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Abstract

Dynamical systems with discontinuous right-hand sides are utilized to great

effect in mathematical biology (Coombes 2008, Glass and Kauffman 1973,

McKean 1970), including models of central pattern generators (CPGs) in-

volved in motor control (Spardy et al. 2011, Shaw et al. 2012). CPG models

typically exhibit limit cycle dynamics; the infinitesimal phase response curve

(iPRC) quantifies sensitivity of such models to external inputs (Ermentrout

and Terman 2010). Piecewise smooth dynamical systems may have discontinu-

ous iPRCs. In this thesis, we formulate the boundary conditions necessary for

obtaining the iPRC for general piecewise smooth dynamical systems by solv-

ing an adjoint equation, thereby improving upon two known methods used to

solve for the iPRC in the context of piecewise linear dynamical systems.

viii
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1 Introduction

Central pattern generators (CPGs) are networks of neurons that produce

rhythmic outputs even in the absence of sensory feedback. Some rhythmic

processes controlled by CPGs include breathing (by the pre-Bötzinger com-

plex in mammals [3, 4]), locomotion [5, 21, 22], and mastication [15]. CPGs

may be modeled using limit cycles, with the CPG circuit embedded inside

biomechanical systems. These systems are often subject to environmental

variability, which may include loads and mechanical resistance. In many cir-

cumstances, it would be disadvantageous if the motion produced by the CPG

did not take into account these external forces. For a simple example of how

CPGs robustly adapt to forces, imagine chewing hard bubble gum. Stiff gum

requires extra force to soften, leading to an increase in the duration of a chew-

ing cycle [18]. In general, an animal may need to apply a force for longer or

shorter times, which could be accomplished by lengthening or shortening the

time spent in a portion of a CPG limit cycle.

In [20], Shaw et al. hypothesized that the relative timing of different compo-

nents of feeding motions could be controlled by manipulating the proximity

of trajectories to equilibrium points. We are interested in this possibility as

a mechanism for controlling timing. Experimental observations suggest the

underlying dynamics of the CPG could consist of a limit cycle passing closer

to or farther from one or more fixed points. External or internal perturbations
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that shift near-limit cycle trajectories closer or father from fixed points could

thereby slow down or speed up these trajectories, providing a mechanism for

significantly changing the duration of a particular phase of a CPG cycle.

Infinitesimal phase response curves (iPRCs) quantify changes in timing of an

oscillator in response to perturbations. iPRCs arise from the reduction of an

oscillator to a single phase variable, which we will discuss further below. In

[20], Shaw et al. analyzed a one-parameter family of planar differential equa-

tions with limit cycles whose proximity to fixed points varied parametrically.

They discovered anomalous structure in the shape of the iPRC and the sen-

sitivity of the underlying limit cycle. In order to carry out a more complete

analysis of the shape of the iPRC, Shaw et al. constructed a related family of

piecewise linear (PWL) planar differential equations (the iris system, defined

in Appendix A.2.5). The analytical tractability of this system led to the exact

derivation of an iPRC, which provided insight into the behavior of the smooth

nonlinear system.

Differential equations where the right hand side is piecewise continuous, on

a collection of domains partitioning the phase space, is a generalization of

smooth differential equations, and are referred to as differential inclusions

(DIs) [9]. DIs, discussed further in Section 1.2, appear in a variety of contexts

including control theory [17], as well as in mathematical biology for modeling

rhythmic processes. For example, the switch between swing and stance in

models of bipedal animals or quadrupeds is represented by defining two sets
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of differential equations, and switching the dynamics by a threshold condition

[21, 22]. In addition, piecewise linear DIs have proved useful as approxima-

tions to biological dynamics modeled by smooth systems. In the study of gene

regulatory networks, piecewise linear dynamical systems (PWLDS) play an

important role in modeling gene regulatory networks (Glass networks) [11].

In some networks, genes switch almost instantaneously and determine a new

set of rules for protein production. This rapid switch is assumed to be in-

stantaneous, and the protein production dynamics are assumed to be linear,

leading to a system of piecewise linear (PWL) differential equations [10]. In

the study of gap junction coupled neural networks, PWL approximations to

smooth systems allow for analytical solutions which would not be available

in the corresponding smooth system [6]. In order to study the limit cycles

approaching a sequence of saddle equilibria, we will consider PWL systems

where each domain contains a saddle point with the dynamics determined by

the linearization about the corresponding saddle of the smooth system.

For limit cycles in general nonlinear systems of differential equations, an ex-

plicit expression for the iPRC is known in only a few cases [2]. In most cases,

the iPRC must be obtained through an approximation, typically by numerical

integration of an adjoint equation (Section 1.1 and Appendix A.1). Shaw et al.

used a direct approach by combining the effects of perturbations on timing and

position of trajectories, deriving an exact iPRC with discontinuous jumps at

some boundaries and not at others [20]. Coombes studied two piecewise linear
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models that have continuous iPRCs and formulated a derivation for the iPRC

that applies naturally to both models (and indeed similar classes of FitzHugh-

Nagumo-type models) [6]. However, the approach in [6] does not take into

account possible discontinuities in the iPRC (such as those in the iris system,

Appendix A.3 and A.2.5). In this thesis, we provide a concise, closed-form

analytic expression for the discontinuity of the iPRC at the domain boundary

of any planar piecewise linear differential equation, as well as for more general

DIs including nonlinear piecewise smooth differential equations, satisfying a

natural boundary condition. This expression, combined with a solution to

the adjoint equation (solvable in closed form for piecewise linear domains),

provides a complete picture of the iPRC for a broad class of planar piecewise

smooth differential equations.

1.1 Phase Response Curves and the Adjoint Equation

The phase response curve (PRC) is a periodic function quantifying the change

in timing of a limit cycle in response to instantaneous perturbations of a trajec-

tory. Perturbations may include mechanical feedback, proprioceptive feedback,

or input from neighboring oscillators. Here, we focus on mechanical and pro-

prioceptive feedback. The techniques of linear perturbation theory dictate the

use of small perturbations. Moreover, in the study of near-homoclinic or near-

heteroclinic systems, basins of attraction are often small. In the limit of small
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perturbations, one obtains the infinitesimal phase response curve (iPRC).

The iPRC is typically defined in the context of smooth systems [8]. Here, we

explore the validity of the iPRC and related tools in the context of piecewise

smooth and piecewise linear dynamical systems. For the convenience of the

reader, we review the classical terms needed to define the iPRC and the adjoint

equation that it satisfies. Then we examine how these notions extend to limit

cycles arising from piecewise smooth dynamics.

Consider a deterministic system of autonomous ordinary differential equations

in Rn with smooth right-hand side:

dx

dt
= F (x), (1)

where F : Rn → Rn is a C∞ map.

Definition 1 A non-constant solution x(t) (with initial condition x(0) = x0)

is called periodic with period T if there exists a real constant T such that

x(t) = x(t+ T ), ∀t ∈ R+, (2)

where T > 0 is the least such number.

