

Identifying genetic modifiers of age at onset of multiple sclerosis.

E. Misicka¹, W. Kim², M.F. Davis³, S. Loomis², P.G. Bronson², F.B.S. Briggs¹

1) Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio;

2)nR&D Translational Biology, Biogen, Inc., Boston, Massachusetts;

3) Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah.

Disclosure Slide

Financial Disclosure for:

E. Misicka – no disclosures

Gap in the Knowledge – MS Age of Onset

- Multiple sclerosis (MS) age at onset (AAO) is a strong predictor of timing to disease milestones:
 - Earlier AAO is associated with reaching **disability milestones** at younger ages.
 - A higher frequency of relapse prior to transition to progressive MS.
 - Earlier AAO is associated with transition to progressive MS at younger ages.
- Are there genetic factors predicting MS AAO? Yes, but little is known about them.
 - HLA-DRB1*15:01 (an established MS risk variant) confers earlier AAO.
 - A genetic risk score (GRS) comprised of variants outside the Major Histocompatibility Complex (MHC) confers earlier AAO.

Sawcer et al. 2011, Nature; Briggs et al. 2019, Mult Scler Relat Disord; Sorosina et al. 2015, Mult Scler; Barcellos et al. 2002, Brain; Masterman et al. 2000, Ann Neurol; Voskuhl and Gold, 2012, Nat Rev Neurol

Study Design

- 1. Performed genome-wide association study (GWAS) analysis across five non-Hispanic white cohorts to ascertain genetic variants associated with AAO
- 2. Meta-analyzed GWAS results
- 3. Performed gene-based tests of association
- 4. Performed pathway enrichment analyses

Study Design and Methods

Methods II: Investigation of MS Risk Variants

- HLA-DRB1*15:01 was regressed on AAO
 - Additive and dominant models
- Non-MHC Variants
 - Each variant was individually regressed on AAO
 - An **unweighted** GRS was regressed on AAO.
 - GRS quintiles (1-5) were regressed on AAO
- Combinations of *HLA-DRB1*15:01* and GRS burden were regressed on AAO.
- All models were adjusted for population substructure and sex.

RESULTS: Investigation of MS Risk Variants

Genetic Predictor	β (95% Cl)	р
HLA-DRB1*15:01	-0.67 (-1.16, -0.19)	6.2×10 ⁻³
Carrier of HLA-DRB1*15:01	-1.00 (-1.58, -0.41)	9.0×10 ⁻⁴
GRS	-0.10 (-0.13, -0.06)	9.8×10⁻ ⁹

Table 1A. Results of linear regression of genetic factors on MS AAO.

- Consistent and significant trends were observed for earlier AAO with increasing load of MS risk variants (Table 1A)
- Distribution of AAO and GRS was similar across cohorts (Figures 1 and 2).

RESULTS: Investigation of MS Risk Variants

- Table 1B shows the results for linear regressions for GRS quintiles on AAO, as well as the simultaneous regression of *HLA-DRB1*15:01* and the GRS quintiles.
- In general, an increasing load of genetic variants confers earlier AAO
- Individuals with the highest genetic risk burden were on average 5 years younger at MS onset than those with the lowest genetic risk burden

