =
∑

xi−1

pYi |Xi−1,Yi−1 (U | xi−1, B)pX (xi−1)

(32)

=
m∑

j=1

βp j (33)

= β, (34)

with pYi |Yi−1 (B | B) = 1 −β. The transition probability matrix
for Y is given by

PY =
[

1 − ᾱp ᾱp
β 1 − β

]
. (35)

Suppose the parameters are strictly ordered (Definition 1).
Then Y has a stationary distribution, by inspection of (35).
The stationary probability of state U is given by

pY (U) = 1
1 + ᾱp/β

, (36)

and pY (B) = 1 − pY (U).
When Y n

1 is a time-homogeneous Markov chain, we can
write the mutual information rate as

I(X; Y ) = lim
n→∞

1
n

I (Xn−1
0 ; Y n

1 ) (37)

= H (Yi | Yi−1) − H (Yi | Xi−1, Yi−1) (38)

for any i ∈ {1, 2, . . . , n}. Let

H (p) = −p log p − (1 − p) log(1 − p) (39)

represent the binary entropy function. Dealing with each term
on the right hand side of (38) individually,

H (Yi | Yi−1)

= pY (U)H (Yi | Yi−1 =U)+ pY (B)H (Yi | Yi−1 =B) (40)

= pY (U)H (ᾱp) + pY (B)H (β) (41)

which follows from (31)-(34); and

H (Yi | Xi−1, Yi−1)

=
∑

xi−1

pX (xi−1)pY (U)H (Yi | Xi−1 = xi−1, Yi−1 = U)

+
∑

xi−1

pX (xi−1)pY (B)H (Yi | Xi−1 = xi−1, Yi−1 = B)

(42)

= pY (U)
m∑

j=1

p jH (α j ) + pY (B)H (β). (43)

Then the mutual information rate is given by

I(X; Y ) = H (Yi | Yi−1) − H (Yi | Xi−1, Yi−1) (44)

= pY (U)

⎛

⎝H (ᾱp) −
m∑

j=1

p jH (α j )

⎞

⎠ (45)

=
H (ᾱp) − ∑m

j=1 p jH (α j )

1 + ᾱp/β
. (46)

Finally, CIID is given by

CIID = max
p

H (ᾱp) − ∑m
j=1 p jH (α j )

1 + ᾱp/β
. (47)

C. CIID is Achieved With All Probability Mass on x = L, H
Here we show that the CIID-achieving input distribution

pX (x) uses only the extreme values of concentration: L and H.
The result is stated as follows.

Theorem 1: Let p∗ = [p∗
1, p∗

2, . . . , p∗
m] represent an IID

distribution that maximizes (47). If the parameters are strictly
ordered (see Definition 1), then p∗

2 = p∗
3 = . . . = p∗

m−1 = 0.
Proof: The proof proceeds by contradiction. Assume

the theorem is false: that p∗
i > 0 for at least one index i

in {2, 3, . . . , m − 1}. Let u represent the smallest index
in {2, 3, . . . , m − 1} such that p∗

u > 0. From the initial
assumption, u must exist, and αu is the corresponding binding
probability.

Since α1 < αu < αm , there exist constants π1 and πm such
that

0 < π1,πm < 1 (48)

π1 + πm = 1 (49)

π1α1 + πmαm = αu . (50)

Let q = [q1, . . . , qm] represent a distribution constructed as
follows:

q1 = p∗
1 + p∗

uπ1 (51)
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qm = p∗
m + p∗

uπm (52)

qu = 0 (53)

q j = p∗
j ∀ j ̸= {1, u, m}. (54)

Note that q is constructed so that ᾱq = ᾱp∗ (see (18)).
From (46), the mutual information under distribution p∗ is

Ip∗(X; Y ) = H (ᾱp∗) − ∑m
i=1 p∗

i H (αi )

1 + ᾱp∗/β
, (55)

and under distribution q it is (recalling ᾱq = ᾱp∗)

Iq(X; Y ) = H (ᾱp∗) − ∑m
i=1 qiH (αi )

1 + ᾱp∗/β
. (56)

Equations (55)-(56) differ only in the term under summation.
We can write

m∑

i=1

p∗
i H (αi ) −

m∑

i=1

qiH (αi )

=
(

p∗
1H (α1) + p∗

uH (αu) + p∗
mH (αm)

)

−
(

q1H (α1) + quH (αu) + qmH (αm)
)

(57)

= p∗
u

(
H (αu) −

(
π1H (α1) + πmH (αm)

))
(58)

= p∗
u

(
H (π1α1 + πmαm) −

(
π1H (α1) + πmH (αm)

))
,

(59)

where (57) follows from (54), (58) follows from (51)-(53),
and (59) follows from (50).

H is strictly concave, 0 < π1,πm < 1 (from (48)), and
α1 < αm (by assumption), so (59) is always positive. This
implies that

Ip∗(X; Y ) < Iq (X; Y ). (60)

However, p∗ is the maximizing IID input distribution
(by definition), which is a contradiction. The theorem
follows.

D. Capacity and Feedback Capacity Are Achieved
by an IID Input Distribution

The directed information [73] between vectors
Xn−1

0 and Y n
1 , written I (Xn−1

0 → Y n
1 ), is given by

I (Xn−1
0 → Y n

1 ) =
n∑

i=1

I (Xi−1
0 ; Yi | Y i−1

1 ). (61)

The per-symbol directed information rate is given by

lim
n→∞

1
n

I (Xn−1
0 → Y n

1 ). (62)

We use Kramer’s double-bar notation for causal-conditional
distributions [74]. In the form we require in this paper,

p(xn−1
0 ||yn−1

1 ) =
n−1∏

k=0

pXk |Xk−1
0 ,Y k

1
(xk | xk−1

0 , yk
1 ), (63)

where vectors x−1
0 and y0

1 are null. Let P represent the
set of causal-conditional feedback input distributions, i.e.,

pXn−1
0 |Y n−1

1
(xn−1

0 | yn−1
1 ) ∈ P if and only if pXn−1

0 |Y n−1
1

(xn−1
0 | yn−1

1 ) = p(xn−1
0 ||yn−1

1 ).

In our channel, Y n
1 forms both the channel output and

the channel state; therefore, the feedback received by the
transmitter is the channel state. Following [31], in finite
state channels where the channel state is the channel output,
and where the transmitter receives this output (causally) as
feedback, the feedback capacity CFB is given by

CFB = max
p

Xn−1
0 |Y n−1

1
(xn−1

0 | yn−1
1 )∈P

(
lim

n→∞
1
n

I (Xn−1
0 → Y n

1 )

)
.

(64)

Our capacity result is stated as follows.
Theorem 2: If the parameters are strictly ordered (see

Definition 1), then

CFB = C = CIID. (65)

The roadmap to the proof is as follows. We give several
lemmas prior to proving the main result, involving subsets
of P :

• Let P∗ represent the set of feedback input distributions
that can be written

pXn−1
0 |Y n−1

1
(xn−1

0 | yn−1
1 ) =

n−1∏

i=0

pXi |Yi (xi | yi ), (66)

where y0 is null. (Note that distributions in P∗ need not
be stationary: pXi |Yi (x |y) can depend on i .) Then P∗ ⊂ P
for n > 2.

• Let P∗∗ represent the feedback input distributions that
can be written with stationary pXi |Yi (xi | yi ), i.e., with
some time-independent distribution pX |Y such that

pXn−1
0 |Y n

0
(xn−1

0 | yn
1 ) =

n−1∏

i=0

pX |Y (xi | yi ), (67)

where y0 is null. (P∗∗ is used in Lemma 2.)

It should be clear from these definitions that P∗∗ ⊂ P∗ ⊂ P .
We use an existing result to show that CFB is satisfied by
a distribution in P∗ (Lemma 1). We then show that, if we
restrict ourselves to the stationary distributions P∗∗, then
the optimal input distribution is IID (Lemma 2). Finally,
we show that the optimal input distribution is stationary,
because our system satisfies certain conditions given by Chen
and Berger [31] (Lemma 3). Taking these lemmas together,
the capacity-achieving input distribution must be IID. These
results are laid out in the sequel.

We begin with the following lemma, stating there is at least
one feedback-capacity–achieving input distribution in P∗.

Lemma 1: Taking the maximum in (64) over P∗ ⊂ P ,

CFB = max
p

Xn−1
0 |Y n−1

1
(xn−1

0 | yn−1
1 )∈P∗

(
lim

n→∞
1
n

I (Xn−1
0 → Y n

1 )

)
.

(68)
Proof: The lemma follows from [72, Th. 1].



THOMAS AND ECKFORD: CAPACITY OF A SIMPLE INTERCELLULAR SIGNAL TRANSDUCTION CHANNEL 7365

If the feedback-capacity–achieving input distribution is
in P∗, then Y n

1 is a Markov chain (the reader may check;
see also [31], [72]). That is,

pYi |Y i−1
1

(yi | yi−1
1 ) = pYi |Yi−1 (yi | yi−1). (69)

Using the following shorthand notation:

p(i)
j |B := pXi |Yi (c j | B) (70)

p(i)
j |U := pXi |Yi (c j | U), (71)

where the superscripts represent the time index, the transi-
tion probability pYi |Yi−1 (yi | yi−1) may be represented as a
matrix P(i)

Y , where

P(i)
Y =

[
1 − ∑m

j=1 α j p(i)
j |U

∑m
j=1 α j p(i)

j |U
β 1 − β

]

(72)

(cf. (35), where the input distribution is IID).
Then:
Lemma 2: Suppose the parameters are strictly ordered

(Definition 1). Taking the maximum in (64) over P∗∗ ⊂
P∗ ⊂ P ,

CIID = max
p

Xn−1
0 |Y n−1

1
(xn−1

0 | yn−1
1 )∈P∗∗

(
lim

n→∞
1
n

I (Xn−1
0 → Y n

1 )

)
.

