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Information Theoretic Analysis of A Biological Signal Transduction System 

 

Abstract 

 

by 

 

SHU WANG 

 

Signal transduction is a process by which living cells detect and respond to changes in 

their environment, including signaling, reception, transduction, and response reactions. 

Information theory as introduced by Shannon uses mutual information, the difference 

between entropy of output and entropy of output given input, to estimate uncertainty 

in message transmission processes. Neurotransmission is a typical signal transduction 

process in which the neurotransmitter works as a signaling molecule, carrying 

information from the source to an associated receptor. Viewing the input and output 

signals as point processes, we apply information theory to analyze its communication 

capabilities. This thesis provides a detailed glutamate simulation procedure and its 

mutual information analysis in MATLAB, and describes how information theory 

applies to a neurotransmission simulation. 
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Chapter 1 --- Introduction of Information Theory and Signal Transduction 

1.1 Signal Transduction in Biological Systems 

  A cell is highly responsive to specific chemicals in its environment. For examples, 

hormones are chemical signals that tell a cell to respond to a change in conditions, or 

molecules in food communicate taste and smell through their interaction with 

specialized sensory cells.[1] From the detection of biochemical molecules to bodily 

reactions to stimuli, it is all completed by signal transduction, the process by which a 

chemical or physical signal is transmitted through a cell as a series of molecular 

events, resulting in a cellular response.[2]  

  Berg described signal transduction that normally occurs in biological systems.[1] 

When the signal molecules are released after stimuli generation, such as hormones or 

other biochemical molecules, particular proteins located at the cell surface detect (or 

“receive”) chemical signals. When signal molecules bind to particular proteins 

(receptors) on cell membranes, the association activates a conformational change in 

the proteins, which is transmitted to the cytoplasmic domain or part of the receptor 

molecule. This transduction further starts a series of chain reactions causing cellular 

response, such as a change in gene expression, ion permeability, enzyme activity or 

protein three-dimensional structure, which ultimately affects the metabolism of the 

cell or organism.[3] Meanwhile, depending on the efficiency of the nodes, a signal can 

be amplified so that one signal molecule can generate responses involving hundreds 

of millions of molecules.[4] In this thesis, I essentially focus on two aspects to simplify 

the investigation, which are the signaling, and reception processes. We don’t address 
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response, amplification and feedback here. 

  This complicated system is composed of several components. First of all, in order 

to respond to changes in their biological environment, cells must be able to receive 

and process signals generated outside of their borders. On one hand, some cells are 

sensitive to mechanical stimuli, such as mechanotransduction, which can be triggered 

by calcium-dependent cell adhesion molecules in the service of hearing, touch, 

proprioception and balance.[5] On the other hand, most cell signals are chemically 

mediated processes, which makes biochemical molecules, things like growth factors, 

hormone, neurotransmitters, to work as ligand to develop their biochemical effects 

locally or travel over long distances.[6]  

  The second component is biochemical molecules’ associated receptors, that play an 

essential role in interaction with ligand in target cells. Based on the range of locations 

over which the signal spreads, receptors can be divided into two categories, 

intracellular receptors, which are found inside of the cell, such as that in the 

cytoplasm or nucleus, and cell surface receptors, which are located on the plasma 

membrane. Both of them induce a change in the conformation of the inside part of the 

receptor, a process called “receptor activation”.[7] The receptor that most studies 

concentrate on is the latter type, such as G protein-coupled receptor and ion channel 

linked receptor. 

  The last important component is the second messengers. The most familiar 

examples of second messenger molecules include cAMP, cGAMP, Ca2+, and inositol 

triphosphate. An essential feature of second messenger signaling systems is that 



8	
  
	
  

second messengers can link downstream reactions to multi-cyclic kinase cascades in 

order to amplify the strength of the original signal.[8] This is the reason why an 

association of ligand with its one type receptor could evoke multiple downstream 

responses in gene expression and protein production in different target cells and 

tissues. The three components described above, signal molecules (ligands), receptors 

(first messengers), and second messengers form the main constituents of signal 

transduction processes. 
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1.2 Neurotransmission  

  In biological systems, neurotransmission is one typical type of signal transduction, 

in which neurotransmitters act as the ligand species. Neurotransmission is a 

communication between neurons that is accomplished by the movement of chemicals 

or electrical signals across synapses. According to the stimuli types, it can be divided 

into two groups, which are electrical neurotransmission, communication occurring 

between two neurons at electrical synapses (or gap junctions), and chemical 

neurotransmission, communication occurring at chemical synapses.[9] Since the 

structure of the latter one is similar to that of signal transduction, I decided to use it as 

my simulation model in this thesis. 

  The chemical synaptic neurotransmission is composed of three main parts, 

presynaptic neuron, neuron cleft, and postsynaptic neuron (Figure 1). The presynaptic 

neuron manufactures neurotransmitters, and stores them in presynaptic vesicles. 

When the presynaptic neuron generates an action potential by stimuli, the action 

potential reaches the axon terminal, which causes a calcium current and subsequently 

causes a vesicle to release neurotransmitter into the synaptic cleft. The synaptic cleft 

is a small gap separating the presynaptic neurons and postsynaptic neurons, and filled 

with extracellular fluid. After its release, the neurotransmitter diffuses across the cleft 

and binds to receptors located on the postsynaptic membrane. If the activated 

receptors trigger an inward (depolarizing) current, the signal from the synapse may 

contribute to generating a postsynaptic action potential in the postsynaptic neuron. If 

the activated receptors trigger an outward (hyperpolarizing) current, or open a 
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shunting conductance, the signal from the synapse may suppress action potential 

generation. Additionally, the neurotransmitter could be either destroyed enzymatically, 

or absorbed by the terminal from which it comes as via a reaction.[10,11] 

Figure 1 Principles of neurotransmission. 
The presynaptic neuron (on the top) 
synthesizes and releases neurotransmitter, 
which associates with and activates receptors 
at the postsynaptic neuron membrane (at the 
bottom).[12] (This figure is credited by 
Thomas Splettstoesser on www.scistyle.com.) 

 

  In the neurotransmission process we consider, the neurotransmitter acts as the 

ligand, the first component involved in chemical reactions and triggering downstream 

response. Normally, the neurotransmitter could be classified by molecule type. For an 

example, amino acid neurotransmitters include glutamate (Glu), aspartate, 

γ-aminobutyric acid (GABA).[13] They are all packed in the presynaptic vesicles 

before releasing. Nitric oxide (NO) and carbon monoxide (CO) are common 

gasotransmitters.[14] Some monoamines and peptides, such as dopamine (DA) and 

adenosine triphosphate (ATP), can work as neurotransmitters as well. In biological 

function, some neurotransmitters have excitatory affect on postsynaptic neuron 

activities, while some of them work as inhibitor. 