Definition 2 A T -periodic stable limit cycle, γ, is an isolated T -periodic so-

lution with the property that nearby solutions converge to the set Γ = {γ(s) :
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s ∈ [0, T )} as t→∞.

We will denote the set of initial conditions for which trajectories converge to

Γ as the basin of attraction (B.A.).

Definition 3 The phase of a limit cycle with period T is a function θ : γ →

S1 = [0, 1) such that

d

dt
(θ(γ(t))) = 1/T, (3)

where θ = 0 is chosen arbitrarily.

Fig. 1.1 illustrates the relationship between a conductance-based model and

the corresponding phase variable.

If the limit cycle is hyperbolic1, then given a point x0 ∈ B.A., there exists a

unique θ(x0) such that

lim
t→∞
||x(t)− γ(t+ Tθ(x0))|| → 0. (4)

Definition 4 The value θ(x0) in Eq. (4) is the asymptotic phase of the point

x0.

1A hyperbolic limit cycle is such that the modulus of the Floquet multipliers correspond-
ing to the eigenvectors transverse to the limit cycle are strictly less than unity [12].
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Figure 1.1: The phase function θ over time. The top panel is a voltage trace
of a limit cycle of the Morris-Lecar model (defined in Appendix A.2.1). The
bottom panel shows the corresponding phase values with respect to the limit
cycle. Here, we have defined zero phase corresponding to peak voltage, as is
typical with many neurobiological models.

By construction, the asymptotic phase function, θ(x), has the property that

d

dt
(θ(x(t))) = 1/T, (5)

for any trajectory in B.A.

Definition 5 An isochron is a level curve consisting of points that share the

same asymptotic phase (Fig. 1.2). In other words, two points x0, x1 ∈ B.A.
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Figure 1.2: Isochrons of a planar limit cycle. Dashed lines represent isochrons,
which are level curves of points sharing the same asymptotic phase. In this
example, a small perturbation of size ε in direction η at phase θ̂2 pushes a
trajectory to a different isochron, leading to a phase shift of ∆θ = θ̂1 − θ̂2.

are on the same isochron if for two trajectories x̂1 and x̂2,

lim
t→∞
|x̂1(t)− x̂2(t)| = 0, (6)

where the trajectories have initial conditions, x̂1(0) = x0 and x̂2(0) = x1.

The change in phase, ∆θ, in response to a perturbation of size ε in the unit

vector direction η, depends on the time at which the perturbation occurs. To

derive the infinitesimal phase response curve, provided the asymptotic phase
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function θ is C1, we expand the function to first order in ε.

θ(γ(t) + εη) = θ(γ(t)) + εDθ(γ(t)) · η +O(ε2),

∆θ = θ(γ(t) + εη)− θ(γ(t)) = εDθ(γ(t)) · η +O(ε2),

lim
ε→0

∆θ

ε
= Dθ(γ(t)) · η =: z(t) · η.

(7)

We define the gradient of the phase function, Dθ(γ(t)), to be the iPRC, z(t).

Explicit solutions exist for only a few cases (see Appendix A.4). The iPRC

may be approximated by direct perturbations, or alternatively by solving an

adjoint equation,

dz

dt
= A(t)z(t), (8)

where A(t) = −DF T (γ(t)), the negative transpose of the linearization of the

vector field F evaluated along the limit cycle γ. See Appendix A.1 for a

derivation of the equation.

1.2 Infinitesimal Phase Response Curves and Differen-

tial Inclusions

Differential inclusions are rigorously defined in [9]. Here we consider a simpli-

fied definition. Let B ⊂ Rn be path connected. A vector field F : B → Rn is

piecewise smooth on B if there exist a finite number, K, of open sets Bk such

that
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1. Bk is nonempty, simply connected, and open for each k.

2. Bi ∩Bj = ∅,∀i 6= j.

3. B ⊂ ⋃K
k=1 B̄k.

4. There exist smooth, bounded vector fields F k : B̄k → Rn such that for

all x in Bk, F
k(x) = F (x).

Note that we require F k = F only on the interior of each open domain Bk,

while we require F k be smooth on the closure B̄k. We also assume that the

vector fields are arranged in such a way that a limit cycle exists. In the basin of

attraction of the limit cycle, we further assume that vector fields F k, F k+1 on

adjacent sets Bk, Bk+1, “flow” in the same direction at the boundary B̄k∩B̄k+1

within a subset of the basin of attraction (Fig. 1.3). Finally, we assume that

there exists a neighborhood about the point γ∂, within which the boundary is

C1. Later we will specialize to the case where each vector field is defined by a

system of linear equations.

We now state several assumptions regarding limit cycles, phase, and isochrons.

1. Existence and uniqueness holds for trajectories in the differential inclu-

sions we consider.

Without giving a formal proof, we note that existence and uniqueness of

trajectories holds within each domain Bk. By using the final coordinate
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Figure 1.3: Example domains of a piecewise smooth dynamical system. Each
domain is separated by dashed lines. A loop, γ, traversing all domains illus-
trates a limit cycle. See Figs. A.3 and A.2 for concrete examples of PWL
models.

of a trajectory xk in Bk as the initial condition of a trajectory xk+1

in Bk+1, we have the existence and uniqueness of the trajectory xk+1

because the vector field defined over Bk+1 is smooth. It seems plausible

that existence and uniqueness for typical trajectories passing through

multiple domains would follow by induction.

2. The system has a stable limit cycle with well-defined phase.

Given existence and uniqueness of trajectories, there exist piecewise

smooth vector fields with well-defined, isolated, T -periodic orbits. The

phase of a T -periodic limit cycle in a piecewise smooth dynamical sys-
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tem follows naturally from the definition of phase, with dθ/dt = 1/T .

By “stable limit cycle”, we also mean to assume that the limit cycle is

in the interior of an open set contained in the basin of attraction.

3. A unique asymptotic phase exists for all points in the basin of attraction.

Existence and uniqueness of the asymptotic phase would follow from the

assumed existence and uniqueness of solutions in the basin of attraction.

4. Isochrons exist and are continuous.

Continuity of isochrons is equivalent to continuity of the phase function.

That is to say, for x ∈ Γ,

∀ε > 0, ∃δ > 0 s.t. y ∈ B(x, δ)⇒ ||θ(x)− θ(y)|| < ε. (9)

We further assume that the asymptotic phase function satisfies

dθ(x(t))

dt
= 1/T, ∀x(t) ∈ B.A. (10)

5. θ(x) is locally differentiable at each domain boundary, in the direction

tangent to the boundary. Generally, the asymptotic phase function will

not necessarily be differentiable in the direction transverse to the bound-

ary.

