As a member of PREP, you will get to research with our highly skilled faculty on their NIH supported programs. Our mentors possess backgrounds of outstanding research and their programs are supported by the National Institute of Health. You will be assigned to a mentor that matches your personality and your research interests. PREP Scholars have engaged in a variety of research areas.
Mentors in the Postbaccalaureate Research Education Program have a history of training diverse students. A PREP Mentor will have:
- Outstanding research program supported by the National Institutes of Health
- Strong record of scientific productivity. Productive labs are energetic and include many other scientists at various levels, providing a dynamic research environment
- Experience in training. All mentors are trainers in CWRU's biomedical PhD programs and are thus familiar with the demands of graduate study
- Active participation in the PREP. Only investigators committed to the goals of the PREP serve as faculty trainers. Faculty are expected to provide mentorship in the lab and participate in meetings
- An attractive and relevant research plan for a PREP Scholar
Research
PREP research mentors and their students cover a wide range of fields and interests. Some recent examples include:
Mentor | Research Field |
---|---|
Derek Abbott, MD, PhD | Activation and regulation of innate immune responses. |
Robert Bonomo, MD | Structure-function relationships of clinically important beta-lactamases using microbiological and biochemical testing, medicinal chemistry, structural biology, pharmacological analyses, genetics and molecular epidemiology. |
Susann Brady-Kalnay, PhD | Research on cell adhesion and signaling of Receptor Protein TyrosinePhosphatases during development of the nervous system and in cancer. |
Understanding the functional impact of genetic variation, developing statistical and bioinformatics approaches for integrating functional genomics knowledge into genetic analysis, and the use of electronic medical records for translational research. | |
Mark Chance, PhD | Structural and Cellular Proteomics. |
Mitchell Drumm, PhD | Research on genetics of cystic fibrosis and mouse models to study its patho-physiology. |
*George Dubyak, PhD | Research on cellular signal transduction processes during inflammation, vascular damage, and regulated cell death. |
*Agata Exner, PhD | Research on drug delivery systems and image-guided interventions for cancer treatment, and multifunctional ultrasound contrast agent development. |
Stanton Gerson, MD | Stem Cell Biology especially in the areas of DNA repair and quiescence and stem cell transplantation models and gene therapy, studies of DNA repair in cancer, and development of new therapeutics targeting DNA repair, currently focused on base excision repair. |
Clifford Harding, MD, PhD | Regulation of antigen presentation and immune responses to infection with tuberculosis and HIV; innate immune signaling and regulation; cell biology of antigen processing and host-pathogen interactions |
Maria Hatzoglou, PhD | Translational control in catabolic stress conditions. |
*Alex Huang, MD, PhD | Immune activation and tolerance in the pathogenesis of cancer. |
*Mark Jackson, PhD | Genetics of breast cancer, gene discovery techniques, oncogene signaling, tumor suppressors. |
Emmitt Jolly, PhD | Research on transcriptional and translational regulation in parasitic worms. |
Efstathios Karathanasis, PhD | Cancer nanotechnology. |
*Ruth Keri, PhD | Mechanisms of breast development and cancer progression. |
Alan Levine, PhD | Regulation of intestinal immunity, via cross-talk between mucosal T cells, the epithelium, and the microbiome |
Jason Mears, PhD | Structural and functional studies of macromolecular complexes driving mitochondrial fission and how these are misregulated in neurodegeneration and cancer. |
Monica Montano, PhD | Factors involved in ER-dependent growth of breast cancer cells. |
Parameswaran Ramakrishnan, MS, PhD | Inflammation and Autoimmunity |
Diana Ramirez-Bergeron, PhD | Effects of oxygen tension in the development of the cardiovascular system. |
Arne Rietsch, PhD | Virulence mechanisms of Pseudomonas aeruginosa. |
Jerry Silver, PhD | Research on the role of the glial scar in preventing regeneration after brain or spinal cord injury. |
*Carlos Subauste, MD | Role of CD40 and autophagy in host- pathogen interactions. CD40 signaling in inflammatory disorders. |
Derek Taylor, PhD | Structure and molecular interactions of telomeres and telomerase. |
Paul Tesar, PhD | Molecular regulation of cell identity and development. |
Blanton Tolbert, PhD | Structural biophysics of virus-host interactions. |
Johannes von Linting, PhD | Research on the metabolism and functions of carotenoids and retinoids. |
Horst von Recum, PhD | Renewable drug delivery for recurrent or chronic disease. |
David Wald, MD, PhD | Identification and development of novel therapeutic strategies for cancer with a particular focus on Acute myeloid leukemia (AML). |
Anthony Wynshaw-Boris, MD, PhD | The molecular genetic basis of social behavior and autism. |
*Richard Zigmond, PhD | Neural plasticity and regeneration. |