  The other component we consider is the neurotransmitter’s associated receptors 

located on the postsynaptic membrane. According to the molecule structure, they can 

be classified into ligand-gate ion channels (ionotropic receptors) and G 

protein-coupled receptor (metabotropic receptors).[15] The main difference between 

them is their mechanism in interaction with the neurotransmitter. Ionotropic receptors 



11	
  
	
  

have an ion channel pore. When it is activated, it makes ion channels located on the 

postsynaptic membrane switch from a closed to an open state, to allow Na+, K+, or Cl- 

to flow.[16] In contrast, metabotropic receptors need G-proteins to be involved, to 

provide a link with ion channels and to trigger a series of second messenger reactions 

in order to make ion channels open and generate ion currents.[15] 
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1.3 Information Theory 

  Information theory studies the transmission, processing, extraction, and utilization 

of information. It was originally developed by Claude E. Shannon in 1948 in a 

landmark paper entitled “A Mathematical Theory of Communication”. In this paper, 

Shannon conceived “information” as a set of possible messages. The goal was to send 

these messages over a noisy channel, and then to have the receiver reconstruct the 

message with low probability of error in spite of the channel noise.[17] The significant 

process was examining the rate of information transported through communication 

system.  

  In Shannon’s paper, he described a schematic diagram of a general communication 

system. Figure 2 shows that the communication system consists of essentially five 

parts, which are the information source, transmitter, channel, receiver, and destination. 

The information source is the place where the “sender” produces a message or 

sequence of messages to be transmitted to the receiving terminal. Any system capable 

of taking on multiple states can be a source of information, and that state can be 

mathematically represented as a random variable that can take on multiple values. A 

transmitter is a mediator to operate on the message in some way to produce a signal 

suitable for transmission over the channel. After the transmitter transports messages 

generated by the source, the messages are transmitted from transmitter to receiver to 

go through the channel. At the end of channel, the receiver performs the inverse 

operation of that done by the transmitter, and reconstructs the messages from the 

signal. Finally, the messages are detected as output at the destination. A channel is 
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“noisy” if the output of the channel (received signal) is only determined 

probabilistically by the channel input. If a random variable X represents the input and 

another variable Y represents the output, then the conditional probability 𝑃(𝑌|𝑋) 

describes the (noisy) signal transmission process.  

 
Figure 2 Schematic diagram of a general communication system by Shannon, including 5 essential 
components: information source (message production), transmitter (an operator to transport messages), 
channel (a medium for message transportation), receiver (receiving messages), and destination (output 
message detection). [17] (The figure was redrawn from reference [17]. The copyright was reserved 
@1948 by The Bell System Technical Journal.) 

 

  The main purpose of information theory is calculating information utilization in a 

message transmission process. Shannon used an important concept, entropy, to 

represent the amount of uncertainty involved in the value of a random variable or the 

outcome of a random process. Named after Boltzmann’s H-theorem, Shannon defined 

the entropy H of a discrete random variable X, which can take on the values {x1, ..., xn} 

with the respective probabilities 𝑝!,𝑝!, . . . ,𝑝!, as showed in equation (1) 

𝐻 𝑋 =   − 𝑝!𝑙𝑜𝑔𝑏𝑝!!
!!!    (1) 

where b is the base of logarithm used. By the usual convention, he defined entropy 

using a base 2 logarithm so that the entropy was measured in bits. A message carrying 

a single bit of information may be thought of as a signal that is sufficient to answer 
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exactly one yes/no question posed so that the outcomes “yes” and “no” occur with 

equal 50/50 probability.[18] 

  However, in communication systems, the messages are transmitted from one place 

to another. Because the input is considered to be a random variable, the output whose 

value depends on the input is also a random variable. Information theory calculates if 

the output messages allow the input messages sent through the channel to be fully or 

partially determined. Mutual information is used to quantify this in terms of the 

amount of information that the value of one random variable contains about the value 

of another random variable. If X defines an input random variable taking on the values 

of {x1, ..., xn} and Y defines an output random variable taking the values from 

{y1, ..., yn}, respectively, then the mutual information in communication system I(Y;X) 

is defined as equation (2). 

𝐼 𝑌;𝑋 =   𝐻 𝑋 − 𝐻 𝑋 𝑌    (2) 

where H(X) designates the entropy of input discrete random variable, while H(X|Y) 

defines the entropy of input events given the output events, also called conditional 

entropy. The conditional entropy is the entropy of the conditional distribution of X, 

given a particular value of Y, averaged over the various values of Y. Since entropy is 

valued in bits, the mutual information is measured in bits as well. 

  By using the same method, the following formula, equation (3) is also available. In 

conclusion, the mutual information between output and input in a communication 

system is the difference of entropy of input variable and the conditional entropy of 

input event given output event, meanwhile, it also equals to the difference between 
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entropy of output events and the conditional entropy of output events given input 

events. The mutual information represents the information communicated from source 

to receiver.  

𝐼 𝑌;𝑋 =   𝐻 𝑌 − 𝐻 𝑌 𝑋    (3). 

  Shannon’s article introduced a mathematical framework for information theory. 

The original purpose lay in the field of telecommunications engineering, namely, to 

quantify the amount of information transmitted through a noisy engineered 

communication channel, such as telephone or telegraph wires.[18] While the physical 

sciences and engineering fields provided many applications for information theory, it 

has found relatively fewer applications in the life sciences. One significant application 

of information theory to the life sciences was Henry Quastler’s research. Quastler 

pointed out that the DNA in a mammalian cell had an information capacity of roughly 

2×10!! bits. He claimed that this observation implied that the level of complexity or 

organization of an organism could be quantified in units of bits.[19]  

  Despite the initial enthusiasm, however, many attempts at applying information 

theory within the biological science were ultimately considered to be disappointing. 

For example, Johnson criticized the careless application of information theoretic 

methods.[20] Johnson argued that information theoretic analysis lacked two key 

features, namely the omission of qualitative factors and non-applicability to open 

systems. “Qualitative factors” refer to conditions in which some bits (of information) 

are more significant for an organism’s survival than others; Shannon’s purely 

quantitative formulation treats all bits as having equal importance. Moreover, 
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Shannon’s construction applies to closed systems while biological systems are 

thermodynamically open, interacting with their environment in a way that can 

interfere with strict information theoretic inequalities. 

  Nevertheless, the application of information theoretic analysis to biological 

signaling systems has seen a growing number of successes in recent years. Principled 

application of Shannon’s framework has provided new insights into information 

processing in areas as diverse as neural networks[21], evolutionary genetics, and signal 

transduction networks. For examples, Tkacik’s work showed that the mutual 

information between bicoid and hunchback concentrations was helpful to distinguish 

the anterior-posterior embryonic axis in the development of the fruit fly, Drosphila 

melanogaster.[22] As another example, in Cheong and Rhee’s article, “Information 

Transduction Capacity of Noisy Biochemical Signaling Networks”, the authors 

concluded that tumor necrosis factor (TNF) signal transduction had a bottleneck, 

limiting the information gained via downstream multiple integrated pathways. This 

conclusion about the topology of the signaling network was made possible by 

quantitatively measuring the mutual information between the input signal (TNF 

concentration) and response levels (NF-𝑘B and ATF-2 expression) in individually 

resolved cells.[23] 
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1.4 Information Theory Applied to Signal Transduction 