The definition of the iPRC does not apply directly to piecewise smooth dif-

ferential equations. For instance, the adjoint equation (Eqs. 7 and 8) may
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not be solvable over a finite collection of sets, because the Jacobian may be

ambiguous at the boundaries. This problem of applying the adjoint equation

to DIs has had limited attention. Shaw et al. (2012) produced exact results for

the iPRC of the iris system (a PWL model defined in Appendix A.2.5) using

a direct derivation, but the method does not apply to general piecewise linear

systems. Coombes formulated a more general form for the iPRC of PWLDS

and applied the theory to two planar PWL models [6]. However, this method

does not hold in cases where the iPRC is discontinuous, as it is for the iris

system. We now show how to solve for the iPRC for general planar piecewise

smooth dynamical systems.
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2 The Infinitesimal Phase Response Curve of

Piecewise Smooth Dynamical Systems

2.1 Discontinuities of Infinitesimal Phase Response Curves

of Differential Inclusions

Consider a DI as constructed in Section 1.2. The vector field along the limit

cycle may be discontinuous along domain boundaries, leading to discontinuity

in the iPRC. Our main result, Theorem 1, shows how to calculate these dis-

continuities. This expression, with the adjoint equation, constitute a complete

picture of the iPRC of a DI.

We first fix notation and define terms before introducing the theorem. Let FR

denote the vector field of region R, where each region is numbered according

to the direction of flow within a neighborhood of the limit cycle, and assuming

trajectories enter or exit transverse to the boundary with respect to each

region. The limit cycle, γ, is piecewise smooth, consisting of several curves

γ1, γ2, ...γK . Each γR spends a total time tR in its domain. We write the limit
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Figure 2.1: Piecewise smooth region setup and notation. The boundary sepa-
rating the sets BR and BR+1 (with vector fields FR and FR+1, respectively) is
denoted by ∂R/R+1. The limit cycle, γ, with solutions in region R and R + 1
(denoted γR, γR+1, respectively) is continuous across the boundary. We use
local time for γR and γR+1 so that γR(tR) = γR+1(0), where tR is the time of
flight through region R (see Eq. (11)). The values FR(γ(tR)), FR+1(γ(tR)) is
the vector field in region R,R+1 at the point of egress and ingress, respectively,
with vector n̂ normal to the boundary and ŵ tangent to the boundary.

cycle γ as a collection of curves,

γ(t) =



γ1(t), 0 = T0 ≤ t < T1,

γ2(t− T1), T1 ≤ t < T2,

...

γK (t− TK−1) , TK−1 ≤ t < TK ,

(11)

where Ti =
∑i

j=1 tj and γR(tR) = γR+1(0). The final and initial values of two

adjacent vector fields, FR, FR+1, along the limit cycle are denoted

FR+1
0 = lim

t→0+
FR+1(γR+1(t)), FR

f = lim
t→t−R

FR(γR(t)). (12)
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In Eq. (12) and for the rest of the section, the value t is taken to be local, i.e.

the time elapsed since entering the current region. The one-sided limits exist

because each vector field is smooth on its domain. The iPRC, z(t), will be

represented segment-by-segment with similar notation. Define terms zRf and

zR+1
0 by

zRf = lim
t→t−R

zR(t), (13)

zR+1
0 = lim

t→0+
zR+1(t), (14)

where zR and zR+1 are the solutions to the adjoint equation in regions R

and R + 1, respectively. Let ψR be the angle of the vector normal to the

boundary (with respect to a global Cartesian coordinate system) at which

the limit cycle crosses the boundary. Call this crossing point γ∂. Finally, let

n̂ = (cosψR, sinψR) denote the unit vector normal to the boundary at γ∂, and

let ŵ = (− sinψR, cosψR) denote the unit vector tangent to the boundary at

γ∂ (see Fig. 2.1). We now introduce the theorem.

Theorem 1 Let γ be a piecewise smooth limit cycle in R2 satisfying assump-

tions 1 − 5 in Section 1.2. The iPRC for γ satisfies the following boundary

condition at the boundary ∂R/R+1,

zR+1
0 = MRzRf , (15)
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where

MR =

 fR+1
0 gR+1

0

− sinψR cosψR


−1 fRf gRf

− sinψR cosψR

 . (16)

Existence of the required matrix inverse is guaranteed by the transverse flow

condition, FR+1
0 · n̂ > 0.

Proof Recall that we assign asymptotic phase values θ(x) for points in the

stable limit cycle Γ, and in its basin of attraction, B.A. The asymptotic phase

function, θ, is differentiable in the interior of each region and remains contin-

uous at the boundaries. The phase function is not necessarily differentiable

on the boundaries with respect to space, but θ is always differentiable as a

function of time, since we assume dθ(x(t))/dt = 1/T for any trajectory x(t) in

the basin of attraction.

These assumptions allow us to derive two linear equations satisfied by the

iPRC, z, at each boundary. Suppose we are at an arbitrary boundary between

regions R and R+ 1 (denoted ∂R/R+1). We denote the iPRC in regions R and

R+ 1 by zR, zR+1, respectively. By the chain rule, for k ∈ {R,R+ 1}, we have

the useful relation,

dθ

dt
= F k(xk(t)) · ∇θ(xk(t)). (17)

When xk(t) = γk(t), we have (by definition)

dθ

dt
= F k(γk(t)) · zk(t). (18)
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Recall that dθ/dt = 1/T . By taking the one-sided limits

lim
t→t−R

FR(γR(t)) · zR(t) = FR
f · zRf ,

lim
t→0+

FR+1(γR+1(t)) · zR+1(t) = FR+1
0 · zR+1

0 ,

(19)

we have the first equation relating zR and zR+1,

FR
f · zRf =

1

T
= FR+1

0 · zR+1
0 . (20)

Intuitively, Eq. (20) states that the phase function advances at the same rate as

a function of time everywhere, and in particular on both sides of the boundary

∂R/R+1, so the limits in Eq. 19 must be equal.

To derive the second equation relating zR and zR+1, we recall that the isochrons

are continuous along each boundary, by assumption. Define a coordinate, w,

along the boundary such that the limit cycle crosses at w = 0. For some inter-

val wmin < 0 < wmax, w represents a point on the intersection of the boundary

in B.A. For any such point w, we can write the limit of the asymptotic phase

function, θk, from region k ∈ {R,R + 1}, respectively, to the boundary as

θk(w). However, because isochrons are continuous across the boundary,

θR(w) = θR+1(w). (21)

Moreover, by assumption, the partial derivatives of the isochrons with respect



2 THE IPRC OF PIECEWISE SMOOTH DYNAMICAL SYSTEMS 19

to w coincide at the boundary, so

dθR

dw
(w) =

dθR+1

dw
(w), (22)

for any value of w ∈ (wmin, wmax). We can rewrite an equivalent expression

using the directional derivative,

(
∇θR(w)

)
· ŵ =

(
∇θR+1(w)

)
· ŵ. (23)

In particular, for w = 0,

zR(tR) · ŵ = zR+1(0) · ŵ, (24)

which gives us our second equation,

zRf · ŵ = zR+1
0 · ŵ. (25)

We can combine equations (20) and (25) and rearrange as a system of equa-

tions,

 fR+1
0 gR+1

0

− sinψR cosψR

 zR+1
0 =

 fRf gRf

− sinψR cosψR

 zRf . (26)

The theorem follows upon left-multiplying the system by the inverse of the
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matrix on the left-hand side. We are guaranteed invertibility as long as

det

 fR+1
0 gR+1

0

− sinψR cosψR

 6= 0. (27)

But by assumption, det

 fR+1
0 gR+1

0

− sinψR cosψR

 = FR+1
0 · n̂ > 0.