(73)
Proof: We start by showing that I (Xi−1

0 ; Yi | Y i−1
1 ) is

independent of p(k)
L|B for all k. There is a feedback-capacity–

achieving input distribution in P∗ (from Lemma 1). Using this
input distribution,

I (Xi−1
0 ; Yi | Y i−1

1 )

= H (Yi | Y i−1
1 ) − H (Yi | Yi−1, Xi−1

0 ) (74)

= H (Yi | Yi−1) − H (Yi | Yi−1, Xi−1). (75)

where (75) follows since (by definition) Yi is conditionally
independent of Xi−2

0 given (Yi−1, Xi−1), and since (from the
parameters being strictly ordered) Y i

1 is a time-homogeneous,
first-order Markov chain. Expanding (75),

I (Xi−1
0 ; Yi | Y i−1

1 )

=
∑

yi−1

pYi−1(yi−1)
∑

xi−1

pXi−1|Yi−1 (xi−1 | yi−1) (76)

·
∑

yi

pYi |Yi−1,Xi−1(yi |yi−1, xi−1)

· log
pYi |Yi−1,Xi−1(yi |yi−1, xi−1)

pYi |Yi−1 (yi |yi−1)
.

From (72), pYi−1(yi−1) is calculated from parameters in P(i)
Y

and the initial state, so pYi−1(yi−1) is independent of p(k)
j |B

for all j and k. Further, everything under the last sum
(over yi ) is independent of p(k)

j |B, from (72) and the def-
inition of pYi |Yi−1,Xi (yi | yi−1, xi ). There remains the term
pXi |Yi−1(xi | yi−1), which is dependent on p(i−1)

j |B when
yi−1 = B. However, if yi−1 = B, then∑

yi

pYi |Yi−1,Xi−1(yi | B, xi−1)

· log
pYi |Yi−1,Xi−1(yi | B, xi−1)

pYi |Yi−1(yi | B)

=
∑

yi

pYi |Yi−1 (yi | B) log
pYi |Yi−1(yi | B)

pYi |Yi−1(yi | B)
(77)

=
∑

yi

pYi |Yi−1 (yi | B) log 1 (78)

= 0, (79)

where (77) follows since yi is independent of xi in state B.
Thus, the entire expression is independent of p(k)

L|B for all k.
Moreover, from (61), directed information is independent
of p(k)

j |B for all k.

To prove (73), distributions in P∗∗ have p(1)
j |U =

p(2)
j |U = . . ., and p(1)

j |B = p(2)
j |B = . . .. Since I (Xi−1

0 ; Yi | Y i−1
1 )

is independent of p(k)
j |B for all k (by the preceding argument),

we may set p(k)
j |B = p(k)

j |U for all j and k, without changing
I (Xi−1

0 ; Yi |Y i−1
1 ). Thus, inside P∗∗, there exists a maximizing

input distribution that is independent for each channel use.
By the definition of P∗∗, that maximizing input distribution
is IID, and there cannot exist an IID input distribution outside
of P∗∗.

Finally, we must show that CFB is itself achieved by a
distribution in P∗∗. To do so, we rely on [31, Th. 4], which
shows that this is the case, as long as several technical
conditions are satisfied. Stating the conditions and proving
that they hold for this channel requires restatement of defi-
nitions from [31], so we give this result in Appendix A as
Lemma 3.

We can now return to the proof of Theorem 2, where we
relate these results to the Shannon capacity C .

Proof: From Lemma 1, CFB is satisfied by an input
distribution in P∗. From Lemma 2, if we restrict ourselves
to the stationary input distributions P∗∗ (where P∗∗ ⊂ P∗),
then the feedback capacity is CIID. From Lemma 3, the
conditions of [31, Th. 4] are satisfied, which implies that there
is a feedback-capacity–achieving input distribution in P∗∗.
Therefore,

CFB = CIID. (80)

For general channels,

CFB ≥ C ≥ CIID, (81)

because the set P includes the set of input distributions without
feedback, and because the set of input distributions without
feedback includes the IID input distributions. The theorem
follows from (80) and (81).

From Theorems 1 and 2, and Equation (47), we have the
following.

Corollary 1: Capacity C of the discrete channel model
given in (15) is given by

C = max
pH

H (pLαL + pHαH) − pLH (αL) − pHH (αH)

1 + (pLαL + pHαH)/β
,

(82)

where it is sufficient to maximize over pH, since
pL = 1 − pH.
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Fig. 3. Information maximizing values of pH, with αL = 0.1 and β = 0.9.
Each dashed curve corresponds to a particular value of αH: from the bottom,
αH = 0.15; each higher curve increases αH by 0.05, up to αH = 0.95 in the
topmost curve. The maxima are circled and connected with a solid line.

This result has an intuitively appealing form: the mutual
information rate appearing in (47) and (82) is the product
of the binary channel MI rate with transition probabilities
{αL,αH}, and the fraction of time the channel is in the sensitive
(unbound) state.

In Figure 3, we illustrate the behaviour of the maximizing
value of pH: in this figure, the mutual information in (46) is
plotted for αL = 0.1, β = 0.9, and various values of αH;
in the input distribution, all p j are equal to zero except
pL and pH. The maximum values on each mutual information
curve are illustrated. In Figure 4, we give a contour plot of
capacity for values of αH and αL, where β = 0.9.

With equation (82) we have rigorously solved the capacity
for the discrete time BIND channel. The mutual information,
and hence the capacity, depend on the parameters αL,αH,
and β. In Appendix D we show that the capacity is an
increasing function of αH and β, and a decreasing function
of αL, and that the capacity is finite for all 0 ≤ αL ≤ αH ≤ 1
and 0 ≤ β ≤ 1.

To close this section, we may wonder if it is true that
CFB = C in general signal transduction models. The answer
is no: Permuter et al. give an example of an n-state POST
channel for which CFB > C [33], [34]. We may also ask
under what conditions CFB = C: the existence of at most
one sensitive transition (such as the U → B transition in
our example) is a sufficient condition for CFB = C , but the
necessary conditions are presently unknown.

III. MARKOV INPUTS

Although we found in the previous section that the discrete
time BIND channel has a capacity-achieving input distribution
that is IID, physical concentration does not behave like an
IID random variable: concentrations, either low L or high H,
can persist for long periods of time. In order to increase the
applicability of our analysis to biological or bioengineered

Fig. 4. Contour plot of capacity with respect to αL and αH, fixing β = 0.9.
Note that αL > αH in the upper left triangle, so capacity here is undefined.

systems, we can model these persistent input concentrations
using a two-state {L, H} Markov chain, which we analyze in
this section. Though this generalizes the IID input process to
an input process with memory, we use Markov chain inputs for
simplicity, as they allow us to gain insight into the behaviour
of the system in the presence of correlated input processes.
Finite-state Markov chains may not capture the complete
dynamics of the diffusion process in full generality, and we
leave more general analysis to future work.

In this section, we analyze the capacity of the discrete
time channel when the channel inputs are Markov, though
we restrict ourselves to binary Markov inputs (L and H) for
simplicity.

A. Mathematical Model With Markov Inputs

Assume the sequence Xn forms a Markov chain with
two parameters, r (the L-to-H transition probability) and s
(the H-to-L transition probability), giving a transition
probability matrix of

PX =
[

1 − r r
s 1 − s

]
, (83)

with entries for L on the first row and column, and H on the
second row and column.

The joint sequence Zn forms a four-state Markov chain
with states {LU, LB, HU, HB}, with transition probability
matrix given in equation (84), as shown at the bot-
tom of the next page. (See Figure 5.) The input Xn

has a unique stationary distribution if 0 < r, s < 1.
The chain Zn has a stationary distribution if Xn has
a stationary distribution, and the parameters are strictly
ordered. (These conditions are sufficient, but not necessary.)
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Fig. 5. Transition diagram for a 2-state channel (Y = U, unbound receptor;
Y = B, bound receptor) driven by a 2-state input Markov process (X = L, low
concentration of signaling molecule; X = H, high concentration of signaling
molecule). Probability per time step of Xk = L to Xk+1 = H transition is
0 < r ≤ 1. Probability per time step of Xk = H to Xk+1 = L transition
is 0 < s ≤ 1. Probability per time step of Yk = U to Yk+1 = B transition
is αL when Xk = L, and is αH when Xk = H; these probabilities satisfy the
strictly-ordered condition (Def. 1). Probability per time step of Yk = B to
Yk+1 = U is 0 < β < 1, regardless of Xk . Compare Equation (84).

The steady-state distribution on X is given by

pL = pX (L) = s
r + s

, pH = pX (H) = r
r + s

. (85)

The stationary distribution of Z is given by the (normalized)
eigenvector of PZ with unit eigenvalue. This is given by
[pX,Y (L, U), pX,Y (L, B), pX,Y (H, U), pX,Y (H, B)], where

pX,Y (L, U)

= 1
K

(βs(−r − s + αH(r + s − 1) + β(r + s − 1))) (86)

pX,Y (L, B)

= 1
K

(s(αH(αL(r + s − 1) − r) + αL(β(r + s − 1) − s)))

(87)

pX,Y (H, U)

= 1
K

(βr(−r − s + αL(r + s − 1) + β(r + s − 1))) (88)

pX,Y (H, B)

= 1
K

(r(αH(−r + αL(r + s − 1) + β(r + s − 1)) − αLs)) ,

(89)

where K is the normalization constant, to ensure the proba-
bilities sum to 1. The expressions (86-89) may be simplified
by introducing the notation

ᾱ = rαH + sαL

r + s
(90)

λ = 1 − r − s (91)

µ = λ

1 − λ
. (92)

The quantity ᾱ is the mean value of α under the equilibrium
distribution for X (cf. (18) for IID inputs); λ is the second
eigenvalue of the matrix PX ; and 0 ≤ µ < ∞ is a monotoni-
cally increasing function of λ. With this notation, the stationary
distribution of the joint process satisfies

pX,Y (L, U) = 1
K
βs(1 + (αH + β)µ) (93)

pX,Y (L, B) = 1
K

s(ᾱ + αL(αH + β)µ) (94)

pX,Y (H, U) = 1
K
βr(1 + (αL + β)µ) (95)

pX,Y (H, B) = 1
K

r(ᾱ + αH(αL + β)µ), (96)

with normalization constant

K = λ(αL + β)(αH + β) + (r + s)(ᾱ + β). (97)

From pX,Y (X, Y ) one may obtain the stationary marginal
distribution pY (y). Define

" = s − r
s + r

(98)

to represent the relative difference in probabilities between the
low-to-high and high-to-low transitions. Then

pY (U) = (1 + µ(ᾱ + β +"(αH − αL))) /K ′ (99)

pY (B) = (ᾱ + µ(ᾱβ + αHαL))/K ′, (100)

with normalization constant

K ′ = 1 + ᾱ + µ(ᾱ + ᾱβ + β + αHαL +"(αH − αL)).

