Efficient Non-viral Gene Therapy for Stargardt's Disease with pH-Sensitive Multifunctional Lipid ECO Plasmid DNA Nanoparticles Sun et al.

Da Sun¹, Rebecca M. Schur¹, Avery E. Sears^{2,†}, Song-Qi Gao², Amita Vaidya¹, Wenyu Sun¹, Akiko Maeda², Timothy Kern^{2,†}, Krzysztof Palczewski^{2,†} and Zheng-Rong Lu¹

- 1. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
- 2. Department of Pharmacology, Case Western Reserve University, Cleveland, OH

[†]Current address: Gavin Herbert Eye Institute, Department of Ophthalmology and Department of Physiology and Biophysics, University of California, Irvine, CA

Purpose

Monogenic retinal dystrophies can be treated with gene replacement therapy (GRT) due to easy localized delivery into retina. Here, we developed a nanoparticle-based GRT using pH-sensitive multifunctional lipid ECO and therapeutic ABCA4 plasmids to treat Stargardt's disease (STGD), which requires delivery of large *ABCA4* gene.

Methods

Therapeutic plasmids expressing ABCA4 induced by rod photoreceptor-specific RHO promoter and non-specific CMV promoter were designed. Subretinal treatments were performed using ECO/pRHO-ABCA4 and ECO/pCMV-ABCA4 nanoparticles to *abca4^{-/-}*mice (STGD model). Treatment efficacy was evaluated by analysis of A2E accumulation in the RPE after 6 months. ABCA4 expression was evaluated by qRT-PCR and IHC at 7 days and 8 months after a single injection.

Results

GRT using nanoparticles reduced A2E accumulation at least for 6 months. Demonstrated by HPLC (Figure 1A) and quantitative A2E levels (Figure 1B) of treated *abca4*^{-/-} mice, an averaged 35% reduction in A2E levels was observed for ECO/pRHO-ABCA4 and a 15% reduction for ECO/CMV-ABCA4. ABCA4 mRNA (Figure 1C) were measured by PCR in mice treated with both nanoparticles. Expression driven by RHO promoter was 10-fold higher in treated eye than control at 8 months, but the expression driven by CMV was slightly but not significantly higher than control. IHC staining for ABCA4 protein (Figure 1D) revealed significant protein expression for ECO/pRHO-ABCA4 treated group and no significant difference between

ECO/pCMV-ABCA4 group and control. The expression driven by RHO demonstrated excellent tissue specificity in the retinal outer segments.