We now focus on piecewise linear differential equations.

Corollary 2 With the assumptions of Theorem 1 and affine linear vector

fields F k, the initial condition of the iPRC, z(t), must satisfy

z10 = Bz10 , (28)

where

B = MKeA
KtK · · ·M1eA

1t1 , (29)

tk is the time of flight through the kth region, eA
k

is the matrix exponential of

Ak = −
(
DF k

)ᵀ
. Eq. (28) and the normalization condition,

F 1
0 · z10 =

1

T
, (30)

yield a unique solution for the initial condition, z10 ∈ R2, provided the nullspace

of the matrix B − I does not have dimension greater than one.
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Proof Let z10 be the initial condition for the adjoint equation, and let z1i (0)

be the ith component. To prove the corollary, we solve the adjoint equation

for region R, apply the matrix MR at the boundary to calculate jumps in the

iPRC, then repeat the process for region R + 1 and continue inductively for

subsequent regions.

Beginning with an arbitrary region, which we label R = 1, the solution at t1

(the time of flight through region R = 1), is

z1f = eA
1t1z10 , (31)

where A(t) = −DF T (γ(t)) is constant. The initial condition for the next re-

gion, z20 , is equal to the final value of the previous region with jumps calculated

by M1,

z20 = M1eA
1t1z10 . (32)

We can continue this procedure inductively for the initial condition of the Kth

iPRC,

zK0 = MK−1eA
K−1tK−1 · · ·M1eA

1t1z10 . (33)

Since the underlying limit cycle is periodic, z(t) must be periodic, therefore

zK+1(0) = z1(0), and

z10 = MKeA
KtKMK−1eA

K−1tK−1 · · ·M1eA
1t1z10 . (34)
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The first statement in the corollary follows upon collapsing the matrix product

into a 2× 2 matrix B.

To prove uniqueness, we follow a procedure similar to that used in [6] and

apply Eqs. (28) and (30). Rewriting Eq. (28),

 z11(0)

z12(0)

 = z10 = Bz10

=

 b11z
1
1(0) + b12z

1
2(0)

b21z
1
1(0) + b22z

1
2(0)

 .

(35)

we can rewrite Eq. (35) as a system of equations for z11(0) and z12(0),

z11(0)(1− b11) = b12z
1
2(0),

z12(0)(1− b22) = b21z
1
1(0).

(36)

Without loss of generality, we choose the first of Eq. (35) combined with

Eq. (30) to form the system of equations,

z11(0)f 1
0 + z12(0)g10 =

1

T
,

z11(0)(b11 − 1) + b12z
1
2(0) = 0,

(37)
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which we solve by inverting the matrix in the equivalent equation,

 f 1
0 g10

(b11 − 1) b12


 z11(0)

z12(0)

 =

 1
T

0

 , (38)

which establishes uniqueness of the solution, provided

det

 f 1
0 g10

(b11 − 1) b12

 6= 0. (39)

From the periodicity of the solution z(t), we know that B has at least one

eigenvector with unit eigenvalue. The condition (39) is equivalent to requiring

that the matrix B − I have a null space of not greater than one dimension.

Corollary 3 Under the assumptions of Corollary 2, if adjacent vector fields

evaluated along the limit cycle, FR
f and FR+1

0 , are continuous at the boundary

∂R/R+1, then the matrix MR is the identity.

Proof Recall the form of the matrix MR from Theorem 1,

MR =

 fR+1
0 gR+1

0

− sinψR cosψR


−1 fRf gRf

− sinψR cosψR

 . (40)

If the vector fields on the limit cycle, FR
f , F

R+1
0 are C0 (they agree at the
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boundary), then

fRf = fR+1
0 ,

gRf = gR+1
0 ,

(41)

and the matrix product in Eq. (40) reduces to the identity matrix.

2.2 Applications

2.2.1 Piecewise Linear Morris-Lecar

The Morris-Lecar model is a conductance-based planar neurobiological model

developed to understand oscillations in barnacle muscle fiber [16] (see Ap-

pendix A.2.1). In [6], Coombes constructed a piecewise linear approximation

to the Morris-Lecar model for use in gap junction coupled networks (see Ap-

pendix A.2.3). Coombes provides an ad-hoc derivation of the iPRC, implicitly

taking the matrix MR to be the identity for each boundary crossing. Here we

apply Corollary 3 and show that MR is indeed the identity for all boundaries.

Let the piecewise linear Morris-Lecar be defined as in Appendix A.2.3. The

model contains three distinct vector fields, separated by vertical gray lines in

Fig. A.2. In the parameter regime we consider, the limit passes through the

two rightmost boundaries, at v = b = 0.5 and v = (1+a)/2 = 0.625 (see Table

A.2.3 for parameter values).
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Along the boundary at v = 0.5, the first component, of the vector field,

v̇ = (f(v)−w+ I)/C, does not change over the boundary, so the first compo-

nent agrees on both sides. However, the second component of the vector field

changes and each side is by definition,

g(v, w) =


(v − γ1w + b∗γ1 − b)/γ1, v < b

(v − γ2w + b∗γ2 − b)/γ2, v ≥ b

Let g4 and g1 denote the second component of the vector field to the left and

right of the boundary. Along the boundary, v = b, so the difference in the

vector fields at the boundary is

g4(b, w)− g1(b, w) = (−γ1w + b∗γ1)/γ1 − (−γ2w + b∗γ2)/γ2

= 0.

(42)

Therefore, the vector field agrees on both sides at the boundary for all points

along the boundary. In particular, the vector field evaluated along any limit

cycle is continuous at the boundary, so MR is the identity by Corollary 3.

We observe similar behavior at the boundary v = 0.625. By definition, the

second component of the vector field remains invariant when v = 0.625, while
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the first component of the vector field changes over this boundary,

f(v) =


−v, v < a/2

v − a, a/2 ≤ v ≤ (1 + a)/2

1− v, v > (1 + a)/2

, (43)

where v̇ = (f(v) − w + I)/C. We consider f alone, since other parameters

remain the same over the boundary. Let f 1 and f 2 denote the first component

to the left and right of the boundary. The difference f 1 − f 2 is

f 1 ((1 + a)/2, w)− f 2 ((1 + a)/2, w) = (1 + a)/2− a− (1− (1 + a)/2)

= 0.

(44)

Again, the vector fields evaluated along any limit cycle agree at the boundary,

so the matrix MR is the identity by Corollary 3.

Since the matrix MR is the identity for each boundary crossing of the limit

cycle, the iPRC is continuous (though not necessarily C1). See Fig. 2.2 for the

numerical iPRC that confirms this result.

2.2.2 McKean Model

The McKean model is a piecewise linear approximation to the FitzHugh-

Nagumo model [13]. Let the McKean model be defined as in Appendix A.2.2.