  Information theory is a field at the intersection of mathematics, statistics, and 

computer science. It also finds application in other areas, including statistical 

inference, neurobiology, and model selection in statistics.[24] Taking Johnson’s 

critique into account, a successful information theoretic analysis in a biological 

system should address qualitative as well as quantitative factors, within a 

thermodynamically closed system. As my goal in this thesis is to explore the 

application of information theoretic analysis to signaling pathways, I sought examples 

in which a complicated signaling pathway could be treated with a simplified 

representation: a small volume, whose size (area and length), signal molecule 

concentration, signal molecule/response receptor kinetic scheme composed of 

association and disassociation rate, decay rate should have been measured 

experimentally. Each of these parameters potentially could affect the results of the 

analysis. Table 1 provides parameters of several typical signaling molecules from 

different biological systems. For each of these systems the literature provides a range 

of typical length scales over which signaling occurs, as well as receptor binding and 

unbinding kinetics. On one hand, in some cases the relevant parameter ranges can be 

quite broad, for instance cytokines in the immune system operate on length scales 

ranging from inter-capillary distances to whole body length scales. On the other hand 

some signaling molecules are similar to those shown in the table, for example 

acetylcholine has a similar molecular size as glutamate. Although the methods I 

develop here should apply to any signaling system, in order to pursue a concrete 
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example we focus on the glutamate/NMDA receptor in mammalian synapses. If my 

simulation of the glutamate signaling pathway is successful and proves biologically 

meaningful, it should provide a framework for analyzing any existing signal system as 

long as its parameters could be examined and collected. 

Table 1 Geometry and kinetics for four molecular signaling pathways.** 

Molecule Glutamate GABA IL-1 IL-8 

Receptor NMDA receptor GABAA receptors IL1Ra CXCR1 

Travel distance 20𝑛𝑚 20𝑛𝑚 10𝑛𝑚~1𝑚 10𝑛𝑚~1𝑚 

Binding rate 

(𝝁𝑴!𝟏𝒎𝒔!𝟏) 

5×10!! 2.1×10!! 7.17×10!! 2.73×10!! 

Unbinding rate 

(𝒎𝒔!𝟏) 

6.7×10!! 5.1×10!! 2.08×10!! 2.35×10!! 

**: Glutamate parameters are obtained from reference [25], [26]. GABA parameters are obtained from 
reference [27]. IL-1 parameters are derived from reference [28]. And IL-8 parameters are derived from 
reference [29]. Additionally, travel distance refers to the typical distance separating the source and 
receptor. 

   

  As an example of the framework of communication system described in the theory, 

the neurotransmission systems enjoy a similar structure. The neurotransmitter works 

as the information or message carrier, produced by the presynaptic neuron, and 

detected by the postsynaptic neuron, which are the information source and receiver, 

respectively. The synaptic cleft between presynaptic and postsynaptic membrane 

provides the physical channel for neurotransmitter-based communication. Therefore it 

is not unreasonable to investigate a neurotransmission system using quantitative 
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simulations together with information theory. 

  In this thesis, I will focus on one particular neurotransmitter transduction process, 

the glutamate signaling pathway, to which I will apply an information theoretic 

analysis. Glutamate is the most abundant neurotransmitter in the vertebrate nervous 

system. It is used by every major excitatory function in the vertebrate brain, 

accounting in total for well over 90% of the synaptic connections in the human 

brain.[30] It has three classes of biochemical receptors, AMPA receptors, NMDA 

receptors, and metabotropic glutamate receptors. The first two types are both 

ionotropic receptors. On the one hand, AMPA receptors are specialized for fast 

excitation, which results in producing excitatory electrical responses in their targets in 

a fraction of a millisecond after being stimulated. On the other hand, NMDA 

receptors differ from AMPA receptors in being permeable to Ca2+ when they are 

activated, which results in Ca2+ current flow through the membrane. Their properties 

make them particularly important for learning and memory.[31] For the third type of 

glutamate receptor, the metabotropic receptor, its biological function is mediated by a 

G-coupled protein and acts through second messenger systems to create slow,  

sustained effects on their targets. Since the mechanism of interaction with ionotropic 

receptors is simpler, and activated NMDA receptors can produce postsynaptic 

potentials caused by Ca2+ current flowing through the membrane, I decide to use 

NMDA receptors as glutamate receptors in the reception process. 

  To match with the information theory framework described in Figure 2, the Figure 

3 gives a similar diagram showing the glutamate simulation process. The information 
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source comes from sequences of action potentials generated in the presynaptic neuron, 

which activates release of glutamate molecules from vesicles that diffuse across the 

synaptic cleft and bind with postsynaptic NMDA receptors. The interaction makes ion 

channels located on the postsynaptic membrane switch from a closed to an open state, 

resulting in an excitatory current flowing across the postsynaptic membrane. As a 

starting point for modeling the synapse as a communications channel, we take the 

incoming action potential arrival times to be samples of a Poisson process. At the 

same time, we consider the output of the channel to be the sequence of channel 

opening times, which is another point process (not necessarily Poissonian). We may 

think of the “destination” of the incoming “message” to be action potentials in the 

postsynaptic cell, but we do not include postsynaptic membrane excitability in our 

model or analysis. For our purposes the communications channel transduces the input 

timing sequence of presynaptic action potentials into the output timing sequence of 

NMDA channel opening events. 

 

 Figure 3 Description of glutamate simulation process applied in our information theory framework. 

  The process to transmit messages from transmitter to receiver is chemical reactions 

between glutamate and its NMDA receptors. Based on Lester’s glutamate and NMDA 

receptor binding model, Figure 4 is redrawn to show the kinetic scheme of glutamate 

and NMDA receptor association and dissociation processes.[26] It describes that one 
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NMDA receptor can bind with two glutamate molecules at most, which causes there 

to be three states of receptors existing on the postsynaptic membrane, unbound 

receptors (R), singly-bound receptors (GluR) and doubly-bound receptors (Glu2R). 

During normal functioning, the ion channels switch to open states only when 

doubly-bound receptors transfer its structure to Glu2R*, but in this thesis, it is 

assumed that once doubly-bound receptors are produced, the ion channels open and 

activate Ca2+ current. So the kinetic scheme is simplified to two main steps: glutamate 

interacts with unbound receptors generating singly-bound receptors with kinetic rate 

2𝑘!" , and singly-bound receptors associate with another glutamate producing 

doubly-bound receptors with kinetic rate 𝑘!", and their backward reactions in kinetic 

rate 𝑘!"" and 2𝑘!"", respectively. 

 
Figure 4 Glutamate and ionotropic receptors association and dissociation kinetic model. It provides the 
following description: “Glu, R, GluR, Glu2R, Glu2R* represents glutamate, unbound state receptor, 
singly bound state receptor, doubly bound state receptor (ion channel closed), doubly bound state 
receptor (ion channel open), and desensitized state receptor, respectively. 𝑘!" and 𝑘!"" are binding 
and unbinding rates of chemical reactions. There are also transfer rates between doubly bound state 
receptors, both in closed and open ion channel. ”[32] Our version of the model omits doubly bound state 
receptors in open ion channel, where the transfer rates are both set to zero. (Redrawn from reference 
[26].)   
 