Gen	etic Predictor	β (95% CI)	р	p trend			
	Q1 (n=7:	L7)	Ref	-			
	Q2 (n=72	22)	-1.84 (-2.74, -0.94)	6.8×10 ⁻⁵			
GRS Quintile	Q3 (n=65	58)	-2.27 (-3.20, -1.34)	1.7×10⁻6	-6 2.1×10⁻⁷ -7		
	Q4 (n=70	00)	-2.32 (-3.24, -1.41)	6.7×10 ⁻⁷			
	Q5 (n=69	98)	-2.49 (-3.41, -1.57)	1.2×10 ⁻⁷			
		Q1 (n=388)	Ref	-			
	0 copies of HLA-DRB1*15:01	Q2 (n=384)	-1.93 (-3.17, -0.70)	2.1×10 -3			
		Q3 (n=332)	-2.08 (-3.36, -0.80)	1.5×10 ⁻³ 2.4×10 ⁻⁵			
		Q4 (n=399)	-2.64 (-3.87, -1.42)				
		Q5 (n=396)	-2.44 (-3.67, -1.21)	1.0×10 ⁻⁴			
	1 copy of HLA-DRB1*15:01	Q1 (n=273)	-1.32 (-2.68, 0.04)	0.057			
Combinations		Q2 (n=300)	-2.72 (-4.04, -1.40)	5.5×10 ⁻⁵			
of genetic risk		Q3 (n=289)	-3.47 (-4.80, -2.13)	3.6×10 ⁻ ⁷	2.9×10 ⁻ ⁸		
factors		Q4 (n=256)	-3.37 (-4.76, -1.99)	1.8×10⁻6			
		Q5 (n=271)	-3.55 (-4.91, -2.19)	3.2×10 ⁻⁷			
	2 copies of	Q1 (n=56)	0.01 (-2.45, 2.46)	0.996			
		Q2 (n=38)	-3.53 (-6.44, -0.61)	0.018			
		Q3 (n=37)	-3.47 (-6.42, -0.52)	0.021			
	IILA-DADI 13.01	Q4 (n=45)	-1.22 (-3.92, 1.48)	0.376			
		Q5 (n=31)	-4.98 (-8.19, -1.78)	2.3×10 ⁻³			

Table 1B. Results of linear regression of multiple categorical genetic factors on MS AAO.

RESULTS: Meta-Analysis of GWA Results

No variants were significant at p<5.0×10⁻⁸ (Figure 3). At p<5.0×10⁻⁶, seven independent risk loci were nominally associated with AAO (Table 2).

Chr	BP	rsID	MAF	A1	A2	Ν	N(Cohorts)	β (SE)	р	Gene	SNP Function
2	170812811	rs145201293	0.30	Т	TTA	2,434	3	1.3 (0.28)	2.4×10 -6	UBR3	Indel
5	173141042	rs17076315	0.35	А	G	2,434	4	-1.3 (0.26)	6.9×10 ⁻⁷	LINC01484	Intron variant
6	32626537	rs28672722	0.26	Т	G	3,495	5	1.2 (0.25)	1.1×10 ⁻⁶	HLA-DQB1	Upstream transcript variant
6	56121561	rs149847639	0.015	А	С	1,210	2	-7.5 (1.60)	4.4×10 -6	COL21A1	Intron variant, genic upstream transcript variant
6	106149587	rs17066212	0.022	А	G	2,434	4	-3.9 (0.80)	1.1×10 ⁻⁶	-	Intergenic
8	3655967	rs74402157	0.028	Т	G	2,434	3	-4.5 (0.98)	4.1×10 ⁻⁶	CSMD1	Intron variant, genic upstream transcript variant
19	46163870	rs34132828	0.24	А	G	3,495	5	1.2 (0.25)	3.3×10 ⁻⁶	-	Intergenic

Table 2. Risk loci for meta-analysis of 5 cohorts at $p < 5.0 \times 10^{-6}$

RESULTS: Gene-based tests of association

 ~19,000 genes were tested. Of these genes, 1,067 were associated with AAO at p<0.05 (Table 3).

SYMBOL	CHR	START	STOP	nSNPS	P (0kb)
SSB	2	170648443	170668574	63	2.57×10 ⁻⁵
TRAFD1	12	112563305	112591407	23	2.67×10 ⁻⁵
HECTD4	12	112597992	112819896	225	2.78×10 ⁻⁵
MMP8	11	102582526	102597781	85	2.85×10 ⁻⁵
NAA25	12	112464500	112546826	78	4.50×10 ⁻⁵

Table 3. Top 5 results from gene-based tests of association.

Figure 4. LocusZoom plot of TRAFD1, a negative feedback inhibitor of the innate immune response.

Figure 5. LocusZoom plot for *MMP8,* a matrix metalloproteinase that breaks down collagen in neutrophils and leukocytes.