We use similar methods as in the previous section.



2 THE IPRC OF PIECEWISE SMOOTH DYNAMICAL SYSTEMS 27

0.2 0.4 0.6 0.8 1.0
φ

−20

−10

0

10

20

30

40

∆
φ

(n
or

m
al

iz
ed

)

Figure 2.2: Numerical iPRCs of the PML system. Blue: perturbations in
the positive horizontal direction. Gray: perturbations in the positive vertical
direction. There are no discontinuities in either iPRC [6]. Copyright c© 2008
Society for Industrial and Applied Mathematics. Reprinted with permission.
All rights reserved.

The limit cycle for the McKean model passes through both boundaries, at

v = a/2 = 0.125 and v = (1 + a)/2 = 0.625 (see Fig. A.1 and Table A.2.3

for parameter values). The second component of the vector field is invariant

over each boundary, so we consider just the function f in the first component,

v̇ = (f(v)−w+I)/C, since f is the only term that changes at the boundaries.

At the leftmost boundary, v = 0.125, the difference in the function f is,

−v|v=a/2 − (v − a)|v=a/2 = 0. (45)



2 THE IPRC OF PIECEWISE SMOOTH DYNAMICAL SYSTEMS 28

At the rightmost boundary, v = 0.625, the difference in the function f is,

(v − a)|v=(1+a)/2 − (1− v)|v=(1+a)/2 = 0. (46)

The vector field agrees on both sides at each boundary (and for vector fields

evaluated along limit cycles in particular), so by Corollary 3, the matrix MR

is the identity for each boundary crossing.
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Figure 2.3: Numerical iPRCs of the McKean model. Blue: perturbations in
the positive horizontal direction. Gray: perturbations in the positive vertical
direction. There are no discontinuities in either iPRC [6]. Copyright c© 2008
Society for Industrial and Applied Mathematics. Reprinted with permission.
All rights reserved.

Again, the iPRCs of both coordinates are continuous (but not necessarily C1).
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See Fig. 2.3 for the numerical iPRC that confirms this result. We direct the

reader to [6] for explicit expressions of the iPRC of the PML and McKean

models.

2.2.3 Iris System

The iris system is a piecewise linear dynamical system developed by Shaw et

al. as an approximation to a particular smooth system, defined in Appendix

A.2.4. This smooth system, which Shaw et al. referred to as the sine system,

was constructed to explore the effects of changing trajectories to pass closer

to or further from saddle points by changing a single parameter. Both the

sine system and iris system exhibit a family of limit cycles, indexed by a single

parameter, which undergo a bifurcation to a heteroclinic cycle as the parameter

goes to zero [20]. Let the iris system be as defined in Appendix A.2.5. When

the corresponding bifurcation parameter, a, for the iris system, is small and

positive, the iris system also produces a stable limit cycle (Fig. A.3). The limit

cycle enters the Southwest region at coordinates (1, u) and exits at coordinates

(s, 1) = (uλ, 1), with transit time T = log(1/u), and enters the next region at

local coordinates (1, s + a) = (1, u). Due to the symmetry of the iris system,

the entry and exit coordinates of the other three regions are related by a 90-

degree clockwise rotation, with each region having the same time of flight T .

We define the phase θ = t/T for each region. As a → 0+, u → 0+, and the

period T diverges.
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The dynamics in each square of the iris system is defined by a system of

decoupled linear differential equations. Therefore the Jacobian is a constant

diagonal matrix, so the matrix exponential solution to the adjoint equation

(Eq. 8) is diagonal. To solve for the initial conditions of the iPRC of the

iris system, we use Corollary 2. First we obtain the matrix B by solving the

adjoint equation up to the time of flight beginning with the Southwest (SW)

region, applying Theorem 1 at the boundary between the SW and NW regions,

then repeating inductively for the remaining three regions. We solve for the

initial conditions of the iPRC in the SW region using Corollary 2. The iPRC

of the SW region is equivalent to the iPRC for the remaining regions up to

rotation.

Let (s, u) denote the local coordinates within an iris square, and (x, y) denote

the global coordinates of the iris system. In each region the global coordinates

differ from local coordinates by an affine rotation. Consider the boundary

between the SW and NW squares. The dynamics in the SW square is

F SW =

 dx/dt

dy/dt

 =

 −λ(x+ cSW )

y + dSW

 =

 −λs
u

 , (47)

where the constants cSW and dSW offset the vector field. The initial and final

conditions of the vector field F SW evaluated along a limit cycle γ with entry
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coordinates at (1, u) and exit coordinates (s, 1), are

F SW
0 = (−λ, u)T ,

F SW
f = (−λs, 1)T .

(48)

Its Jacobian is diagonal,

JSW =

 −λ 0

0 1

 , (49)

and the solution to the adjoint equation, evaluated at the time of flight, is

zSW (T ) =

 eλT 0

0 e−T

 zSW (0). (50)

To obtain the jump condition matrix MR between SW and NW, we need to

write the vector field of the next square, which is related to the SW square by

90-degree rotation,

FNW =

 dx/dt

dy/dt

 =

 x+ cNW

−λ(y + dNW )

 =

 u

−λs

 , (51)

where cNW and dNW offset the vector field FNW and s and u are the (rotated)

local coordinates. The initial and final vectors of FNW along a limit cycle

with the same entry and exit coordinates as before is related by the 90-degree
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rotation matrix, R =

 0 1

−1 0

. Applying the rotation matrix to FNW

returns the initial and final coordinates for FNW evaluated along the limit

cycle,

FNW
0 = RF SW

0 = (u, λ)T ,

FNW
f = RF SW

f = (1, λs)T .

(52)

The Jacobian is

JNW =

 1 0

0 −λ

 , (53)

and the solution to the adjoint evaluated at the time of flight is

zNW (T ) =

 e−T 0

0 eλ

 zNW (0). (54)

By Theorem 1,

MSW =

 u λ

−1 0


−1 −λs 1

−1 0



=

 −1 0

s+ u
λ
− 1
λ

 .

(55)
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So across the boundary,

zNW0 =

 −1 0

s+ u
λ
− 1
λ

 zSWf .

=

 −1 0

s+ u
λ
− 1
λ


 eλT 0

0 e−T

 zSW0 ,

(56)

In the Northeast (NE) square, the dynamics are,

FNE =

 dx/dt

dy/dt

 =

 −λ(x+ cNE)

(y + dNE)

 =

 −λs
u

 , (57)

where cNE, dNE are the constants offsetting the vector field in the NE square,

and s and u are local coordinates within the NE square. Note that in terms of

the local coordinates, FNE and F SW have the same form, consistent with the

rotational symmetry of the system. The initial and final values of the vector

field FNE evaluated along the limit cycle is related by a 90-degree rotation,

FNE
0 = RFNW

0 = (λ,−u)T ,

FNE
f = RFNW

f = (λs,−1)T .

(58)

The Jacobian is the same as in the SW square, so the solution to the adjoint
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is identical, with different initial conditions. By Theorem 1,

MNW =

 λ −u

0 1


−1 1 λs

0 1



=

 1
λ

s+ u
λ

0 1

 .