  After the simulation process is established, based on Shannon’s work, I collected 

molecule numbers, and calculated the entropy of output and the entropy of output 

given input. In this simulation process, the input signals, action potential in 
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presynaptic neuron, are generated in Poisson random distribution, and the output 

messages, ion channels open states on postsynaptic membrane, are estimated as a 

point distribution. Although equation (1) provides a method to measure entropy of a 

discrete random variable sequence, McFadden proposed another method to estimate 

entropy especially for point processes, which is used to calculate entropy of output 

and entropy of output given input in glutamate simulation process. He derived a 

mathematical formula for the entropy of point process given by observing the rate 

𝛽(𝑡) over a period of time length T, and proved that the rate of entropy over time 

satisfied equation (4). Hence the entropy over time length and the instantaneous 

entropy in time series satisfied equation (5).[33] Here 𝛽(𝑡) is event occurrence rate of 

time t. For a standard, unmodulated Poisson process, 𝛽(𝑡) is constant. 

!"
!"
=   𝛽 𝑡 1− log! 𝛽(𝑡)                  (4) 

𝐻 = 𝛽(𝑡)(1− log! 𝛽(𝑡))𝑑𝑡
!
!               (5) 

  Based on McFadden’s method, the difference between two entropies (conditioned 

and unconditioned), which we can interpret in terms of how many messages could be 

transmitted in this process, with a given uncertainty of message transmission. 

Meanwhile, it can also be used in estimating input information by observing output 

events. 
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Chapter 2 Glutamate Simulation Procedure in MATLAB 

2.1 Geometry in Simulation 

  Based on the conceptual model in Figure 3, I constructed a numerical simulation of 

glutamate signal transduction as follows. A volume whose area was 100µm2 and 

length was 10µm was established (Figure 5). In this volume, glutamate molecules 

were released from the left side at constant release rate 𝜆, which was set to be 0.01 

per millisecond. The times of glutamate release (triggered by incoming action 

potentials) served as the input messages. At the time of each glutamate release event, 

the mean glutamate molecule number released at one time was set up to be 3000. The 

exact number of glutamate released was a random variable, chosen using a Poisson 

distribution with the given mean. Once released, it was assumed that all glutamate 

molecules instantaneously spread throughout the whole volume and could bind with 

its NMDA receptors. NMDA receptors were located on the right side of the synaptic 

volume with a density of 600𝜇𝑚!! , with kinetic rate, 𝑘!" and 𝑘!"", respectively 

for the binding and unbinding reactions. Binding on each of two receptor sites was 

assumed to be independent (no cooperativity or allosteric interactions) with identical 

kinetics. On the receiver side, the times at which any receptor entered the 

doubly-bound state (Glu2R) was defined to be the output sequence. I took this to be 

the output sequence because only when the receptor was in this form, did the ion 

channels switch to the open state. At the same time, glutamate was eliminated by an 

enzyme or uptake system with a per capita decay rate 𝛾, set to be 0.02 per molecule 

per millisecond. The whole process was set up to run for an interval of 3000 
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milliseconds, using a fixed simulation time step of 1 millisecond. All basic parameters 

set up for the simulation and their values are listed in Table 2.  

Figure 5 A model established for glutamate simulation process. 
Glutamate is released from the left side at constant rate 𝜆, which 
provides the input to the information channel. Diffusing glutamate 
interacts with NMDA receptors on the right side with kinetic rates 
𝑘!" and 𝑘!"", generating three receptor states, R, GluR, and Glu2R.  
The times at which receptors enter the third state (Glu2R) work as 
output information. During whole process, diffusing glutamate decay 
at per capita rate 𝛾. 

 
Table 2 All parameters and their values in the glutamate signaling simulation.[32] 

Parameter Symbol Value 
Area area 100µm2 
Length length 10µm 
Mean Glu release number NG 3000 
Receptor density density 600 per µm2 
Release rate 𝜆 0.01 per msec 
Decay rate 𝛾 0.02 per molecule per msec 
Total time t 3000 msec 
Time step dt 1 msec 
Binding rate 𝑘!"  5×10-3 per msec per µmolar 
Unbinding rate  𝑘!""  6.7×10-3 per msec 
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2.2 Initial Conditions Setting Up 

  In the glutamate simulation process, the release process, decay process, and 

chemical reactions involving receptors mentioned previously were divided into 

individual reaction in Table 3 step by step. There were five reactions in total. The 

release process was defined as reaction number 0 with constant rate 𝜆 , where 

glutamate molecules were produced following arrival of action potentials at the 

presynaptic membrane. Reactions number 1 and number 2 were generation and 

degradation of singly-bound receptor (GluR) with rate 2𝑘!"  and 𝑘!"" , while 

reactions number 3 and number 4 were production and dissociation of doubly-bound 

receptor (Glu2R) with rate 𝑘!"  and 2𝑘!"" , respectively. At last, reaction 5 was 

considered as glutamate decay process in rate of 𝛾. In the model, this process 

occurred only for free glutamate, not while glutamate was bound to the receptor. 

Table 3 Chemical reactions in simulation and their kinetic rates 
Chemical Reaction Kinetic Rate 

0:  0 → Glu 𝜆 
1:  Glu + R → GluR 2𝑘!"  

2:  GluR → Glu + R 𝑘!""   
3:  GluR + R → Glu2R 𝑘!"  
4:  Glu2R → GluR + R 2𝑘!""  
5:  Glu → 0 𝛾  

 

  As Table 3 shows, there were four types of molecules involving in the simulation, 

which were glutamate (Glu), unbound receptors (R), singly-bound receptors (GluR), 

and doubly-bound receptors (Glu2R). Simulations began by choosing initial 

conditions for each molecule type. However, all molecules did not just begin with the 

fixed parameters set up in Table 2, such as glutamate started with 3000 molecules, 
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unbound receptors begun with 60000 molecules, while singly-bound receptors and 

doubly-bound receptors were 0 in initial condition. In biological aspect, all chemical 

reactions will arrive at dynamic equilibrium after a sufficiently long time, where the 

average rate of each molecule’s concentration change is 0, meaning each molecule’s 

number in production and degradation are same in steady state. Since the initial 

condition should fit this steady state, the main idea was to set up initial conditions for 

each type of molecule by actually finding out the chemical reactions’ steady states. 

  In dynamic equilibrium, the rate of each molecule type’s concentration change was 

shown in equation (6)-equation (9), where the concentration of each molecule was 

expressed, in units of moles per liter, as [Glu], [R], [GluR], and [Glu2R].  

![!"#]
!"

=   𝜆𝑁! − 2𝑘!" 𝐺𝑙𝑢 𝑅 + 𝑘!"" 𝐺𝑙𝑢𝑅 − 𝑘!" 𝐺𝑙𝑢 𝐺𝑙𝑢𝑅 + 2𝑘!"" 𝐺𝑙𝑢!𝑅 − 𝛾 𝐺𝑙𝑢       (6) 

![!]
!"

=   −2𝑘!" 𝐺𝑙𝑢 𝑅 + 𝑘!"" 𝐺𝑙𝑢𝑅                                                   (7) 

![!"#$]
!"