(101)

B. Capacity Estimates for Markov Inputs

To estimate capacity for Markov inputs, we need the entropy
rates for X , Y , and Z . Since X and Z are stationary Markov
processes, their entropy rates are available in closed form. The
entropy rate of X is given as a function of r and s by

H(X) = lim
n→∞

1
n

H (Xn) (102)

= H (Xi | Xi−1) (103)

= pL

(
r log

1
r

+ (1 − r) log
1

1 − r

)
(104)

+pH

(
s log

1
s

+ (1 − s) log
1

1 − s

)
.

The joint entropy rate H(Z) = H(X, Y ) can be calculated
directly from (93)-(97). Let

πxy = pX,Y (x, y) (105)

PZ =

⎡

⎢⎢⎣

(1 − αL)(1 − r) αL(1 − r) (1 − αL)r αLr
β(1 − r) (1 − β)(1 − r) βr (1 − β)r
(1 − αH)s αHs (1 − αH)(1 − s) αH(1 − s)

βs (1 − β)s β(1 − s) (1 − β)(1 − s)

⎤

⎥⎥⎦ (84)
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denote the stationary density of the Markov process, i.e. the
four terms given in (93)-(96). Denote the joint transition
probabilities from the matrix PZ as

Txy→x ′y′ = pXi ,Yi |Xi−1,Yi−1(x ′, y ′ | x, y) (106)

= pYi |Xi−1,Yi−1 (y ′ | x, y)pXi |Xi−1(x ′ | x). (107)

Further let

φ(p) = −p log p. (108)

Then the joint entropy rate is

H(X, Y ) =
H∑

x=L

B∑

y=U

πxy

⎛

⎝
H∑

x ′=L

B∑

y′=U

φ
(
Txy→x ′y′

)
⎞

⎠. (109)

However, the output process Y is not a Markov process
in general, and its entropy rate is not available in closed
form. To bound the entropy rate of Y , we use the fact that
this rate H(Y ) is bounded above and below by entropies
conditioned on a finite number of previous channel states.
From standard inequalities ([75, Th. 4.4.1]) we have, for
each n,

H (Yn|X0, Y0, . . . , Yn−1)

≤ H(Y ) ≤ H (Yn|Y0, . . . , Yn−1) (110)

and

lim
n→∞ H (Yn|X0, Y0, . . . , Yn−1)

= H(Y ) = lim
n→∞ H (Yn|Y0, . . . , Yn−1). (111)

Using the inequalities (110), we have

I(X; Y ) = H(X) + H(Y ) − H(X, Y ) (112)

≤ H(X)−H(X, Y )+H (Yn|Y0, . . . , Yn−1) (113)

=: I+
n (X; Y ) (114)

and

I(X; Y ) ≥ H(X) − H(X, Y ) + H (Yn|X0, Y0, . . . , Yn−1)

(115)

=: I−
n (X; Y ). (116)

The required bounds on H(Y ) are derived below.
1) Upper Bounds on H(Y ) and I(X; Y ): First consider the

one-step conditional entropy of the Y sequence,

H (Y1|Y0)

=
∑

y0

pY (y0)H
(

pY1|Y0(B | y0)
)

(117)

=
∑

y0

pY (y0)H

(
∑

x0,x1

πx0 y0 Tx0 y0→x1B

πLy0 + πHy0

)

, (118)

where H is the binary entropy function, and πxy and
Tx0 y0→x1B are the steady-state probability (resp. transition
probability) of the (X, Y ) Markov chain, defined in (105)
(resp. (107)). At the same time, the mutual information rate
is bounded above by the entropy rate of the input (104).

Fig. 6. Mutual information upper bound given by (119), for αL = 0.1,
αH = 0.9, β = 0.5. Horizontal axis: r; vertical axis: s.

Thus, from (104), (109), and (118), the first upper bound
I+

1 (X; Y ) is given by

I+
1 (X; Y )

= pL

(
r log

1
r

+ (1 − r) log
1

1 − r

)

+pH

(
s log

1
s

+ (1 − s) log
1

1 − s

)

+

⎧
⎨

⎩

⎡

⎣ −
H∑

x=L

B∑

y=U

πxy

⎛

⎝
H∑

x ′=L

B∑

y′=U

φ
(
Txy→x ′y′

)
⎞

⎠

+
∑

y0

pY (y0)H

(
∑

x0,x1

Tx0 y0→x1Bπx0 y0

πLy0 + πHy0

)]

∧ 0

}

,

(119)

where {A ∧ B} represents the lesser of A and B . The bound
I+

1 (X; Y ) is illustrated in Figure 6.
Next consider the two-step entropy, H (Y2|Y0, Y1).

We calculate this entropy explicitly as follows:

H (Y2|Y0, Y1)=
∑

y0,y1

pY0,Y1(y0, y1)H
(

pY2|Y0,Y1(B | y0, y1)
)
,

(120)

where

pY0,Y1(y0, y1) =
∑

x0,x1

πx0 y0 Tx0 y0→x1 y1 (121)

pY2|Y0,Y1(B | y0, y1) =
∑

x2

pX2,Y2|Y0,Y1(x2, B | y0, y1) (122)

and, writing Xn
0 for (X0, . . . , Xn),

pX2,Y2|Y0,Y1(x2, B | y0, y1)

=
∑

x0,x1

pX2
0,Y2|Y0,Y1

(x2
0 , B | y0, y1) (123)
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Fig. 7. Difference between upper and lower bounds for the mutual
information rate I(X; Y ) of the 2-state Markov channel, as a function of
switching parameters 0 < r < 1 and 0 < s < 1. The upper and lower bounds
are given by (113) and (116), respectively. Each panel shows log10(I+

n −I−
n )

for n = 2 (panel A), n = 3 (panel B), n = 4 (panel C), n = 5 (panel D).
Parameter values are αL = 0.1, β = 0.5, αH = 0.9. Each increase in the
depth of conditioning decreases the gap between the upper and lower bounds
by roughly an order of magnitude.

=
∑

x0,x1

(
Tx1 y1→x2B pX0,Y0,X1,Y1(x0, y0, x1, y1)∑

x0,x1
pX0,Y0,X1,Y1(x0, y0, x1, y1)

)

(124)

=
∑

x0,x1

(
Tx1 y1→x2BTx0 y0→x1 y1πx0 y0∑

x0,x1
Tx0 y0→x1 y1πx0 y0

)

. (125)

In general, the nth upper bound of this form is obtained from
the n-step upper bound of the entropy rate of the channel state.
Writing Y n−1

0 for (Y0, . . . , Yn−1) ∈ {U, B}n , the n-step upper
bound is given by a sum involving 2n terms

H+
n := H (Yn|Y n−1

0 ) (126)

=
∑

yn−1
0 ∈{U,B}n

pY n−1
0

(yn−1
0 )H (pYn |Y n−1

0
(B | yn−1

0 )).

(127)

In Appendix B we briefly show how to use the sum-product
algorithm to calculate the general n-step bound. Figure 7
illustrates the convergence of the sequence of upper bounds
H+

n with a similar sequence of lower bounds (next section)
for n = 2, 3, 4, 5.

2) Lower Bounds on H(Y ) and I(X; Y ): In a similar
fashion, we can formulate a lower bound on H(Y ) involving n
prior states of Y and the initial state of X , namely

H−
n := H (Yn|X0, Y n−1

0 ) (128)

=
∑

x0∈{L,H}

∑

yn−1
0 ∈{U,B}n

pX0,Y
n−1
0

(x0, yn−1
0 )

·H (pYn |X0,Y
n−1
0

(B | x0, yn−1
0 )). (129)

Moreover, we also have the trivial lower bound on the mutual
information rate I(X; Y ) ≥ 0.

Again, Appendix B briefly shows how to perform this calcu-
lation using the sum-product algorithm. Figure 7 illustrates the

convergence of H±
n in the interior of the region 0 < r, s < 1,

for n = 2, 3, 4, 5. The upper and lower bounds obtained by
conditioning Y to a depth of five steps constrains the mutual
information to within less than 1% for input switching rates
satisfying |r + s − 1| ! 0.9, or roughly all but 1% of the
(r, s) plane, for the parameters (αL = 0.1,β = 0.5,αH = 0.9)
illustrated in Fig. 7. (Elsewhere, the bounds can be obtained
to greater depth using the same procedure.) We confirmed this
result using Monte Carlo sampling to obtain empirical mutual
information rates.

Figure 8, which shows the mutual information surface for
parameters αL = 0.1,β = 0, 5,αH = 0.9, as a function of
low-to-high switching rate r , and high-to-low switching rate
s, provides several insights. First, the upper panel shows
reasonable agreement between the upper bound, the lower
bound, and direct Monte Carlo sampling, even when the
UB and LB are only calculated to a depth of two levels
of conditioning (the top panel plots I±

2 (X; Y ) together
with the Monte Carlo estimate). Second, consistent with
Figure 7, conditioning five steps deep gives indistinguishable
upper and lower bounds for all but a small portion of the
(r, s) plane. Third, the channel can endure a significant
departure from the idealized IID input case with only a
modest loss of efficiency. In the lower panel the MI = 0.25
contour represents a roughly 10% decrement in the mutual
information rate relative to the capacity (≈ 0.279 bits per
time step, for these parameters). This contour extends to
r + s values as low as r + s ≈ 0.425. Finally, by introducing
memory into the channel (deviating from the line r + s = 1)
we gradually change the optimal strategy for deploying high-
versus low-concentration input signals. To see this, note
that the closest point to the origin along the MI = 0.25
contour is (r!, s!) ≈ (0.200, 0.225), marked " on the
bottom panel of Figure 8. When the input is IID, the
optimal low- versus high-input frequency is biased towards
low-concentration inputs (sopt/ropt ≈0.619/0.381≈1.62).
As the sum of the switching rates decreases, this bias is
gradually reduced; for low switching rates (close to the
origin of the (r, s) plane) the optimal ratio approaches unity.
For example, at the point " the low-input–frequency to
high-input–frequency ratio is s!/r! ≈ .225/.200 ≈ 1.12.
At the next contour (I±

5 (X; Y ) ≈ 0.20) the closest point to
the origin, marked △, is (r△, s△) ≈ (0.112, 0.112). At this
point the low-input–frequency to high-input–frequency ratio
is approximately unity. Our analysis of the two-state discrete
time BIND channel, with input constrained to a two-state
Markov process, suggests that we could expect to see different
signaling strategies employed in specific biological channels,
depending on the persistence times of diffusion-mediated
signals in those channels.