(59)

The adjoint now consists of a product of four matrices,

zNE0 =

 1
λ

s+ u
λ

0 1


 eλT 0

0 e−T

 zNW0

=

 e(λ−1)T

λ
− e2λT

(
u
λ

+ s
)2
, e(λ−1)T

λ

(
u
λ

+ s
)

e2λT
(
−u
λ
− s
)
, e(λ−1)T

λ

 zSW0 .

(60)

The remaining jump matrices for the Northeast (NE) and Southeast (SE)

squares, MNE and MSE, are identical to the SW and NW squares, respectively.

Similarly, the Jacobian matrices of the NE and SE squares are the same as

the corresponding matrices of the SW and NW squares. Therefore the matrix

B of Corollary 2 is obtained by repeating the product of four matrices above,

zSW0 = BzSW0

=

 e(λ−1)T

λ
− e2λT

(
u
λ

+ s
)2
, e(λ−1)T

λ

(
u
λ

+ s
)

e2λT
(
−u
λ
− s
)
, e(λ−1)T

λ


2

zSW0 .

(61)

Recalling that e−T = u, and eλT = 1/s, it is straightforward to check that the
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matrix B has an eigenvector (s, 1)T with unit eigenvalue, so the initial condi-

tion of the iPRC is proportional to this vector, zSW0 ∝ (s, 1)T . By Corollary

2, the normalization condition zSW0 · F SW
0 = 1/T determines the length of the

vector zSW0 .

Recalling that s = uλ, in the SW square, FR
0 = (−λ, u)T , so

zSW0 · F SW
0 = s(−λ) + u

= u− λuλ.
(62)

Therefore, in order for zSW0 = (s, 1) to satisfy the normalization condition, it

must be scaled by the value 1
T (u−λuλ) , which gives us our initial condition,

zSW0 =

(
uλ

T (u− λuλ) ,
1

T (u− λuλ)

)
. (63)

Combining this expression with the solution to the adjoint equation, z(t)SW ,

and recalling that t = θT = θ log(1/u), yields

zR(t) =

 eλt 0

0 e−t

 zR0

=

 eλθT 0

0 e−θT


 uλ

T (u−λuλ)

1
T (u−λuλ)



=

 uλ(1−θ)

T (u−λuλ)

uθ

T (u−λuλ)

 .

(64)



3 DISCUSSION AND CONCLUSIONS 36

Expression (64)is exactly the iPRC derived in [20]. This alternative derivation

is greatly simplified compared to the direct derivation in [20], which involved

the laborious task of keeping track of perturbed trajectories over an infinite

series of boundary crossings. In contrast, Theorem 1 requires relatively simple

calculations involving the vector fields, limit cycle, and adjoint equation, and

extends naturally to general piecewise smooth dynamical systems.

3 Discussion and Conclusions

The infinitesimal phase response curve provides insight into how CPGs adap-

tively respond to perturbations including mechanical loads and sensory feed-

back. Traditional CPG models are smooth, and the iPRC is obtained by

numerically integrating the adjoint equation. However, standard methods for

obtaining the iPRC fail for flows with discontinuous vector fields. We overcome

this problem by deriving a boundary condition that allows integration of the

adjoint equation around the limit cycle for such systems. In the case of piece-

wise linear dynamics, this approach can lead to analytically exact expressions

for the iPRC. Theorem 1 provides a concise way to calculate an important

portion of the iPRC for general planar DIs satisfying the assumptions in Sec-

tion 1.2, and improves upon two known methods for calculating the iPRC of

DIs.

We did not cover a general method to solve the adjoint equation (Eq. 8) within
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each piecewise linear domain because methods for solving coupled systems of

linear differential equations are known. In [6], the coupled linear differential

equations are solved by diagonalizing a matrix exponential, which provides an

explicit form for the matrix A in Eq. (8). In the iris system, both state variables

are decoupled, so solving for the adjoint is a matter of solving two separate

linear differential equations and taking advantage of the special symmetry to

derive a unique solution. In [20] the iPRC was obtained through analysis of

an infinite series capturing the compounded effects of offsets in position and

time. The method used by Shaw et al. would become intractable if applied to

a system with different saddle values, λi, in each domain of the system. For

our method, by contrast, naturally includes systems in which the linear vector

fields are not related by rotational symmetry, thereby providing a more flexible

method for deriving the iPRC. For nonlinear dynamics, the adjoint equation

may be solved numerically, by taking advantage of our jump condition.

Generalized iPRCs with periodic or random perturbations are beyond the

scope of this discussion. However, it is worth noting that if a limit cycle is

strongly attracting, then the iPRC may be used to calculate the response of

the system to either periodic or random perturbations.

There are numerical advantages to our method as well. The iPRC for a DI (and

indeed for any system with a limit cycle) is traditionally derived by perturbing

a limit cycle in phase space and tracking the asymptotic change in phase. This

direct simulation, while providing an accurate approximation to the iPRC, can
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be computationally expensive. For example, one must evaluate a perturbed

trajectory for several limit cycle periods to approximate the asymptotic phase,

and one must repeat this calculation as many as one hundred times. By

using the theorem, the iPRC can be solved with as little as two limit cycle

evaluations, one to find the period and limit cycle trajectory, and the other to

solve the adjoint equation over each piecewise smooth region.

The main result of this thesis should prove useful in the continued use of piece-

wise smooth dynamical systems and phase response curves in mathematical

biology. Research in coupled oscillators has typically been restricted to smooth

systems, or piecewise linear systems [6]. Our result allows for the possibility

for using a broader class of dynamical systems to study biological oscillators.

Finally, it is possible to derive exact expressions for the iPRC resulting from

mechanical perturbations using piecewise linear dynamical systems.

In future work, we plan to extend the results of this thesis to n dimensions. The

tools for smooth systems and many of our assumptions for piecewise smooth

dynamical systems apply in n-dimensions. Derivation of the matrix MR may

include similar proof techniques.
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A Appendix

A.1 Adjoint Equation

In this section we give an informal derivation of the adjoint equation satisfied

by the infinitesimal phase response curve for a limit cycle in a smooth system

of differential equations dx/dt = F (x), introduced in Eq. (7), namely:

dz

dt
= A(t)z(t), (65)

where A(t) = −DF T (x(t)), and z(t) = ∇θ(x(t)). For a more detailed proof,

see [2] or [8]. Recall that

dθ

dt
=

1

T
. (66)

Then

0 =
d

dt

(
dθ

dt

)
=

d

dt

(
∇θ(x(t)) · dx

dt

)
=

(
d

dt
∇θ(x(t))

)
· dx
dt

+∇θ ·
(
DF (x(t))

dx

dt

)
=

(
d

dt
∇θ(x(t))

)
· dx
dt

+DF T (x(t))∇θ · dx
dt

=

[
d

dt
∇θ(x(t)) +DF T (x(t))∇θ(x(t))

]
· F (x(t)).