Results: Pathway Analysis

Gene Sets

- GS1 Variant Annotations 950 genes
 - Unique genes from top 2.5% of genic, associated variants
- GS2 Gene-based Test Results 872 genes
 - Top 5% of genes from MAGMA analysis
- GS3 Combined GS1 and GS2 1,574 genes

Table 4. Top 5 enriched pathways for all gene sets

List	Database	Pathway	Fold Enrichment	P-Value	FDR	Genes
GS1	REACTOME	NCAM1 interactions (R-HSA-419037)	4.5	6.7×10 ⁻⁴	0.0099	NCAM1, COL9A2, COL9A3, COL6A6, COL6A5, CNTN2, ST8SIA2, CACNA1C, COL5A1
	REACTOME	Generation of second messenger molecules (R- HSA-202433)	4.7	1.3×10 ⁻³	0.019	FYB, HLA-DQB1, PAK2, HLA-DRB1, CD247, HLA-DQA2, HLA-DQA1, HLA-DRA
	KEGG	Cell adhesion molecules (CAMs) (hsa04514)	2.4	1.7×10 ⁻³	0.022	HLA-DQB1, PTPRM, HLA-DRB1, NRXN3, NLGN1, HLA-C, NRXN1, CDH3, HLA-DQA2, HLA-DQA1, NCAM1, NRCAM, CNTN2, CNTN1, CNTNAP2, HLA-DOB, HLA-DRA
	REACTOME	Translocation of ZAP-70 to Immunological synapse (R-HSA-202430)	5.8	3.1×10 -3	0.045	HLA-DQB1, HLA-DRB1, CD247, HLA-DQA2, HLA-DQA1, HLA-DRA
	REACTOME	Collagen biosynthesis and modifying enzymes (R- HSA-1650814)	3.1	4.0×10 ⁻³	0.059	COL9A2, COL9A3, COLGALT2, COL21A1, ADAMTS14, COL6A6, COL6A5, COL22A1, COL25A1, COL5A1
	BioCarta	Complement Pathway (h_compPathway)	6.8	3.2×10 ⁻⁴	0.0040	MASP1, C4A, C4B, CFB, C5, C1S, C2
	REACTOME	Activation of C3 and C5 (R-HSA-174577)	12.8	3.3×10 ⁻⁴	0.0050	C4A, C4B, CFB, C5, C2
GS2	REACTOME	Abortive elongation of HIV-1 transcript in the absence of Tat (R-HSA-167242)	6.2	6.3×10 ⁻⁴	0.0095	POLR2H, NELFCD, SUPT4H1, NELFE, CTDP1, POLR2C, POLR2B
	KEGG	Staphylococcus aureus infection (hsa05150)	3.8	9.7×10⁻⁴	0.013	MASP1, C4A, C4B, CFB, C5, C1S, C2, HLA-DOB, HLA-DQA1, HLA-DRA
	BioCarta	Lectin Induced Complement Pathway (h_lectinPathway)	7.4	3.2×10 -3	0.039	MASP1, C4A, C4B, C5, C2
GS3	KEGG	Staphylococcus aureus infection (hsa05150)	2.9	1.3×10 ⁻³	0.017	HLA-DQB1, MASP1, C4A, HLA-DRB1, C4B, CFB, C5, C1S, C2, HLA- DQA2, HLA-DOB, HLA-DQA1, HLA-DRA
	REACTOME	Activation of C3 and C5 (R-HSA-174577)	7.6	2.4×10 -3	0.037	C4A, C4B, CFB, C5, C2
	REACTOME	NCAM1 interactions (R-HSA-419037)	2.9	6.1×10 ⁻³	0.090	NCAM1, COL9A2, COL9A3, COL6A6, COL6A5, COL3A1, CNTN2, ST8SIA2, CACNA1C, COL5A1
	BioCarta	Complement Pathway (h_compPathway)	3.9	6.2×10 ⁻³	0.076	MASP1, C4A, C4B, CFB, C5, C1S, C2
	REACTOME	Generation of second messenger molecules (R- HSA-202433)	3.0	7.5×10 ⁻³	0.11	FYB, HLA-DQB1, PAK2, HLA-DRB1, PLCG1, CD247, HLA-DQA2, HLA- DQA1, HLA-DRA

Conclusions

- There is an evident gradient between increasing genetic risk burden and earlier AAO of MS, suggesting that <u>a higher genetic risk burden</u> <u>accelerates onset of MS.</u>
- We also present data suggesting that the complement system plays a role in MS AAO, along with other aspects of innate and adaptive immune function.