=   2𝑘!" 𝐺𝑙𝑢 𝑅 − 𝑘!"" 𝐺𝑙𝑢𝑅 −   𝑘!" 𝐺𝑙𝑢 𝐺𝑙𝑢𝑅 + 2𝑘!"" 𝐺𝑙𝑢!𝑅                 (8) 

![!"!!!]
!"

=   𝑘!" 𝐺𝑙𝑢 𝐺𝑙𝑢𝑅 − 2𝑘!"" 𝐺𝑙𝑢!𝑅                                         (9) 

 

  By setting all formulas equal to 0, we solve for the four equilibrium concentrations. 

The solution are listed in equation (10)-equation (13), where the concentration of 

glutamate in steady state could be solved directly in the first equation, and the last 

three equations were the fractions, 𝑓[!] + 𝑓[!"#$] + 𝑓[!"#!!] ≡ 1, of each receptor state 

among the total receptor population set up in simulation geometry.  

𝐺𝑙𝑢 =    !
!
𝑁! =

!.!"  !"#$!!

!.!"  !"#$!!
×3000  molecules = 1500  molecules            (10)                      

𝑓! = !!""
!

!!""
!!!!!"×!!"" !"# !!!"! !"# ! = 0.9965                            (11) 
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𝑓!"#$ = !!!"×!!"" !"#
!!""

!!!!!"×!!"" !"# !!!"![!"#]!
= 0.0035                         (12)                  

𝑓!"!!! = !!"![!"#]!

!!""
!!!!!"×!!"" !"# !!!"![!"#]!

= 3.1139×10!!                   (13)        

 

  Since the glutamate initial condition was expected to show a Poisson random 

distribution (poissonrnd, in Matlab), and the assignment of each receptor state among 

total unbound receptors located on receiver side was naturally represented as a 

multinomial random distribution (mnrnd, in Matlab), the initial conditions of the four 

types molecules could be set up in command (1) and command (2). 

𝐺𝑙𝑢!"!#!$%   =   𝑝𝑜𝑖𝑠𝑠𝑟𝑛𝑑(𝐺𝑙𝑢!"#$%&  !"#"$)                          command (1)  

𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟𝑠!"!#!$% =   𝑚𝑛𝑟𝑛𝑑(𝑅!"!#$ , [𝑓! , 𝑓!"#$ , 𝑓!"#!! ])            command (2) 
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2.3 Molecules Number Collection 

  To calculate message utilization in glutamate signal transduction, each type of 

molecule’s abundance should be collected in the simulation. It was an easier way to 

collect molecule counts by tracking the number of each chemical reaction’s 

occurrence events in the simulation. Based on all chemical reactions shown in Table 3, 

the production and degradation of each molecule could be expressed in Table 4. Each 

row, called the “stoichiometry vector” for the corresponding reaction, was used to 

described variation of each involved molecule when there was one reaction 

occurrence. For an example, in reaction 1, there was one glutamate associating with 

one unbound receptor for each singly-bound receptor generation, so the effect of 

reaction 1 was expressed as -1 both in glutamate and unbound receptor, and +1 in 

singly-bound receptor, where minus represents reactants, plus represents products.  

Table 4 Number change for each type of molecule in each chemical reaction 
Reaction Glu R GluR Glu2R 

0 1 0 0 0 
1 -1 -1 1 0 
2 1 1 -1 0 
3 -1 0 -1 1 
4 1 0 1 -1 
5 -1 0 0 0 

 

  Table 4 described each chemical reaction’s occurrence rate in the simulation. For 

the association reactions, the rate of reaction events was not the kinetic rate shown in 

Table 2. Considering the unit of chemical reaction’s occurrence rate should be 

reaction event number per millisecond, the units in reaction number 1 and number 3 

should be converted from micromolar per second to molecules per msec, by dividing 
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out a factor of 602×𝑉𝑜𝑙𝑢𝑚𝑒, where 𝑉𝑜𝑙𝑢𝑚𝑒 is the volume of the synaptic cleft 

expressed in cubic micrometers (cubic microns) by cancelling micromolar unit 

provided by 𝑘!" in equation (14). 

1𝜇𝑀 =
#  !"  !"#$%&#$
!.!"×!"!"

!"#  

!"#$%&(!"!)
=

#  !"  !"#$%&#$
!.!"×!"!"

!"#

!"#$%&×!"!!"(!!)
= #  !"  !"#$%&#$

!.!"×!"!×!"#$%&
!"#
!! =

#  !"  !"#$%&#$
!"#$%&×!"#

𝑚𝑖𝑐𝑟𝑜𝑚𝑜𝑙𝑎𝑟    (14) 

 

  Then the expected number of reaction occurrences in a small (1 msec) time step 

was calculated by multiplying each reactant’s number and the reaction occurrence rate. 

While the release process was modeled by a Poisson random distribution (𝑝𝑜𝑖𝑠𝑠𝑟𝑛𝑑, 

in Matlab), all other chemical reactions were modeled using the appropriate binomial 

random distribution (𝑏𝑖𝑛𝑜𝑟𝑛𝑑, in Matlab). The reaction occurrence number in time 

series could be expressed in command (3)-command (8). 

Table 5 Occurrence rate of each chemical reaction 

Chemical Reaction Occurrence Rate 
0:  0 → Glu 𝜆 
1:  Glu + R → GluR 2𝑘!"/(𝑉𝑜𝑙𝑢𝑚𝑒×602)   
2:  GluR → Glu + R 𝑘!""   
3:  GluR + R → Glu2R 𝑘!"/(𝑉𝑜𝑙𝑢𝑚𝑒×602  ) 
4:  Glu2R → GluR + R 2𝑘!"" 
5:  Glu → 0 𝛾 

𝑟𝑥𝑛_0 =   𝑝𝑜𝑖𝑠𝑠𝑟𝑛𝑑(𝑁!"# ∗ 𝜆 ∗ 𝑑𝑡)                               command (3) 

𝑟𝑥𝑛_1 =   𝑏𝑖𝑛𝑜𝑟𝑛𝑑(𝑛_𝐺𝑙𝑢 ∗ 𝑛_𝑅, ((2 ∗ 𝑘𝑜𝑛 ∗ 𝑑𝑡)/𝑉𝑜𝑙𝑢𝑚𝑒)/602)     command (4)  

𝑟𝑥𝑛_2 =   𝑏𝑖𝑛𝑜𝑟𝑛𝑑(𝑛_𝐺𝑙𝑢𝑅, 𝑘𝑜𝑓𝑓 ∗ 𝑑𝑡)                           command (5) 

𝑟𝑥𝑛_3 =   𝑏𝑖𝑛𝑜𝑟𝑛𝑑(𝑛_𝐺𝑙𝑢𝑅 ∗ 𝑛_𝐺𝑙𝑢, ((𝑘𝑜𝑛 ∗ 𝑑𝑡)/𝑉𝑜𝑙𝑢𝑚𝑒)/602)      command (6) 

𝑟𝑥𝑛_4 =   𝑏𝑖𝑛𝑜𝑟𝑛𝑑(𝑛_𝐺𝑙𝑢2𝑅, 2 ∗ 𝑘𝑜𝑓𝑓 ∗ 𝑑𝑡)                       command (7) 

𝑟𝑥𝑛_5 =   𝑏𝑖𝑛𝑜𝑟𝑛𝑑(𝑛_𝐺𝑙𝑢, 𝛾   ∗ 𝑑𝑡)                               command (8) 
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  From each reaction occurrence number, it can collect each molecule number in 

simulation based on Table 4 in equation (15)-equation (18). 