(67)

We assume that F (x(t)) 6= 0 and that the dot product in the last line of
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Eq. (67) does not reduce to zero, so

d

dt
∇θ(x(t)) +DF T (x(t))∇θ(x(t)) = 0

⇔ d

dt
∇θ(x(t)) = −DF T (x(t))∇θ(x(t)).

(68)

When x(t) is taken to be on the limit cycle, we recover the adjoint equation,

dz

dt
= −DF T (γ(t))z(t). (69)

A.2 Model Equations

In this section we provide, as a reference, the model equations for various

systems discussed in the main text.

A.2.1 Morris-Lecar

One well-studied neurobiological model capable of producing oscillatory be-

havior is the Morris-Lecar model. The model was developed by Cathy Morris

and Harold Lecar in 1981 to describe the many oscillations in barnacle muscle

fiber [16]. It is a conductance-based model with two state variables, so one

may think of the model as a simplified model of Hodgkin-Huxley type. The
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equations for the Morris-Lecar system are as follows:

C dV
dt

= I − gL(V − EL)− gkn(V − EK)− gCam∞(V )(V − ECa),

dn
dt

= φ(n∞(V )− n)/τn(V ),

(70)

where

m∞(V ) =
1

2
[1 + tanh((V − V1)/V2)]

τn(V ) = 1/ cosh((V − V3)/(2V4))

n∞(V ) =
1

2
[1 + tanh((V − V3)/V4)]

(71)

V is the membrane potential, C is the membrane capacitance, I is the ap-

plied current, and gL, gCa, and gK are the peak conductances of leak, calcium,

and potassium, respectively. The variable n represents the potassium recovery

variable, with m∞ and n∞ representing the steady state equations for the cal-

cium and potassium gating variables, respectively. The voltage variables EL,

ECa, EK represent the respective Nernst potentials of each ion. The remaining

voltage variables, V1 through V4, determine the phase-plane properties of the

model. The variable φ depends heavily on temperature and affects the time

constant, τn, for the recovery variable, n, and in effect determines how quickly

the membrane potential recovers.

In phase space, φ controls the bifurcation regime and I serves as a bifurcation

parameter within each regime. There are three main regimes of the ML sys-

tem: Hopf, saddle-node on an invariant circle (SNIC), and homoclinic. The
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regime is controlled by the parameter φ, and bifurcations within each regime

is controlled by Iapp (Table 1).

Table 1: Parameter values for the Morris-Lecar model [8].
Parameter Hopf SNIC Homoclinic
φ 0.04 0.067 0.23
gCa 4.4 4 4
V3 2 12 12
V4 30 17.4 17.4
ECa 120 120 120
EK -84 -84 -84
EL -60 -60 -60
gK 8 8 8
gL 2 2 2
V1 -1.2 -1.2 -1.2
V2 18 18 18
Cm 20 20 20

A.2.2 McKean

The McKean model, first studied by Henry McKean [13], was introduced as

a piecewise linear analog to planar conductance-based models such as the

Morris-Lecar model. We use the parameters in Table 2.

The model equations are,

Cv̇ = f(v)− w + I,

ẇ = g(v, w),

(72)
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where the functions f and g are given by

f(v) =


−v, v < a/2

v − a, a/2 ≤ v ≤ (1 + a)/2

1− v, v > (1 + a)/2

, (73)

and

g(v, w) = v − γw. (74)

Figure A.1 illustrates the (v, w) phase plane for the McKean model.
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Figure A.1: McKean model. The black and green dashed lines represent
the nullclines. The red loop represents the limit cycle. Vertical gray lines
denote the boundaries between each region (labeled 1 through 4) [6]. Copy-
right c© 2008 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved.
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Table 2: Parameter values for the McKean model [6].
Parameter Value
γ .5
C .1
a 0.25

A.2.3 Piecewise Linear Morris-Lecar

The Piecewise Linear Morris-Lecar system (PML system), studied in [6], is

a PWL approximation to the Morris-Lecar model. We were motivated to

study this model because of the relative simplicity of the equations and the

availability of closed-form expressions for the iPRC and trajectories in phase

space, from [6]. The iris system, a PWL approximation of the sine system,

provided insight into the behavior of the iPRC of the sine system. We hoped to

gain similar insight into the Morris-Lecar model by analyzing the PML model.

The equations for Coombes’s PML model are the same as for the system in

Eq. (72), with parameters defined in Table 1. The function f(v) is defined as

in the McKean model, and g(v, w) is given by [6]:

g(v, w) =


(v − γ1w + b∗γ1 − b)/γ1, v < b

(v − γ2w + b∗γ2 − b)/γ2, v ≥ b

The nullclines are easily computed by hand and are illustrated in A.2.
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Figure A.2: Piecewise linear Morris-Lecar model. The black and green dashed
lines represent the nullclines. The red loop represents the limit cycle, with the
separatrix (represented by the blue dot-dot-dash), dividing the set of points
that converge to the fixed point to the far left with points in the basin of
attraction of the limit cycle. Vertical gray lines denote the boundaries between
each region (labeled 1 through 4). The boundary between regions 4 and 1
is denoted v1th and the boundary between regions 1 and 2 is denoted v2th [6].
Copyright c© 2008 Society for Industrial and Applied Mathematics. Reprinted
with permission. All rights reserved.

Table 3: Parameter values of the PML model (Fig. A.2) [6].
Parameter Value
γ1 2
γ2 0.25
C 0.825
a 0.25
b 0.5
b∗ 0.2
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A.2.4 Sine System

In [20], Shaw et al. constructed the “sine system” as a nominal model for

systems with one-parameter families of limit cycles approaching close to a

sequence of fixed points [20]. The sine system is a smooth planar system of

autonomous ordinary differential equations defined as

dy1
dt

= f(y1, y2) = cos(y1) sin(y2) + α sin(2y1),

dy2
dt

= g(y1, y2) = − sin(y1) cos(y2) + α sin(2y2).

(75)

As written, the system forms a stable heteroclinic cycle, a special case of a

heteroclinic channel [1], where one unstable manifold of one saddle becomes

the stable manifold of a neighboring saddle. Limit cycles are introduced by

breaking the heteroclinic cycle by perturbing the vector field by introducing

an orthogonal component, whose magnitude is controlled by the parameter µ.

These limit cycles have a close passage to each of the four saddle points in the

system [19].

dy1
dt

= f(y1, y2) + µg(y1, y2),

dy2
dt

= g(y1, y2)− µf(y1, y2),

(76)

where 1 > µ > 0. For any small µ > 0, there exists a stable limit cycle with

diverging period as µ→ 0.
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A.2.5 Iris System

In order to derive analytical results, one may approximate the sine system

with the iris system, a PWLDS [20]. We use a linearization about one of

the saddles in the sine system to construct four consecutive PWL regions,

each a 90-degree rotation of the previous square. For the sake of simplicity, we

focus our analysis to the southwesterly (SW) iris square, and inject trajectories

exiting the iris square (along the top edge) directly into the right edge of the

same iris square, with a fixed offset a ≥ 0. Let λ > 1. The nondimensionalized

form of the iris equation is

ds

dt
= −λs,

du

dt
= u.