IV. CONTINUOUS-TIME LIMITS OF THE

DISCRETE TIME CHANNEL

The BIND channel arises from an underlying physical
system – ligand molecules binding to a receptor protein –
that operates in continuous rather than discrete time. The
per timestep transition probabilities αL/H and β derive from
continuous time transition rates k+ and k− in the sense that
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Fig. 8. Mutual information of the two-state channel driven by
a two-state Markov input process. The channel parameters are αL = 0.1,
β = 0.5, αH = 0.9. The input switching rates are r (low-to-high) and s
(high-to-low). Top: Three sets of curves show the upper bound I+

2 (X; Y )

(black), lower bound I−
2 (X; Y ) (red), and Monte Carlo estimate (blue). The

diagonal line represents r + s = 1, along which the Markov input process
reduces to IID; the capacity-achieving input distribution occurs along this
line. Contour labels refer to the upper bound (black curve). The UB, LB and
MC curves coincide when r + s = 1. Bottom: Two sets of curves show
the upper bound (black curves) and lower bound (red curves) I±

5 (X; Y ),
which are indistinguishable over most of the (r, s) plane. Horizontal axis: r;
vertical axis: s. Circled dot indicates capacity-achieving IID input switching
rates ropt ≈ 0.381, sopt ≈ 0.619; at this point I±

5 (X; Y ) ≈ 0.279. Square:
(r, s) ≈ (0.200, 0.225). Triangle: (r, s) ≈ (0.112, 0.112). See text for details.

αL/H = k+cL/H"t +o("t) and β = k−"t +o("t) (cf. §I-B).
Rigorous analysis of point process channels in continuous time
requires additional probability theoretic techniques beyond
the scope of the present paper (for results in this direction,
see [69], [76]–[78]). Nevertheless it is of interest to study how
the mutual information and capacity of the discrete time BIND
channel behave in the limit of small time steps.

In this section we therefore consider the capacity of the
discrete time BIND channel in two limiting cases. In §IV-A
we evaluate the limiting behavior of the discrete time mutual
information rate in the limit of short time steps, and its supre-
mum with respect to parameters. While this approach does
not provide a rigorous proof of a continuous-time capacity
formula, the limiting form of the mutual information per time
step takes an intuitively appealing form, namely the product
of the mutual information rate of a counting process when
the channel is in the receptive or unbound state, multiplied by
the fraction of time it is in that state under stationary input
conditions. In §IV-B we again consider the short time-step
limit of the mutual information, but do so while fixing the per
time-step release probability to be unity. Although again not
a rigorous proof of capacity, in this case it is interesting to
note that the continuous time channel without an insensitive
or bound state gives the same limiting mutual information
rate and capacity expression as Kabanov’s Poisson channel
(Wyner 1988a, Wyner 1988b). This limit provides an important
consistency check on the discrete time BIND model, and
indicates its connection to existing point process models.

A. Derivation of a Capacity Expression for the 2-State
Signal Transduction Channel

We start with the expression for the discrete time mutual
information rate (82). Assuming the input distribution is IID,
the mutual information per discrete time step is given by

I (X; Y ) = H (αH pH + αL pL) − pHH (αH) − pLH (αL)

1 + (pHαH + pLαL)/β
,

(130)

where

H (p) = −p log p − (1 − p) log(1 − p). (131)

The IID capacity is obtained by maximizing over the
set pH ∈ [0, 1] with pL = 1 − pH. For convenience, we use x
to represent pH in the rest of this section.

The discrete time channel model assumes that the probabil-
ity of transition per time step is αH,αL, or β, depending on the
state of the input and the state of the channel. The IID input
approximation assumes the input can flicker back and forth
arbitrarily fast, so that successive time steps are uncorrelated.
For the following calculation, we will assume that the input
can remain IID even in the limit of vanishing time step.
To represent discretization with an arbitrary time step, we set

α∗
H = ϵαH

α∗
L = ϵαL

β∗ = ϵβ

where ϵ > 0 is the size of the time step. The case ϵ = 1
corresponds to the discrete time model considered in §II. The
fixed constants αH/L and β now represent transition rates per
unit time, rather than probabilities per time step.

Figure 9 shows the per-time-step mutual information, as a
function of 0 ≤ x ≤ 1, for α∗

L = 0.1ϵ, α∗
H = 0.9ϵ, and

β∗ = 0.5ϵ, for ϵ ranging from 1 to 10−4. The curves suggest
that, as expected, the optimal value of x lies in the interior
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Fig. 9. Convergence of mutual information rate as ϵ → 0. Left: Log of
the mutual information per time step, log(I (X; Y )), plotted as a function of
x ∈ [0, 1], for α∗

L = 0.1ϵ, α∗
H = 0.9ϵ, and β∗ = 0.5ϵ. The curves stacked

from top to bottom have ϵ = 1, 0.1, 0.01, 0.001 and 0.0001, respectively.
Right: Mutual information rate, I/ϵ, for the same parameters. The top curve
has ϵ = 1; the next has ϵ = 0.1; the rest are indistinguishable. The curves
suggest that as ϵ → 0, the mutual information rate I/ϵ converges to a finite
quantity, and that the location of the maximum converges to a given value
xopt as well.

of the interval (0, 1). Moreover, the optimal value appears to
converge to a given value xopt as ϵ → 0, distinct from the
optimal value when ϵ = 1.

We define the mutual information rate for a given ϵ > 0, Iϵ ,
to be I/ϵ, and we study how this quantity scales as ϵ → 0+.
In the remainder of this section we do the following:

1) We study the information rate Iϵ(x) for small ϵ and
show that it has a unique maximum in the interior of
the interval 0 ≤ x ≤ 1, where x = pH is the probability
that the input signal is in the “high” concentration state.

2) By taking the limit as ϵ → 0+, and optimizing over x ,
we obtain an expression for the capacity of the discrete

time channel in the continuous time limit, as a function
of the binding and unbinding rates αH, αL, and β.

In the following section §IV-B, we further show that by
taking the limit of the capacity for the continuous time
channel, as the unbinding rate β → ∞, we recover Kabanov’s
expression for the capacity for the Poisson channel.

1) Critical Point of the Information Rate Iϵ for Small ϵ > 0:
First we study the behavior of the optimal value of x in the
limit of small ϵ. Assuming an interior maximum for I , we set
the derivative of the RHS of Equation (200) equal to zero to
obtain the necessary and sufficient condition in equation (132),
as shown at the bottom of this page. In Appendix C we show
that this condition leads to an interior maximum at a unique
value of x as ϵ → 0.

2) Implicit Expression for xopt in the Limit ϵ → 0, and
an Expression for the Limiting Capacity of the Discrete Time
Channel in the Small ϵ Limit: Define the continuous time
information rate, as a function of the fraction of time the input
is in the higher state (x = pH), as

I = limϵ→0+
( 1
ϵ I (X; Y )

)
. (133)

with I (X; Y ) given in (130). From the preceding section,
we know this expression converges to a finite value, and
moreover I has a unique maximum in the range 0 ≤ x ≤ 1.
Let xopt denote the optimal value of the high-input probability.
It is straightforward to show that

I(x)

= −
(

β

β + ᾱ

)(
ᾱ log(ᾱ) − (xαH logαH + (1−x)αL logαL)

)

(134)

where, as above, ᾱ(x) = xαH + (1− x)αL is the average value
of α given x . Thus the mutual information rate is given by the
product of the fraction of time the channel is in the receptive
state,

f (x) ≡
(

β

β + ᾱ(x)

)

and the mutual information rate conditional on the channel
being in the receptive state,

g(x) ≡ −(ᾱ(x) log ᾱ(x) − (xαH logαH + (1 − x)αL logαL)).

0 = − αHβϵ log
(

1
−αHxϵ + αL(x − 1)ϵ + 1

)
+ αLβϵ log

(
1

−αHxϵ + αL(x − 1)ϵ + 1

)

+ βϵ(αH − αL) log
(

1
αHxϵ − αLxϵ + αLϵ

)
− αHϵ(αL + β) log

(
1
αHϵ

)

+ αLϵ(αH + β) log
(

1
αLϵ

)
− αH log

(
1

−αHxϵ + αL(x − 1)ϵ + 1

)

+ αL log
(

1
−αHxϵ + αL(x − 1)ϵ + 1

)
− αL log

(
1

1 − αHϵ

)
+ αHαLϵ log

(
1

1 − αHϵ

)

+ αH log
(

1
1 − αLϵ

)
− αHαLϵ log

(
1

1 − αLϵ

)
− β log

(
1

1 − αHϵ

)

+ αHβϵ log
(

1
1 − αHϵ

)
+ β log

(
1

1 − αLϵ

)
− αLβϵ log

(
1

1 − αLϵ

)
. (132)
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Although the optimal value of the high input probability x
is not available explicitly, we can obtain a useful implicit
expression for the small ϵ limiting capacity of the discrete
time channel. Setting I ′ = f ′g + f g′ = 0, and noting that
f ′ < 0, we have g(xopt) = f (xopt)g′(xopt)/ f ′(xopt), from
which

I(xopt) = g′(xopt)

f ′(xopt)
f (xopt)

2 (135)

=
(

β

αH − αL

)(
αH logαH − αL logαL

− (αH − αL)(1 + log ᾱ(xopt))
)
.

(136)

In the continuous time setting, we have an ambiguity associ-
ated with the choice of the time unit. Provided the low binding
rate is not identically zero, we can choose time units with
respect to which the low binding rate αL ≡ 1. Let αH = 1 + c
in the same units. Thus, from (136), the capacity is given by

I(xopt) = β

(
1 + c

c
log(1 + c) − 1 − log(1 + xoptc)

)
.

(137)

Although xopt is not known explicitly, it lies in the interior of
the unit interval, so we have the upper and lower bounds

β

(
1 + c

c
log(1 + c) − 1 − log(1 + c)

)

≤ I(xopt) ≤ β

(
1 + c

c
log(1 + c) − 1

)
. (138)

Kabanov obtained the capacity of the Poisson channel with
signal intensity bounded above by a constant c, and unit back-
ground intensity. The “high” and “low” rates of the incoming
process (combining signal and noise) were 1 + c and 1,
respectively. In the limit as the unbinding rate grows without
bound, we expect that our channel should be equivalent to
Kabanov’s Poisson channel. Note that because the optimal
sending input distribution depends on the channel parameters,
including β, the expression (137) does not necessarily diverge
as β → ∞. In the next section we recover Kabanov’s capacity
formula in this limit.