𝑁!"# = 𝑁!"#! − 𝑁!"#! + 𝑁!"#! − 𝑁!"#! + 𝑁!"#! − 𝑁!"#!                   (15) 

𝑁! = −𝑁!"#! + 𝑁!"#!                                               (16) 

𝑁!"#$ = 𝑁!"#! − 𝑁!"#! − 𝑁!"#! + 𝑁!"#!                                (17) 

𝑁!"!!! = 𝑁!"#! − 𝑁!"#!                                             (18) 
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Chapter 3 Simulation Results and Analysis 

3.1 Molecules Number Curve 

  Figure 6 shows four types of molecule number time series in one simulation trial. 

There was one spike at the time when there was one glutamate release reaction 

occurrence (top panel). After glutamate was released, the unbound receptors 

decreased (second panel) while singly-bound receptors increased in molecule number 

(third panel), which was the same as conditions in chemical reactions. But the time 

points of their increase trend and decrease trend had a time lag compared with that of 

glutamate molecule number release times. This was consistent with biological 

perspective that it should take target cells a little time to detect signal ligands and 

activate interaction of ligands with receptors. Although unbound receptors and 

singly-bound receptors molecule number both had smooth curves, small fluctuations 

from time step to time step could be seen.  

  Compared with the curves for unbound receptor and singly-bound receptor, there 

were only few events observed in the doubly-bound receptors. This means that, for 

the parameters used in the simulations, not all glutamate release actions could 

generate the same number of doubly-bound receptor occurrence events ultimately. For 

example, in the first panel of Figure 6, there were 25 glutamate release events (blue 

stars), while there were only 7 double-binding events in the fourth panel (red stars). 

After the first event seen in the fourth panel, there was really long time vacant 

approximately 250msec to 1600msec, when there were several release events visible 

in the first panel, which meant in this time period, the target cells could not transfer 
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messages carried by signal ligands and make responses. These effects illustrated one 

way in which information was lost during signal transduction. Information was also 

lost due to variability in the lag time between release and double-binding events, 

when those events did occur. The goal of an information theoretic analysis was to 

quantify the loss of information (or the incomplete gain of information) during the 

signal transduction process. So the next step was calculating mutual information in 

the simulation process. Heuristically, information provided an idea of how many 

messages were transmitted and the uncertainty of information transmission. 

 
Figure 6 Four types of molecule number curves in one simulation trial. In the panel from top to bottom, 
there was molecule number of glutamate (Glu), unbound receptor (GluR), singly-bound receptor (GluR) 
and doubly-bound receptor (Glu2R). Blue star: release occurrence events in glutamate release reaction.  
The sequence of times of these glutamate release events provided the input to the information channel. 
Red star: double-binding occurrence events in doubly-bound receptor generation reaction. The times at 
which double-binding events occurred conveyed information about the input. And durations of bound 
interval and time of unbinding did not convey information about the input. Thus the output of the 
channel was taken to be the time sequence of double-binding events. 
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3.2 Entropy Calculation 

3.2.1 Multiple Input Events Datasets 

  Before doing entropy analysis work, multiple input event simulations were 

established. Chapter 2 described the simulation process for one single input trial. In 

order to collect an ensemble of input and output data, I made input events have 20 

different trials, and output events have 10 trials, which meant there were 20 different 

input event sequences (glutamate release reaction sequences), and 10 different output 

event sequences (doubly-bound receptor generation sequences) for each input event 

sequence. If X was defined as an input message, the glutamate molecule number in 

time series, which took on the values {X1,1,i , X1,2,i , X1,3,i , … Xj,k,i}, then Y was 

considered as output message, the doubly-bound receptors molecule number in time 

series, which derived from {Y1,1,i , Y1,2,i , Y1,3,i , … Yj,k,i }, where j=1,2,3,…, 𝑛!"#$%=20, 

indexed the input simulation trials, k=1,2,3,…, 𝑛!"#$"#=10, indexed the output 

simulation trials, and i=0,1,2,3,…,3001, was the index of the time series, each 

increment in i representing a single time step of duration 1 msec.  

  The difference between the input event sequences was the release reaction 

occurrence times. As Figure 7 showed, in first 5 input event sequences of 20 input 

simulation trials, each spike represented one occurrence event in glutamate release 

process. Since glutamate release process was modeled with a Poisson random 

distribution, the average spike number of release reaction was 30, but the system 

could not guarantee the release events to be consistent in each trial. So it showed that 

there were more than 30 spikes in some input simulation trials, while some of them 
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had fewer than 30 spikes. Meanwhile, in a fixed output simulation trial, the release 

reaction time should be totally the same, which implied that in biological system, the 

action potentials from presynaptic membrane was generated at same time point, but 

the glutamate concentrations released out of vesicles were different as input 

information. As previously mentioned, the glutamate initial condition was modeled 

with a Poisson random distribution, so glutamate released molecule number changed 

in variation with the mean of it derived from solution in equation (10). 

 
Figure 7 Release reaction events in time series of first 5 input simulation trials among total 20 input 
simulation trials. From the top to bottom are release reaction events in input simulation trial #1 to #5 
colored in black, blue, red, green and yellow lines, respectively. Each spike represented one glutamate 
release reaction occurrence.  
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3.2.2 Entropy Analysis 

  Based on McFadden’s method of measuring the entropy of a random point process 

in equation (4)-equation (5), the entropy of the output event time series, and the 

entropy of the output given an input event time series, can be estimated from multiple 

simulation trials by the following equations.   

  Since the output messages only came from transition from singly-bound receptor to 

doubly-bound receptor, the output event occurrence rate,  𝛽(𝑡), was defined to be the 

occurrence rate of chemical reaction number 3. So 𝛽(𝑡) could be estimated in 

equation (19) and equation (20). 

𝛽 𝑡 =    !!"×!!"# ! ×!!"#$ !
!"#$%&×!"#

                 (19) 

𝛽! ,! ,! =
!!"×!!"#!,!,!×!!"#$!,!,!

!"#$%&×!"#
                (20) 

  By fixing input simulation trial, the average 𝛽(𝑡) of all output simulation trials in 

time series was defined as 𝛽! ,! in equation (21). 

𝛽! ,! =
!

!"#$%#$

!!"×!!"#!,!,!×!!"#$!,!,!
!"#$%&×!"#

!"#$%#$
!!!     (21) 

  On one hand, we may define 𝛽! as the average 𝛽! ,! of all input simulation trials in 

time series in equation (22). By applying 𝛽! to equation (5), the equation (23) 

showed the entropy of output 𝐻 𝑌 .  

𝛽! =   
!

!"!#$%
𝛽! ,!

