CUL3 deficiency causes social deficits and anxiety-like behaviors by impairing excitation-inhibition balance via promoting Capdependent translation Dong et al.

Zhaoqi Dong^{*,1}, Wenbing Chen^{*,2}, Chao Chen³, Hongsheng Wang¹, Wanpeng Cui¹, Zhibing Tan¹, Heath Robinson¹, Nannan Gao¹, Bin Luo², Lei Zhang¹, Kai Zhao¹, Wen-Cheng Xiong^{1,4} and Lin Mei^{1,4,5}

- 1. Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH
- 2. Institute of Life Science, Nanchang University, Nanchang, China.
- 3. The Laboratory of Vector Biology and Control, College of Engineering, Beijing Normal University, Zhuhai, China.
- 4. Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
- 5. Corresponding author

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with symptoms including social deficits, anxiety, and communication difficulties. However, ASD pathogenic mechanisms are poorly understood. Mutations of CUL3, which encodes Cullin 3 (CUL3), a component of an E3 ligase complex, are thought of as risk factors for ASD and schizophrenia (SCZ). CUL3 is abundant in the brain, yet little is known of its function. Here we showed that CUL3 is critical for neurodevelopment. CUL3 deficient mice exhibited social deficits and anxiety-like behaviors with enhanced glutamatergic transmission and neuronal excitability. Proteomic analysis revealed eIF4G1, a protein for Cap-dependent translation, as a potential target of CUL3. ASD-associated cellular and behavioral deficits could be rescued by pharmacological inhibition of the eIF4G1 function and chemogenetic inhibition of neuronal activity. Thus, CUL3 is critical to neural development, neurotransmission, and excitation-inhibition (E-I) balance. Our study reveals novel insight into pathophysiological mechanisms of ASD and SCZ.

^{*}These authors contributed equally.