B. Reduction of the 2-State Signal-Transduction Channel
to Kabanov’s Poisson Channel

In the introduction, we discussed Kabanov’s capacity [69],
which assumes k− → ∞ (i.e., the B → U transition is
immediate and instantaneous). In this section, we come full
circle by showing that Kabanov’s capacity formula emerges
when we take the limit as ϵ → 0 and k− → ∞ of the discrete
time BIND channel.4

Let us suppose that with a discrete time step ϵ, we may set
the unbinding rate k− = 1/ϵ, so that the unbinding probability
is fixed at β = ϵk− = 1; thus, k− is set to the highest possible
rate such that β is a valid probability. Further, recall that αH =

4Note that k− → ∞ is not realistic in a biological system. Kabanov’s result
is normally applied to optical detection systems.

ϵk+cH and αL = ϵk+cL, and let k̄x = xk+cH + (1 − x)k+cL
represent the average binding rate.

Suppose ϵ → 0; setting k− = 1/ϵ, this means
k− → ∞. The continuous time channel capacity is still
bounded, provided the low sending rate αL > 0, so we can
write

Iϵ(x) = 1
ϵ

(
1

1 + ϵk̄x

) (
H (ϵk̄x) − xH (ϵk+cH)

− (1 − x)H (ϵk+cL)
)

(139)

lim
ϵ→0

Iϵ(x)≡ I0(x) = xk+cH log k+cH

+ (1 − x)k+cL log k+cL − k̄x log k̄x

(140)
d

dx
I0(x) = k+cH log k+cH − k+cL log k+cL

− (k+cH − k+cL)(1 + log k̄x) (141)

and d
dx I0(x) = 0 when

log k̄x =
(

1
k+cH − k+cL

)

·
(

k+cH log
(

k+cH

e

)
− k+cL log

(
k+cL

e

))
. (142)

Recall that xopt denotes the optimal probability of the
high-concentration signal. Since ᾱ = αL + xopt(αH − αL),
we have

xopt = k̄x − k+cL

k+cH − k+cL
(143)

and

(1 − xopt) = k+cH − k̄x

k+cH − k+cL
. (144)

Consequently the capacity, I∗
0 = I0(xopt), reduces to

I∗
0 = k̄xopt −

(
k+cHk+cL

k+cH − k+cL

)
log

(
k+cH

k+cL

)
(145)

= exp
[(

1
cH − cL

) (
cH log

(
k+cH

e

)
−cL log

(
k+cL

e

))]

−
(

k+cHcL

cH − cL

)
log

(
cH

cL

)
. (146)

Now let λ = k+cL and c = k+cH −k+cL. Since k− → ∞, this
corresponds to a Poisson channel, alternating between rates λ
and λ + c; these are Kabanov’s parameters. Substituting into
the above equation,

I∗
o (c,λ)

= λ+ xoptc −
(
λ(λ+ c)

c

)
log

(
λ+ c
λ

)
(147)

= exp
[
λ+ c

c
log

(
λ+ c

e

)
− λ

c
log

(
λ

e

)]

− λ

c
(λ+ c) log

(
λ+ c
λ

)
(148)

= exp
[(

1 + λ

c

)
log(λ+ c) − λ

c
logλ− 1

]

− λ

(
1 + λ

c

)
log

(
1 + c

λ

)
(149)
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= exp

[

log

[
(λ+ c)(1+λ/c)

λ(λ/c)e

]]

− λ

(
1 + λ

c

)
log

(
1 + c

λ

)
(150)

= λ

[
1
e

(
1 + c

λ

)(1+λ/c)
−

(
1 + λ

c

)
log

(
1 + c

λ

)]
.

(151)

Setting λ = 1 in (151) yields

I∗
o (c, 1) = 1

e

(
(c + 1)1+c−1

)
−

(
1 + 1

c

)
log(c + 1) (152)

= CKabanov(c). (153)

The analysis of the Kabanov/Poisson channel has been elab-
orated in numerous ways. In [68], Davis gives the following
formula for the capacity of the Poisson channel with noise rate
λ and signal rate bounded by c, namely

CDavis(c,λ)=
1
e
(λ+ c)

(
1 + c

λ

)λ/c
−λ

(
1+ λ

c

)
log

(
1+ c

λ

)

which is identical to (151), see [68, eq. (4b)] and also
[79, eq. (5)].

We emphasize that Kabanov did much more than derive the
formula. He proved in [69] that (152) is the capacity for the
Poisson channel and also that the capacity cannot be increased
via feedback. While our rigorous proofs are restricted to the
discrete time case of the ligand binding/unbinding channel, the
consistency of the limiting (vanishing time step) expressions
with Kabanov’s formula suggests that the analogy is sound.

V. DISCUSSION

A. The POST Channel, the BIND Channel,
and Finite State Channels

The POST channel [33], [34] the trapdoor or chemical
channel [27], [28] and our BIND channel are examples of finite
state Markov channels, a broad class of channels which are
essential for understanding signal transduction systems. In this
section we compare the POST and BIND channel models, and
show that they are not reducible to each other, while putting
both channels in the wider context of finite state channels.

Finite state channels have a long history in information
theory [26]. For instance, Blackwell discusses them in his 1961
book chapter [27], and introduces the trapdoor channel as a
simple, but still unsolved, example. (Permuter and colleagues
obtained the feedback capacity for the trapdoor channel by
formulating and solving an equivalent dynamic programming
problem [28], [80].) Capacity of finite state channels has long
been an interesting, and difficult, problem for information the-
orists (see, e.g., [81]). Important recent results were provided
by Chen and Berger [31] and Ying and Berger [32] for the
class of unit output memory (UOM) finite state channels,
where the channel output and channel state are identical, and
where the channel output (i.e., state) is provided as feedback
to the transmitter with unit delay (see [31, Fig. 2]). It should
be clear that the BIND channel is a UOM channel, as we used
some of these results in §II.

TABLE I

TRANSITION PROBABILITIES FOR THE POST(α), POST(a, b), AND BIND
CHANNELS. GIVEN THE PREVIOUS CHANNEL STATE, Yi−1 , AND THE

NEXT INPUT, Xi , THE TABLE GIVES THE PROBABILITY OF
THE NEXT CHANNEL STATE, Yi , UNDER

DIFFERENT CHANNEL MODELS

The Past Output is the STate (POST) channel, also a UOM
channel, was introduced by Permuter, Asnani and Weiss-
man [33], [34]. Two specific channel models, POST(α) and
POST(a, b), were analyzed; the state transition probabilities
in these models were carefully selected to be symmetric,
in the sense that the channel architecture is invariant under
simultaneous relabeling of the binary inputs and outputs. This
symmetry allows the authors to establish that feedback does
not increase the capacity of the channels they study. The BIND
model, which is derived from the physiology of biological
signal transduction, does not have this symmetry; this makes it
both biologically relevant, and distinct from the POST(α) and
POST(a, b) channels.

To illustrate the difference, Table I shows the transition
probabilities for the POST(α), POST(a, b), and BIND chan-
nels. The symmetry of the POST(α) channel is clear from the
table: under simultaneous relabeling of the binary input and
output states (0 # 1) the probabilities in the POST(α) column
remain unchanged. The asymmetry of the BIND channel is
similarly clear; since the two channel states exhibit entirely
different behaviours, no relabeling of the states and inputs can
recover the POST channel, except in the trivial case where
αL = αH = β.

Although the BIND and POST(α)/ POST(a, b) channels
are fundamentally different, they share the property that their
capacities are not increased by feedback. However, this prop-
erty arises through distinct mechanisms. The label-exchange
symmetry of the POST channels guarantees that an optimal
input strategy exists that is agnostic about the channel output,
even when feedback information is available. In contrast,
the BIND channel has one input-sensitive and one input-
insensitive state. As established through our application of
Chen and Berger’s conditions, knowing when the channel is in
the insensitive bound state does not change the optimal input
strategy.

B. Biological Significance

Advances in high-throughput technologies that can measure
the responses of populations of cells to chemical signals at the
individual cell level have made possible the quantitative appli-
cation of information theory by experimental biologists and
biophysicsts. Examples include information theoretic analysis
of experiments measuring the encoding of visual informa-
tion in the H1 neuron of the fly [82], [83], the encoding
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of gradient direction in the movement of the Dictyostelium
ameoba [59], [84], and the encoding of tumor necrosis
factor (TNF) signal intensity in the response of the
nuclear factor kappa B (NF-κb) and activating transcription
factor-2 (ATF-2) pathways [61], [85]. In these experiments,
information theory does not so much provide a prediction that
can be confirmed or falsified by the experimental outcome;
rather it provides a framework that allows the experimenter to
meaningfully ask “how much information does this biological
pathway carry”?

Signaling via diffusible ligand molecules is a ubiquitous
mechanism for communication between living cells. In this
paper we have formulated and solved a novel discrete time
finite state channel – the BIND channel – that captures
the ligand-receptor binding/unbinding process present in the
simplest type of signal transduction mechanism. Although
the introduction and analysis of the channel is the main
contribution of the paper, it is natural to ask how our results
compare with known properties of ligand-receptor–based
signaling systems. We offer two observations.

In Theorem 1 we show that, given a range of possible input
concentrations, the optimal use of the channel concentrates
the input signal on the extreme values, x = L and x = H.
This conclusion directly contradicts the common assumption
that input signals are “small”. The latter assumption has
been made in order to approximate biochemical signaling
systems with linear time-invariant systems (see e.g. [86], [87]),
which are easier to analyze than systems that function at
the extremes of their operating range. The prediction that
biological pathways should tend to use binary (alternately large
or small, rather than graded) signals is confirmed in many
biological systems. For example, neurotransmitter release in
central nervous system synapses is all-or-none, with large
transient changes in concentration rather than smoothly graded
changes. The social amoeba Dictyostelium discoideum signals
in sharply concentrated waves separated by very low signal
concentrations [88]. Our BIND channel (originally motivated
by Dictyostelium’s cyclic AMP receptor) is consistent with
this behavior.