!"!#$%
!!!                     (22) 

𝐻 𝑌 =    𝛽!(1− log! 𝛽!)
!
! 𝑑𝑡               (23) 

  On the other hand, in a fixed input event sequence, 𝛽! ,! was applied to calculate 

the entropy of output given a fixed input signal 𝐻 𝑌 𝑋! !
 from equation (24), and 

the average of 𝐻 𝑌 𝑋! !
 of all input simulation trials in equation (25) was defined 
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as the entropy of output given input 𝐻 𝑌 𝑋 .   

𝐻 𝑌 𝑋! !
=    𝛽! ,!

!
! (1− log! 𝛽!,!)𝑑𝑡        (24) 

𝐻 𝑌 𝑋 =    !
!"!#$%

𝐻 𝑌 𝑋! !
!"!#$%
!!!           (25) 

  Applying the above ideas to the MATLAB simulation, the results showed that the 

entropy of output event sequence was approximately 90 bits, while the entropy of 

output given input event sequence was approximately 82 bits. 
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3.2.3 Mutual Information 

  As equation (3) shows, the mutual information is defined as the difference between 

the entropy of the output, and the entropy of the output given the input. So the mutual 

information in this glutamate simulation process was measured to be approximately 8 

bits. How can we interpret this outcome from a biological perspective? 

  While the average mutual information is calculated from equation (3), the rate of 

accumulation of mutual information can be estimated using the same method, namely, 

the difference of change rate of entropy of output and change rate of entropy of output 

given input (equation (26)). And the mutual information in the time series could be 

estimated by the integral formula (equation (27)). 

!"(!;!)
!"

=    !"(!)
!"

−   !"(!|!)
!"

                  (26) 

𝐼 𝑌;𝑋 𝑡 =    !"(!)
!"

−   !"(!|!)
!"

𝑑𝑡!
!         (27) 

  Figure 8 describes the change rate of entropy of output (red curve) and change rate 

of entropy of output given input (black curve), estimated from simulation time series 

in top panel, and change rate of mutual information in time series in bottom panel. It 

showed that the spike occurrences both in entropy change rate and mutual information 

change rate were totally consistent. Besides, all curves were not smooth, but had 

fluctuation due to molecule number fluctuation in the signal transduction process at 

the single-molecule level. 
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Figure 8 Plots of change rate of entropy and change rate of mutual information in time series.  
Top panel: change rate of entropy of output in red curve, and change rate of entropy of output given 
input in black curve. Bottom panel: change rate of mutual information in blue curve. All curves are in 
bits per msec. 

 

  Observing the bottom panel in Figure 8, it showed that the change rate of mutual 

information varied significantly during the simulation time series. This was caused by 

the y-axis unit measurement in 0.001 bit/msec. However, if estimating accumulated 

mutual information from equation (27), the Figure 10 showed that the curve was 

close to a smooth and straight line, which implied that the accumulation of mutual 

information was approximately constant along the time series.  

 
Figure 10 Accumulated mutual information in time series estimated from equation (27). The curve 
was in bits. 
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  Since the total mutual information of glutamate simulation process was 8 bits, the 

average change rate of mutual information was calculated to be 0.0027 bits/msec 

(equation (28)). Thus, the time length for 1 bit information accumulation was around 

370 msec, and the total simulation time could be divided into 8 time intervals when 

each interval was presented to have 1 bit information.  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒   !"
!"

= ! !;!
!"!#$  !"#$

= !  !"#$
!"""  !"#$

= 0.0027  𝑏𝑖𝑡𝑠/𝑚𝑠𝑒𝑐   (28) 

𝑡!  !"# =
!  !"#

!"#$!%!!"
!"

= !  !"#
!.!!"#  !"#$/!"#$

  ≈ 370  𝑚𝑠𝑒𝑐             (29) 

  By analyzing input events and output events of all simulation trials in each time 

interval, Table 6 suggested that there were, on average, 4 input events in sender and 

typically 1~2 output events in receiver, which presented 1 bit information in 

transmission as well. After total time accumulation, the information transmitted in the 

process was 8 bits while there were average 30 input events and 13 output events.  

Table 6 The average input events and output events in each time interval. 

Interval 1 2 3 4 
 1~370msec 371~740msec 741~1110msec 1111~1480msec 

#(Input) 4 4 3 3 
#(Output) 2 1 1 2 
Interval 5 6 7 8 

 1481~1850msec 1851~2220msec 2221~2590msec 2591~3000msec 
#(Input) 4 4 4 4 

#(Output) 1 1 2 2 

 

  One usually thinks of 1 bit of information as estimating the outcome of a flip of an 

evenly weighted coin.[18] It could also be considered as any Yes/No question with a 

50/50 outcome probability. For example, a question about the input signal that could 

possibly be answered by observing the output signal. Specifically, in the glutamate 
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simulation, 1 bit of information could be interpreted as follows: there was equivalent 

probability when 1~2 output events were consistent with 4 input events. So 8 bits 

information meant that 8 individual event sequences where each of it included 4 input 

events and 1~2 output events with its occurrence probability was 0.5. Here 4 release 

reaction was only an average of input events in each interval, but what about intervals 

in which there were fewer than 4 or more than 4 input events? 

  Since input information generated as input events is generated according to the 

Poisson distribution, the probability of event occurrence number is measured as 

equation (30), where 𝑘  is input event occurrence number, and 𝜆  is glutamate 

release rate in source.  

𝑃 𝑥 = 𝑘 = !!!!!

!!
          (30) 

  If there were 3 release events working as input signal, there were 4 possible 

outcomes in output, which were 0 output event, 1 output event, 2 output events and 3 

output events. When the possibly occurred outcome events were fewer than 3, it was 

estimated that the time interval when there were average 3 input events was around 

367msec from the solution of equation (31), where 𝜇 equaled to 𝜆𝑡, and 𝜆 was 

glutamate release rate. By dividing total time length into several intervals with each of 

them on average 367 msec in length, the average outcome event count was 1~2 while 

there were average 3 input events, which implied that it was evenly likely whether 

1~2 output events are matched with 3 input events or not (Table 7). The same method 

can be used to estimate outcome uncertainty when there are more than 4 input events. 

𝑃 𝑥 ≤ 3 =   𝜇!𝑒!! + !!!!!

!!
+ !!!!!

!!
+ !!!!!

!!
= !

!
    (31) 
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Table 7 The average input events and output events with time interval was 367msec. 

Interval 1 2 3 

#(Input) 4 3 3 
#(Output) 2 1 1 

Interval 4 5 6 
#(Input) 2 1 1 

#(Output) 3 4 3 
Interval 7 8 9 
#(Input) 4 4 1 

#(Output) 2 2 0 

 

  From Table 6 and Table 7, it suggested that when the total time length was divided 

into 8 intervals where each of it include 370 milliseconds, the output events were 

around 1~2 consistent with average 4 input events. However, when the total time 

length was separated by 367 milliseconds into 9 intervals, where the output had fewer 

than 2 events, closer to 1 or fewer event matching with average 3 input events. This 

situation could be interpreted as a Yes/No question that the answer to the input events 

by estimation output events, which meant if there were 1~2 output events, higher 

proportion in 2 events, it was more confident to say that there were average 4 input 

events in sender, while if there were fewer than 2 output events, higher possibility in 1 

or 0 events, it more obviously indicated that there were average 3 input events to 

match with it. So this is a method to estimate input signal situation by observing 

output events. Although the mutual information and the mutual information rate were 

abstract quantities in glutamate simulation in this article, this example helped build a 

bridge to our biological intuition. 
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Discussion 

  The main purpose of this thesis was to apply information theoretic analysis to the 

glutamate/NMDA signaling pathway. Consequently, the choice of model parameters 

for the simulation was of critical importance. Although constants in the paper were 

taken from reference [32], different efforts at quantitative modeling of 

glutamate/NMDA signaling have been made, using a range of different parameters. 