(77)

Given initial condition u(0) = u0 (and s(0) ≡ 1), if the first egress time

is T1 = ln(1/u0), with egress location s(T−1 ) = uλ0 (and u(T−1 ) ≡ 1), then

after applying the offset the trajectory is reinjected at position u1 = u(T+
1 ) =

s(T−1 ) + a = uλ0 + a. Applying this procedure inductively, the successive

injections occur at locations uk+1 = uλk + a and times Tk+1 = Tk + ln(1/uk).
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a
b

x1

x2 x3

x4

Ws
loc

Wu
loc

Figure A.3: Construction of the iris system. The SW square is defined by
the system in Eq. (77). The remaining squares are defined by consecutive 90-
degree clockwise rotation with a translation of system (77). The parameter a
acts as the bifurcation parameter (when a = 0, there is a heteroclinic cycle),
and the parameter b = 1. The unstable and stable manifolds of the saddle x1
is denoted W u

loc and W s
loc, respectively. The loop passing through each region

is an example of how a limit cycle might appear [20]. Copyright c© 2012
Society for Industrial and Applied Mathematics. Reprinted with permission.
All rights reserved.

A.3 Analytic, Piecewise Continuous Infinitesimal Phase

Response Curve of the Iris System

A.3.1 Summary of Shaw et al 2012

In [20], Shaw et al derived several analytical results for the iPRC of the iris

system (see Appendix A.2.5 for the definition). The central result is a theorem

which we summarize in three points. Let λ > 1 > a > 0.

1. If the function ρ(u) = uλ−u+a has two isolated positive roots, then the

iris system has a stable limit cycle Moreover, the limit cycle trajectory
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enters each square at local coordinates (1, u), where u is one of the roots,

and exits the square at local coordinates (s, 1), where s = uλ. The period

of the limit cycle is T = 4 log(1/u).

2. The iPRC of the iris system, for perturbations in direction η = (ηs, ηu)

is

Z(η, φ, a) =
η · β(φ)

log(1/u)(u− λs) , (78)

where φ = t/T is the phase, β(φ) = (s(1−φ), uφ) and η is a unit vector in

the L1 norm.

3. The infinitesimal phase response to perturbations parallel to the unstable

eigendirection in a given square diverges in the limit as a → 0, and the

response to perturbations parallel to the stable eigendirection diverges

when φ ∈ (1− 1/λ, 1); otherwise, the iPRC converges to zero as a→ 0.

See Fig. A.4 for a geometric interpretation of this theorem.

In order to gain a broader understanding of potential biological applications

of these results and whether these results hold in general, we applied the same

numerical tools to the Morris-Lecar system. The Morris-Lecar system (defined

in Appendix A.2.1) is a neurobiologically relevant dynamical system based on

barnacle muscle. The model is capable of several bifurcations, which include

a hopf, saddle-node on a limit cycle (SNLC), and homoclinic bifurcation. We

focus on the homoclinic bifurcation because it provides an example of a family
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Figure A.4: Divergence of the iris iPRC in the heteroclinic limit. As the
theorem predicts, we have divergence of the iPRC of the iris system in the
approach to the heteroclinic bifurcation. The left column shows plots of the
iPRC with phase change on the vertical axis and phase on the horizontal
axis. Dots represent values from numerical simulations and lines represent
the analytic solution. Bifurcation parameter values from top to bottom: a =
10−3, 0.1, 0.2, and 0.24 [20]. Copyright c© 2012 Society for Industrial and
Applied Mathematics. Reprinted with permission. All rights reserved.

of limit cycles passing close to a single fixed point. Once we are in a particular

bifurcation regime, we generate limit cycles by varying a bifurcation parameter,
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Iapp, which represents the current applied to the cell.

We used the python packages numpy and scipy to run perturbation analyses

on the limit cycle of the Morris-Lecar model in the homoclinic regime. Given a

bifurcation parameter value Iapp (chosen such that a stable limit cycle exists)

and a particular phase along the limit cycle, we use a perturbation of size

1 × 10−4 to estimate the change in timing at that phase. By taking this

analysis close to the homoclinic bifurcation, we find that the behavior of the

iPRC in the approach to the homoclinic bifurcation closely resembles that of

the analytic results of the iris system. The peak sensitivity appears to diverge

in the limit of the homoclinic bifurcation, while regions of relatively small

sensitivity widen and dominate the behavior in the same homoclinic limit.

Since the Morris-Lecar equation is nonlinear, it is virtually impossible to derive

analytical results for the iPRC near the homoclinic bifurcation. However, the

ever-lengthening regions of relatively small phase change suggest a different

approach to understanding what happens to the shape of the iPRC in the

limit of the homoclinic bifurcation. The long, flat regions of the iPRC are a

result of trajectories spending long times in a small neighborhood in phase

space, so it is likely that trajectories spend long times in the neighborhood of

the saddle. If we can view the iPRC in terms of a variable that takes space

into account instead of time, we may be able to more precisely calculate the

shape of the iPRC in the limit of the homoclinic bifurcation. Therefore, in

future work, we hope to gain greater understanding of the limit behavior of
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Figure A.5: Divergence of the Morris-Lecar iPRC in the homoclinic limit.
The left column shows plots of the iPRC with phase change on the vertical
axis and phase on the horizontal axis. Zero phase, φ = 0, defined to be
peak voltage. Perturbations of size 10−4 were used to construct the iPRC.
Bifurcation parameter values from bottom to top: Iapp = 40, 36.2, 35.05, and
35.009. The bifurcation is near Iapp = 35.0067. The right column shows the
corresponding limit cycle in phase space [20]. Copyright c© 2012 Society for
Industrial and Applied Mathematics. Reprinted with permission. All rights
reserved.

the iPRC in this case, by analysis of the phase response curve as a function of

arc length rather than of phase.
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A.4 Normal Forms and Explicit Expressions for the In-

finitesimal Phase Response Curve

There are only a few cases where we can solve for the iPRC explicitly for

smooth systems [8]. Here we provide examples of explicit iPRCs which arise

from normal forms for systems close to a particular bifurcation.

A.4.1 Class I Excitability

Systems that always exhibit phase advance for perturbations along all phases

are known as class I excitable systems. Such systems typically make the transi-

tion from excitability to steady oscillation by way of a saddle-node-on-invariant

circle (SNIC) bifurcation [2]. The solution to the adjoint equation for the nor-

mal form a system at such a bifurcation is proportional to [7]

z(θ) ∝ 1− cos(θ). (79)

A.4.2 Supercritical Hopf Bifurcation

A model exhibits a supercritical Hopf bifurcation when the variation of a

bifurcation parameter moves eigenvalues of a stable fixed point across the

imaginary axis, leading to stable oscillations and an unstable fixed point. The

iPRC for models close to supercritical Hopf bifurcations may be approximated
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by a pure sinusoid [2, 14].

z(θ) ∝ sin(θ). (80)
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