Our Theorem 2 establishes that feedback does not increase
the capacity of the BIND channel. The Dictyostelium amoeba
uses cAMP to orient towards other conspecific cells during
aggregation of the colony; each amoeba responds to the
received cAMP signal by secreting its own discharge of cAMP,
which serves to relay the aggregation signal to other amoebas
further from the aggregation center. However, the identity of
the cell from which a particular cAMP molecule originated is
unknown to the amoeba receiving that molecule. We are not
aware of any mechanism by which the amoeba can regulate
its pattern of cAMP secretion taking into account the state
of the receptor(s) on other cells. That is, the Dictyostelium
amoeba does not, to our knowledge, use feedback to enhance
signaling via the cAMP receptor. However, biological systems
are diverse, and the BIND channel reflects only the simplest
form of ligand-receptor pathway. Some signaling systems
with more elaborate pathway structure are known to use
bidirectional signaling [89], which could be interpreted as
a form of feedback. In §V-C we provide an example of

a ligand-receptor channel with two binding sites, for which
feedback would appear to increase the capacity. Clearly, more
elaborate channel models provide fertile ground for further
investigation.

C. Towards the Capacity of General Signal
Transduction Channels

In this paper, we calculated the capacity of a simple
signal transduction channel, related to the cAMP receptor in
Dictyostelium, and derived many useful properties of mutual
information. Our contribution is one of a rapidly growing body
of work applying information theory to biological communi-
cation problems. Indeed, a natural open problem suggested
by our work is to extend Kabanov’s continuous time Poisson
channel to a family of channels defined by continuous time
Markov chains on finite graphs. Here we consider some
features of this generalized problem.

One may consider the input signal to a general
“signal-transduction” continuous-time Markov channel as any
physical or biochemical process that varies the transition rate
intensities between the vertices of the graph, with the output
signal comprising either the transitions themselves or a related
counting process on one or more vertices. Viewed in this
way, the Kabanov-Poisson channel comprises a “graph” with
a single vertex, with a single counting process instead of a
multicomponent marked point process.

Analysis of the capacity for a general n-state
signal-transduction channel, such as described by (6), remains
an interesting open problem. In this paper, we considered
the case n = 2, in a sense the simplest generalization of
the Poisson channel. For our two-state signal-transduction
channel, the mutual information rates in both the discrete
time setting (82) and in the continuous time setting (134)
decompose into the product of an information rate conditional
on occupying a “sensitive” state, and the fraction of time the
system occupies that state. However, as we already stated
in the introduction, many higher-order Markov models are
available for different kinds of receptors, so the generalized
problem is of significant practical interest.

First, a simple extension of our results in Section II gives
the mutual information of a general n-state receptor under
IID inputs. For receptor states i and j , 1 ≤ i, j ≤ n, and
input concentration x , taking discrete levels in 1 ≤ x ≤ m,
let αi, j,x represent the transition probability from state i to
state j under input concentration x . Let p represent the
m-dimensional vector containing the IID input distribution.
Let ᾱi, j = ∑m

x=1 αi, j,x px represent the average transition
probability from i to j . Under an IID input distribution, the
sequence of receptor states Y forms a regular Markov chain
with transition probability matrix PY = [ᾱi, j ]. If pY is the
stationary distribution on the receptor states, given by the
normalized eigenvector of PY with eigenvalue 1, and recalling
φ(·) from (108), then the mutual information under IID inputs
is given by

I (X; Y ) =
n∑

i=1

pY,i

n∑

j=1

(

φ(ᾱi, j ) −
m∑

x=1

pxφ(αi, j,x )

)

.

(154)
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However, it is clear that for a Markov channel taking the
form of an arbitrary network, it is not generally true that
CIID = CFB, as the following example illustrates.

Consider a channel with three states arranged in a chain

(αL or αH) (ϵ or 1 − β)
1 $ 2 $ 3

β ϵ
, (155)

where 0 < αL < αH < 1, 0 < β < 1, and 0 < ϵ < 1 − β.
The 1 → 2 and 2 → 3 transition probabilities depend on the
input (assumed binary for this example) in the same manner
as in §III. That is, we have α1,2,L = αL and α1,2,H = αH, and
α2,3,L = ϵ while α2,3,H = 1 − β. The other transitions are
insensitive to the input value x , i.e. α2,1,x = β and α3,2,x = ϵ
independently of x . Hence the transitions out of state 3 do not
carry information about the input. Given the input probabilities
pH + pL = 1, the transition matrix of the channel state for IID
input is

TIID

=
⎛

⎝
1 − ᾱ ᾱ 0
β 1−β−(pLϵ+ pH(1−β)) pLϵ + pH(1 − β)
0 ϵ 1−ϵ

⎞

⎠,

(156)

where ᾱ = pLαL + pHαH, and the stationary distribution is

pY,1 = β

ZIID
, (157)

pY,2 = ᾱ

ZIID
, (158)

pY,3 = pH(1 − β)ᾱ

ϵZIID
, (159)

ZIID = ᾱ + β + pH(1 − β)ᾱ

ϵ
(160)

From (154) we obtain the mutual information for the three-
state channel with IID inputs:

I IID
3 = 1

ZIID

(
β(H (ᾱ) − [pHH (αH) + pLH (αL)])

+ ᾱ(H (pH(1 − β) + pHϵ) − [pHH (1 − β)

+ pLH (ϵ)])
)
. (161)

The mutual information for a given input distribution is
reduced, compared to that of the two-state channel, because
the channel gets trapped in the long-lived, insensitive state 3,
thus reducing the fraction of time spent in the sensitive state 1.

In case the sender is informed of the state of the channel, the
sender may arrange to send input x = L whenever the channel
is in state 2, thus reducing the rate at which the channel enters
the trap in state 3. In case the sender adopts this strategy, the
transition matrix for the channel state becomes

TFB =

⎛

⎝
1 − ᾱ ᾱ 0
β 1 − β − ϵ ϵ
0 ϵ 1 − ϵ

⎞

⎠, (162)

and the stationary distribution is

pY,1 = β

ZFB
, pY,2 = ᾱ

ZFB
, pY,3 = ᾱ

ZFB
, ZFB = 2ᾱ + β.

(163)

The capacity under this feedback scheme is

I FB
3 = 1

ZFB
(β(H (ᾱ) − [pHH (αH) + pLH (αL)])). (164)

To compare the mutual information for any choice of input
probabilities pL/H and parameters αL/H,β, ϵ, consider the ratio
of the mutual information under the IID inputs versus the
feedback scheme:

I IID
3

I FB
3

= ϵ(2ᾱ + β)

ϵ(ᾱ + β) + pH(1 − β)ᾱ
(165)

·
(

1 +
(
ᾱ

β

)

×H (pH(1 − β) + pHϵ) − [pHH (1 − β) + pLH (ϵ)]
H (ᾱ) − [pHH (αH) + pLH (αL)]

)

(166)

→ 0, as ϵ → 0+. (167)

That is, the ratio of the mutual information under the IID
inputs versus inputs informed by the channel state can be
made arbitrarily small, by taking the slow transition rates ϵ
sufficiently small. This suggests that the feedback capacity
and the IID capacity cannot be equal for this simple example.

The question of the regular capacity for this channel, and
channels with arbitrary state graphs, remains an interesting
problem for future work.

APPENDIX

A. Stationary Distributions Achieve Feedback Capacity

We start with several definitions. Assuming that the input
distribution is in P∗ (i.e., Y n

1 is a Markov chain), and recall-
ing (14), let P̂ = [P̂i j ] represent a 2 × 2 matrix, taking values
in {0, 1}, with elements

P̂i j =
{

1, mink∈{1,2,...,m} PY |X=k,i j > 0
0, otherwise,

(169)

and for positive integers ℓ, let P̂ℓi j represent the i, j th element
of P̂ℓ. Further, for the i th diagonal element of the ℓth matrix
power P̂ℓii , let Di contain the set of integers ℓ such that
P̂ℓii ̸= 0. Then:

• Y n
1 is strongly irreducible if, for each pair i, j , there exists

an integer h > 0 such that P̂h
i j ̸= 0; and

• If Y n
1 is strongly irreducible, it is also strongly aperiodic

if, for all i , the greatest common divisor of Di is 1.
These conditions are described in terms of graphs in [31], but
our description is equivalent.

Let Q j be a 2 × m matrix, defined as in (168), as shown at
the top of the next page, and let

I (p, Qi ) = I (X j−1; Y j | Y j−1 = i) (170)

(cf. (75)). For example, if i = U, we have

I (p, QU) = H(ᾱp) −
m∑

i=1

piH(αi ). (171)

We will use the following corollary to Theorem 1.
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Q j =
[

pYi |Xi−1,Yi−1 (B | c1, j) pYi |Xi−1,Yi−1 (B | c2, j) . . . pYi |Xi−1,Yi−1 (B | cm, j)
pYi |Xi−1,Yi−1 (U | c1, j) pYi |Xi−1,Yi−1 (U | c2, j) . . . pYi |Xi−1,Yi−1(U | cm, j)

]
, (168)

Corollary 2: Let p′ = [p′
1, p′

2, . . . , p′
m] represent the

distribution satisfying

p′ = arg max
p

I (p, QU), (172)

using I (p, QU) from (171). Then p′
2 = p′

3 = . . . = p′
m−1 = 0.

Proof: The quantity in (171) is equal to the numerator
of (47). To prove the theorem, we relied only on terms in the
numerator, so the same argument applies to this corollary.

Lemma 3: If the parameters are strictly ordered
(Definition 1), then the conditions of [31, Th. 4] are
satisfied, namely:

1) Y n is strongly irreducible and strongly aperiodic.
2) (Reiterating [31, Definition 6]) for j ∈ {U, B}, for the

set of possible input distributions in P∗, and for all
j ∈ {U, B}, there exists a subset P̃∗ satisfying

a) {Q j p : p ∈ P∗} = {Q j p : p ∈ P̃∗}.
b) For any q ∈ {Q j p : p ∈ P∗]},

{
arg max

p:p∈P∗,Q j p=q
I (p, Q j )

}

∩
{

arg max
p:p∈P̃∗,Q j p=q

I (p, Q j )

}

̸= ∅ (173)

c) There exists a positive constant λ such that

∂ I (p, Q j )

∂ℓ
− ∂ I (q, Q j )

∂ℓ
≤ −λ||p − q|| (174)

for any nonidentical p, q ∈ P̃∗, where ℓ is in
the direction from q to p, and the norm is the
Euclidean vector norm.

Proof: To prove the first part of the lemma, if the
parameters are strictly ordered, then P̂ is an all-one matrix,
so Y n is strongly irreducible (with h = 1); further, since
the positive powers of an all-one matrix can never have zero
elements, Di contains all positive integers from 1 to n, whose
greatest common divisor is 1, so Y n is strongly aperiodic.