Another direction for future work would be to study the sensitivity of the mutual 

information rate to changes in parameters such as the assumed volume of the synaptic 

cleft, the glutamate decay rate, the association and dissociation rates. Some of these 

changes could be anticipated, for example, decreasing the synaptic volume, while 

keeping the mean numbers and frequency of glutamate release constant, would lead to 

higher glutamate concentrations inside the cleft, pushing the receptor population 

towards saturation of the doubly bound state. If the doubly bound state accounts for 

more than half the receptor population, the double-binding events are no longer 

approximately independent of one another, and our estimate of the output entropy 

rates based on McFadden’s formula for the Poisson process no longer applies. It is not 

clear a priori whether increasing or decreasing the volume would tend to increase or 

decrease the mutual information rate, pointing to an interesting avenue for future 

investigation. Also, with smaller volumes, reaction rates increase, and we may have to 

decrease the simulation time step significantly, or explore other simulation methods. 

  Meanwhile, in addition to synaptic cleft volume and other geometric parameters, 

the kinetic rates in the glutamate/NMDA receptor chemical reaction scheme also play 
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an important role. In a normal ligand/receptor kinetic scheme, such as that depicted in 

Figure 4，a glutamate/NMDA receptor has two binding sites, leading to three 

functionally distinct receptor states: an unbound state, a singly bound state, and a 

doubly bound state. The kinetic rates for the binding reactions are identified as 𝑘! 

and 𝑘! in the unbound/singly bound forward reaction and the singly/doubly bound 

forward reaction, respectively, while the dissociation rates are represented as 𝑘!! 

and 𝑘!! . On one hand, if the reactions occurring at the two binding sites are 

independent of one another, which is to say the system exhibits no cooperativity, then 

the kinetic rate, 𝑘! should be twice 𝑘!, and 𝑘!! should be twice 𝑘!!. On the other 

hand, if the glutamate/NMDA receptor exhibits cooperativity, this would imply that 

binding a glutamate molecule at first NMDA receptor binding site makes it easier for 

a second glutamate molecule to bind at the second NMDA receptor binding site. This 

type of cooperativity is familiar from the well hemoglobin/oxygen binding reactions: 

when an oxygen molecule binds to one of hemoglobin’s four binding sites, the 

affinity of another oxygen to three remaining binding sites increases[26]. For the 

glutamate/NMDA system, cooperativity would mean, the kinetic rate 𝑘! should be 

greater than !!
!

, and 𝑘!! should be greater than !!!
!

.  

  In this article, we used kinetic scheme provided by Lester and Jahr[26] (Figure 4).  

In this scheme, the binding/unbinding reactions at the two NMDA receptor binding 

sites are presumed to be independent and not cooperative, so the kinetic rate 

𝑘! = 2𝑘! , 𝑘! = 𝑘!" , and 𝑘!! = 2𝑘!! , 𝑘!! = 𝑘!""  (Table 2)[25]. However, in a 

more realistic model, it could well be that the chemical reactions in two binding sites 
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should be cooperative, like that in hemoglobin/oxygen binding events. Studying the 

effect of cooperativity on the mutual information between the input signal and the 

receptor provides another direction for future work. In this connection, it is interesting 

to note that in Thomas and Eckford’s article, “Shannon capacity of signal transduction 

for multiple independent receptors”, the authors showed that introducing 

non-independence of binding (cooperativity) reduced the mutual information of a 

communications system comprising multiple binding sites.[34] Nevertheless, 

cooperativity could confer other biologically relevant benefits even at the cost of 

reduced information transmission. 

  In the simulation process described in this article, there were 200 individual 

simulation samples, including 20 input simulation trials and 10 simulation trials 

matched to each of them. The simulation results showed that in a single simulation 

trial of an input event sequence, all molecule number curves were smooth, without 

obvious fluctuation, with 1msec time step. However, if the time step was shortened to 

be 0.1 msec or 0.05 msec, the fluctuations could be more obvious.  

  My analysis of the mutual information suggests that there were approximately 8 

bits information of this simulation process, which meant that there was 8 bits of 

information transmitted in the simulation, over a 3 second simulation interval. Based 

on the observation that the rate of accumulation of mutual information in the time 

series was close to constant, each bit of information could be interpreted as an 

estimation of whether average 1~2 output events were consistent with, on average, 4  

input events. The above conclusion derived from the simulation in this article with 
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around 200 individual samples. Future studies can focus on generating and analyzing 

larger sample datasets, for instance using 50 input simulation trials when each of them 

has 20 output simulation trials, to confirm the curves reprsenting molecular event 

counts and molecule abundances over time and the rate of change of mutual 

information. 

  Generally, one bit information is the minimum required to distinguish a binary 

signal with each outcome having equal probability. Thus, no matter how much the 

total information is in the simulation, it can be divided into several individual 1 bit 

sections such that each of them can determine the choice of two equally likely 

outcomes. However, the main question of the topic is that what the relationship is 

between communication and signaling in biological systems and mutual information? 

To answer this question, based on the 1-bit information interpretation, I could apply it 

other signal transduction system, such as the immune system. If I could simulate a 

particular drug/vaccine interaction in immune system where drug concentration is the 

input and gene or protein expression level in a response cell is the output, I could 

measure mutual information transduced through this channel. In this situation, the 

amount of mutual information can represent whether the input signal, drug 

concentration is high or low. In this way, the combination of information theoretic 

analysis and other study fields has the potential for broad application. 
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Appendix 

  All coding files and datasets are uploaded into Google Drive. Here is an overview 

of the several folders. 

( https://drive.google.com/open?id=1wlaLfEhG-U6ZOHfmbl_ponmN2b10Vy_S ) 

1. File folder (parameters_setting_up) has one Matlab coding file named 

(Parameters.m) and one dataset file (initial_condition.mat), including all basic 

glutamate simulation geometry parameters and their values. And by using these 

parameters, to set up all four type molecules’ initial conditions in individual 

simulation trial. 

2. File folder (input_simulation_samples) and (simulation_results) include 

individual simulation trial’s coding file and dataset. Since there are 20 input 

simulation trials, there are 20 separate coding files and datasets for trial #1 to trial 

#20. In each coding file, it runs one fixed input event sequence for 10 trials to get 

10 output event sequences, which results in 200 samples in total. 

3. File folder (results_analysis) has one coding file (mutual_information.m) for 

entropy calculation, mutual information calculation, and mutual information 

interpretation from datasets in file folder (simulation_results). 
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