To prove the second part of the lemma, we first show that
the definition is satisfied for QB, given by

QB =
[

1 − β 1 − β . . . 1 − β
β β . . . β

]
. (175)

We choose the subset P̃∗ to consist of a single point p ∈ P∗

(it can be any point, as all points give the same result). The
columns of QB are identical, since the output is not dependent
on the input in state B. Then for every p ∈ P∗,

QB p =
[

1 − β . . . 1 − β
β . . . β

]
⎡

⎢⎢⎢⎣

p1|B
p2|B
...

pm|B

⎤

⎥⎥⎥⎦
(176)

=
[

(1 − β)
∑m

j=1 p j |B
β

∑m
j=1 p j |B

]
(177)

=
[

(1 − β)
β

]
. (178)

This is also true of the single point in P̃∗, so condition (a) is
satisfied. Similarly, by inspection of (175), when Y0 = B, the
output Y1 is not dependent on the input X1, so I (p, QB) = 0
for all p ∈ P . Since all p ∈ P∗ “maximize” I (p, QB)
and have identical values of Q p (including the single point
in P̃∗), then the single point p ∈ P̃∗ is always in both sets,
and the intersection (173) is nonempty; so condition (b) is
satisfied. There is only one point in P̃∗, so there is no pair of
nonidentical points, and condition (c) is satisfied trivially.

Now we show that the conditions are satisfied for QU,
given by

QU =
[

α1 α2 . . . αm
1 − α1 1 − α2 . . . 1 − αm

]
. (179)

Since the parameters are strictly ordered, rank(QU) = 2.
(The lemma is satisfied if rank(QU) = 1, by the same
argument we gave above, though in this case α1 = . . . = αm
and the capacity is zero.) Now we have

QU p =
[ ∑m

j=1 piαi

1 − ∑m
j=1 piαi

]
=

[
ᾱp

1 − ᾱp

]
. (180)

Since the parameters are strictly ordered, ᾱp can take any value
on the interval [α1,αm ].

Let P̃∗ represent the set of input distributions p from
Corollary 2, with p2 = p3 = . . . = pm−1 = 0. For p ∈ P̃∗,

QU p =
[

p1α1 + pmαm
1 − p1α1 − pmαm

]
, (181)

and p1α1 + pmαm can take any value on the interval [α1,αm ].
Therefore, condition (a) is satisfied.

From Corollary 2, all distributions p maximizing I (p, Qi )
have p2 = p3 = . . . = pm−1 = 0. Thus, all maximizing
distributions in P∗ are also in P̃∗, and condition (b) is satisfied.

Finally, by the definition of the directional derivative,
condition (c) is equivalent to

(p − q) ·
(
∇p I (p, QU) − ∇q I (q, QU)

)
< 0, (182)

where · represents vector dot product. Inequality (182)
reduces to

1
loge 2

(ᾱp − ᾱq ) log
ᾱq − ᾱpᾱq

ᾱp − ᾱp ᾱq
< 0 (183)

By inspection, this inequality is satisfied as long as ᾱp ̸= ᾱq .
To check when this is satisfied in the subset P̃∗, we can write

ᾱq − ᾱp = α1q1 + αmqm − α1 p1 − αm pm (184)

= α1q1 + αm(1 − q1) − α1 p1 − αm(1 − p1)

(185)

= (q1 − p1)(α1 − αm). (186)
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where (184) follows from the definition of P̃∗. By assumption,
αm ̸= α1. Thus, ᾱq ̸= ᾱp so long as q1 ̸= p1, i.e., for any
distinct points in P̃∗. Thus, condition (c) is satisfied, and the
lemma follows.
Closely related results were given in the (unfortunately
unpublished) [32], as well as stronger results for all possible
binary-input, binary-output, unit-memory Markov channels.

B. Entropy Rates via the Sum-Product Algorithm

In this appendix, we briefly explain how to use the
sum-product algorithm [90], both to calculate bounds on
mutual information and to perform the Monte Carlo simu-
lations that were discussed in Section III.

The channel is specified by the conditional probabilities
pYi+1|Xi ,Yi (yi+1|xi , yi ), with a Markov input process gov-
erned by transition probabilities pXi+1|Xi (xi+1|xi ). In order to
approximately calculate the mutual information rate,

I(X, Y ) = lim
n→∞

(
H (Yn|Y n−1

0 ) − H (Yn|Xn−1
0 , Y n−1

0 )
)

(187)

the second term reduces (in the case of our Markov channel) to
H (Yn|Xn−1

0 , Y n−1
0 ) = H (Yn|Xn−1, Yn−1), which is available

in closed form. Thus, we need a way to estimate the first term,
H (Yn|Y n−1

0 ), which requires the calculation of two quantities:
pYk |Y k−1

0
(yk | yk−1

0 ) and pYk |X0,Y
k−1
0

(yk | x0, yk−1
0 ), for various

values of k.
Calculation of pYk |Y k−1

0

(
yk |yk−1

0

)
can be accomplished

efficiently using the sum-product algorithm. By defining
a sequence of functions ϕi (xi ), which act as “messages”
propagating along the factor graph, one obtains a recursive
algorithm:

ϕ0(x0, y0) = pX0,Y0(x0, y0) (188)

ϕi (xi , yi ) =
∑

xi−1

pYi |Xi−1,Yi−1(yi |xi−1, yi−1)pXi |Xi−1

×(xi |xi−1) · ϕi−1(xi−1, yi−1), for 1 < i ≤ k

(189)

pY k
0

(
yk

0

)
=

∑

xk−1

pYk |Xk−1,Yk−1(yk |xk−1, yk−1)

×ϕk−1(xk−1, yk−1), (190)

where the probability on the right side of (188) is the
steady-state probability for the Markov process (xi , yi ). This
well-known algorithm arises from the decomposition of the
probability pY k

0
(yk

0) into a sum of products:

pY k
0
(yk

0) =
∑

xk
0

pXk
0,Y k

0
(xk

0 , yk
0)

=
∑

xk
0

pX0,Y0(x0, y0)

·
[ k∏

i=1

pYi |Xi−1,Yi−1(yi |xi−1, yi−1)pXi |Xi−1 (xi |xi−1)

]
,

valid for our channel driven by a Markov input source. Finally,
we obtain pYk |Y k−1

0

(
yk |yk−1

0

)
by

pYk |Y k−1
0

(
yk|yk−1

0

)
=

pY k
0
(yk

0)
∑

yk
pY k

0
(yk

0)
(191)

Calculation of pYk |X0,Y
k−1
0

(
yk |x0, yk−1

0

)
proceeds similarly,

except for k = 1, (189) is replaced by

ϕ1(x1, y1) = pY1|X0,Y0(y1|x0, y0)pX1|X0(x1|x0)ϕ(x0, y0),

(192)

i.e., we do not sum over x0. The final result in (190) is then
the joint probability pY k

0 ,X0
(yk

0 , x0). Finally, we obtain

pYk |X0,Y k−1
0

(
yk|x0, yk−1

0

)
=

pY k
0
(yk

0 , x0)
∑

yk
pY k

0
(yk

0 , x0)
. (193)

The upper and lower bounds from Section III are obtained
by substituting (191) into (127), and (193) into (129),
respectively.

To calculate a Monte Carlo estimate of the information rate,
we obtain an estimate of

H
(

Yk |Y k−1
0

)
= E

⎡

⎣log

⎛

⎝ 1

pYk |Y k−1
0

(
yk|yk−1

0

)

⎞

⎠

⎤

⎦ (194)

for sufficiently large k. Here we generate sample sequences yk
0

with the correct distribution, calculate pYk |Y k−1
0

(
yk |yk−1

0

)

using (191), and take the sample mean to obtain the term
under the expectation in (194).

C. Critical Point of the Continuous Time Information Rate

In §IV-A.1 we consider the information rate as the time
step ϵ goes to zero. We assume the mutual information rate
has an interior maximum as a function of the high-state
probability x ≡ pH (recall that mutual information is concave
with respect to the input distribution). Here we show that
this maximum is unique. Setting the derivative of the mutual
information rate (200) equal to zero gives a necessary and
sufficient condition for the maximum, Equation (132). We may
simplify (132) by introducing ᾱ = xαH + (1 − x)αL, which
gives

0 = − αHβϵ log
(

1
1 − ϵᾱ

)
+ αLβϵ log

(
1

1 − ϵᾱ

)

+ βϵ(αH − αL) log
(

1
ϵᾱ

)
− αHϵ(αL + β) log

(
1
αHϵ

)

+ αLϵ(αH + β) log
(

1
αLϵ

)
− αH log

(
1

1 − ϵᾱ

)

+ αL log
(

1
1 − ϵᾱ

)
− αL log

(
1

1 − αHϵ

)

+ αHαLϵ log
(

1
1 − αHϵ

)
+ αH log

(
1

1 − αLϵ

)

− αHαLϵ log
(

1
1 − αLϵ

)
− β log

(
1

1 − αHϵ

)
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+ αHβϵ log
(

1
1 − αHϵ

)
+ β log

(
1

1 − αLϵ

)

− αLβϵ log
(

1
1 − αLϵ

)
.

Inverting,

0 = αHβϵ log (1 − ϵᾱ) − αLβϵ log (1 − ϵᾱ)

− βϵ(αH − αL) log (ϵᾱ) + αHϵ(αL + β) log (αHϵ)

− αLϵ(αH + β) log (αLϵ) + αH log (1 − ϵᾱ)

− αL log (1 − ϵᾱ) + αL log (1 − αHϵ)

− αHαLϵ log (1 − αHϵ) − αH log (1 − αLϵ)

+ αHαLϵ log (1 − αLϵ) + β log (1 − αHϵ)

− αHβϵ log (1 − αHϵ) − β log (1 − αLϵ)

+ αLβϵ log (1 − αLϵ) .

Gathering like terms,

0 = αHβϵ log (1 − ϵᾱ) − αLβϵ log (1 − ϵᾱ)

+ αH log (1 − ϵᾱ) − αL log (1 − ϵᾱ)

− βϵ(αH − αL) log (ϵᾱ)

+ αHϵ(αL + β) log (αHϵ)

− αLϵ(αH + β) log (αLϵ)

+ αL log (1 − αHϵ) − αHαLϵ log (1 − αHϵ)

+ β log (1 − αHϵ) − αHβϵ log (1 − αHϵ)

−αH log (1 − αLϵ) + αHαLϵ log (1 − αLϵ)

− β log (1 − αLϵ) + αLβϵ log (1 − αLϵ)

= (αHβϵ log −αLβϵ + αH − αL) log (1 − ϵᾱ)

− βϵ(αH − αL) log (ϵᾱ)

+αHϵ(αL + β) log (αHϵ) − αLϵ(αH + β) log (αLϵ)

+ (αL − αHαLϵ + β − αHβϵ) log (1 − αHϵ)

+ (−αH + αHαLϵ − β + αLβϵ) log (1 − αLϵ) .

Only the terms involving ᾱ depend on x . In order for equality
to hold as ϵ → 0+, we require the value x(ϵ) for which we
have

f (x, ϵ) = (αHβϵ − αLβϵ + αH − αL) log (1 − ϵᾱ)

−βϵ(αH − αL) log (ϵᾱ) (195)

= − (αHϵ(αL+β) log (αHϵ)−αLϵ(αH+β) log (αLϵ)

+ (αL − αHαLϵ + β − αHβϵ) log (1 − αHϵ)

+ (−αH + αHαLϵ − β + αLβϵ) log (1 − αLϵ))

(196)

= g(ϵ). (197)

Expanding both sides in orders of ϵ, and using the expansion
log(1 + u) = u − u2/2 + O(u3), as ϵ → 0+, we have:

f (x, ϵ) =

{(αH − αL)βϵ + (αH − αL)}
{
−ϵᾱ − ϵ2ᾱ2

2
+ O

(
ϵ3

)}

−βϵ(αH − αL) {log ϵ + log ᾱ}
That is to say, we have the regular perturbation expansion

f (x, ϵ) = ϵ log(ϵ) f0(x) + ϵ f1(x) + ϵ2 f2(x) + O(ϵ3),

as ϵ → 0+, with

f0(x) = −β(αH − αL)

f1(x) = −(αH − αL)ᾱ(x) − β(αH − αL) log(ᾱ(x))

f2(x) = −ᾱ(x)(αH − αL)β − ᾱ(x)2

2
(αH − αL).

Note that f0 does not, in fact, depend on x . For the right hand
side we have:

g(ϵ)

= −αHϵ(αL + β) log (αHϵ) + αLϵ(αH + β) log (αLϵ)

− (αL − αHαLϵ + β − αHβϵ) log (1 − αHϵ)

− (−αH + αHαLϵ − β + αLβϵ) log (1 − αLϵ)

= −αHϵ(αL + β) log (αHϵ) + αLϵ(αH + β) log (αLϵ)

+ (−αL + αHαLϵ − β + αHβϵ) log (1 − αHϵ)

+ (αH − αHαLϵ + β − αLβϵ) log (1 − αLϵ)

= −αHϵ(αL + β) log (αHϵ)

+ αLϵ(αH + β) log (αLϵ)

+ (−αL + αHαLϵ − β + αHβϵ) log (1 − αHϵ)

+ (αH − αHαLϵ + β − αLβϵ) log (1 − αLϵ)

= −αH(αL + β) log (αH) ϵ − αH(αL + β)ϵ log (ϵ)

+ αL(αH + β) log (αL) ϵ + αL(αH + β)ϵ log (ϵ)

+ (−αL−β + (αHαL+αHβ)ϵ)

{

−αHϵ−
α2

Hϵ
2

2
+ O(ϵ3)

}

+ (αH+β − (αHαL + αLβ)ϵ)

{

−αLϵ − α2
Lϵ

2

2
+ O(ϵ3)

}

,

as ϵ → 0+. Therefore, as ϵ → 0+, we have

g(ϵ) = ϵ log(ϵ)g0 + ϵg1 + ϵ2g2 + O(ϵ3), as ϵ → 0+, with

g0 = −αH(αL + β) + αL(αH + β)

g1 = −αH(αL + β) log (αH) + αL(αH + β) log (αL)

−αH(−αL − β) − αL(αH + β)

g2 = −αH(αHαL + αHβ) + αL(αHαL + αLβ)

+ (−αL − β)

(

−α
2
H
2

)

+ (αH + β)

(

−α
2
L

2

)

.

Comparing the terms of order ϵ log ϵ, we see that
f0 = −β(αH − αL) = g0 holds independently of x .

Moving to the O(ϵ) terms, we require x ∈ (0, 1) for which
f1(x) = g1. That is, we require that

f1(x) = −(αH − αL)ᾱ(x) − β(αH − αL) log(ᾱ(x))

= −αH(αL + β) log (αH) + αL(αH + β) log (αL)

− αH(−αL − β) − αL(αH + β)

= g1.

If we introduce the function ψ(x) = ᾱ(x)+β(1+ log(ᾱ(x))),
and a constant

G = αH(αL + β) log (αH) − αL(αH + β) log (αL)

αH − αL
, (198)

then we have the equivalent requirement on x :

ψ(x) = G. (199)
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Since ᾱ(x) = αHx + αL(1 − x), we have

dψ(x)

dx
= (αH − αL)

(
1 + β

ᾱ

)
> 0,

and so ψ is monotonically increasing on (0, 1), and
has a smooth inverse ψ−1. The range of ψ is ψ(0) =
αL + β(1 + logαL) < ψ(x) < ψ(1) = αH + β(1 + logαH),
so Equation (199) has a unique solution, provided G lies in
this range. To check, we need to verify that

αL + β(1 + logαL)

<
αH(αL + β) log (αH) − αL(αH + β) log (αL)

αH − αL
< αH + β(1 + logαH).

Upon assuming that β > 0 and 0 ≤ αL < αH ≤ 1, and setting
y = (αH − αL)/αH, these inequalities reduce to showing that

y
1 + y

< log(1 + y) < y

for 0 < y ≤ 1, which are readily verified.
This calculation shows that, for small ϵ > 0, there can only

be one maximum for Ĩϵ(x) in the interior of the unit interval.
Moreover, Ĩϵ(x) → 0 for x → 0 and x → 1, and Ĩϵ(x) > 0 for
0 < x < 1. Therefore, Ĩϵ has to have at least one maximum,
but it can have at most one critical point (by the preceding
argument) so it has a unique maximum.

The corresponding value of x will be the asymptotically
optimal value xopt, as ϵ → 0+.

D. Capacity- and Mutual-Information–Maximizing
Parameter Values

In §II, Equation 82 gives the mutual information for the
discrete time BIND channel. Here we show that the mutual
information is bounded with respect to the three channel
parameters αL,αH and β, and that the capacity is an increasing
function of β and αH, and is decreasing in αL . (Consequently,
for a fixed time step, the extremizing values of these parame-
ters all equal either 0 or 1, thus violating the strict ordering
assumption.)

Dropping the maximization from (82), mutual information
is written

I (X; Y ) = H (αH pH + αL pL) − pHH (αH) − pLH (αL)

1 + (pHαH + pLαL)/β
.

(200)

We assume that the parameters are strictly ordered
(see Definition 1). With this assumption, I (X; Y ) > 0;
therefore, the same is true of the numerator in (200), since
the denominator is positive. Also note that

d
dp

H (p) = log
1 − p

p
. (201)

We will use these properties below.
First consider β. By inspection of (200), β only appears in

the denominator, and the denominator decreases with increas-
ing β. Thus, I (X; Y ) is increasing in β, and β = 1 is optimal.

Now consider αL. By inspection of (200), the denominator is
increasing in αL. We can show that the numerator is decreasing
in αL: we can write

d
dαL

(H (αH pH + αL pL) − pHH (αH) − pLH (αL))

= pL log
(1 − αH pH − αL pL)αL

(αH pH + αL pL)(1 − αL)
(202)

= pL log
αL − αL(αH pH + αL pL)

αH pH + αL pL − αL(αH pH + αL pL)
(203)

≤ 0, (204)

where the final inequality follows since αL ≤ αH pH + αL pL
(since αL ≤ αH). Thus, I (X; Y ) is decreasing in αL, and αL =
0 is optimal.

Finally, consider αH: this case is slightly trickier than
αL, since both the numerator and denominator of (200) are
increasing. For simplicity, we start by substituting β = 1 and
αL = 0: we have

I (X; Y ) = H (αH pH) − pHH (αH)

1 + pHαH
. (205)

To show that this quantity is increasing with αH, the first
derivative with respect to αH is

d
dαH

I (X; Y )

=
(1+ pHαH)pH log (1−αH pH)

(1−αH)pH
− pH(H (αH pH)− pHH (αH))

(1+αH pH)2 .

(206)

The goal is to determine whether d I (X; Y )/dαH is positive.
It is useful to write

H (αH pH) − pHH (αH)

= (1 − αH)pH

1 − αH pH
+ αH pH log

(1 − αH pH)

(1 − αH)pH
. (207)

Thus, (206) becomes
d

dαH
I (X; Y )

= pH

(1 + αH pH)2

[
(1 + pHαH) log

(1 − αH pH)

(1 − αH)pH

− log
(1 − αH)pH

1 − αH pH
− αH pH log

(1 − αH pH)

(1 − αH)pH

]
(208)

= pH

(1 + αH pH)2 log
(1 − αH pH)2

(1 − αH)pH+1 pH
. (209)

By inspection of (209), the derivative is positive when

(1 − αH pH)2

(1 − αH)pH+1 pH
≥ 1. (210)

Inequality (210) is satisfied for αH = 0 (as 1/pH ≥ 1); to show
that it is satisfied for all strictly ordered αH, we show that
the left side of (210) is increasing for αH ≥ 0. After some
manipulation, we have

d
dαH

(1 − αH pH)2

(1 − αH)pH+1 pH

= pH(1 − αH)pH(1 − αH pH)(1 − pH)(1 + αH pH)

((1 − αH)pH+1 pH)2 , (211)
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which is positive for all strictly ordered parameters. Thus,
I (X; Y ) is increasing in αH, and αH = 1 is optimal.

The proceeding analysis is true for any valid setting of
pH and pL. Therefore, it applies to capacity as well as mutual
information.

This optimization calculation applies to the discrete time
model for any (fixed) time step. Within the framework of the
continuous time BIND channel (§IV), there is no a priori
upper limit on the reaction rate constants k+ and k−. The
calculation in this Appendix thus shows that, ceteris paribus,
a ligand-receptor system would have a higher capacity, the
faster its binding rate k+ and its unbinding rate k−, provided
it could toggle the ligand concentration arbitrarily close to
zero when sending the “low” input signal. Thermodynamic
and other physical limitations prevent channels from obtaining
arbitrarily large binding and unbinding rates, and reducing the
signal concentration strictly to zero is generally not possible
in biological systems. The practical limits in specific signaling
systems provide appealing topics for future investigation.
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