Eradication of HIV infection
Not in my lifetime?
or
Just around the Corner?

Michael M. Lederman, MD
Conflicts of Interest

• The pending clinical trials discussed here are funded by grant awards from Gilead and the Federales
Stability of an HIV reservoir in Resting Memory CD4 T Cells

$t_{1/2} = 44$ months
Eradication time = 73 years

Key Barriers to HIV Cure

• Latency
 – Little death/turnover of latently infected cells
 – Poor targets for ART, for antiviral defenses

• Sites of persistence may be protected from ART, from host defenses

• Stupid virologists who can’t measure replication competent virus without exsanguinating my patients!!
Strategies for cure

1. Promote viral expression from latency and knock off virus expressing cells (“shock and kill”)
2. Find a marker that selectively identifies latently infected cells and target those cells for destruction (eg using monoclonal antibodies).
3. Kill immune cells non-selectively, eliminating reservoir(s) allowing (or promoting) immune restoration under ART
4. Mobilize antiviral host immune defenses
5. Target host elements used for persistence
6. Render cells “resistant” to HIV
Strategies for cure

1. Promote viral expression from latency and knock off virus expressing cells ("shock and kill")
2. Find a marker that selectively identifies latently infected cells and target those cells for destruction (e.g., using monoclonal antibodies).
3. Kill immune cells non-selectively, eliminating reservoir(s) allowing (or promoting) immune restoration under ART
4. Mobilize antiviral host immune defenses
5. Target host elements used for persistence
6. Render cells "resistant" to HIV
Treatment strategies should be considered in the context of:

- Plausibility
- Precedent
- Scalability
- Durability
- Tolerability
- Limitations

• “should it work?”
• “does it work?”
• “for how many could it work?”
• “for how long does it work?”
• “can we stand it?”
• “what’s the downside?”
Can we induce HIV expression (shock) and deplete the latent reservoir (kill)?

A variety of shocking stimuli have explored:
- HDAC inhibitors
- T cell receptor stimulation
- Cytokines: eg IL-2/IL-15/IL-7
Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy

Chun et al., *Nature Medicine*, 5:651-655, 1999

3 pts had no infectious Virus detectable even with more sensitive assays
Two had no infectious virus in LN.

But: proviral sequences found in all three
And: 2 stopped ARVs and had virus rebound in plasma
Can we induce HIV expression (shock) and deplete the latent reservoir? And can we kill infected cells?

Our new trial will give IL-2 to induce HIV and activate NK cells to kill infected targets.

Half the participants will also receive the Antibody VRC-07 to increase killing of infected cells.
But if we’re going to shock and hope to kill, we need soldiers

- CD8 T cell responses during HAART are weak

- Could improve with immunization.
 - Will any consensus sequence(s) suffice for the diversity of viruses in an infected person?
 - Non-dominant sequences?
 - Autologous sequences
 - Obtained when? And from where?
 - Will recent sequences target archived early viruses?
 - We could use more effective vaccination strategies
In Rhesus macaques treated with ART early in infection, combination therapeutic vaccine and TLR 7 agonist help to control viremia after treatment discontinuation.
Rhesus macaques treated with ART early in infection, combination therapeutic vaccine and TLR 7 agonist help to control viremia after treatment discontinuation.

There are multiple sanctuaries where cells containing HIV may persist during antiretroviral therapy

- Lymph Nodes
- Gut Mucosa
- Central Nervous System
B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers

Yoshinori Fukazawa¹,², Richard Lum¹,², Afam A Okoye¹,², Haesun Park¹,², Kenta Matsuda³, Jin Young Bae¹,², Shoko I Hagen¹,², Rebecca Shoemaker⁴, Claire Deleage⁴, Carissa Lucero⁴, David Morcock³, Tonya Swanson¹,², Alfred W Legasse¹,², Michael K Axthelm¹,², Joseph Hesselgesser⁵, Romas Geleziunas⁵, Vanessa M Hirsch³, Paul T Edlefsen⁶, Michael Piatak, Jr⁴, Jacob D Estes⁴, Jeffrey D Lifson⁴ & Louis J Picker¹,²

SIV RNAscope staining of Lymph Node
Immune Cells that target HIV gotta be in the right place at the right time

• How do we get Anti HIV killer cells (NK and CTL) into lymphoid sites of HIV replication?
 – Cytolytic cells typically excluded from nodes in health and during successful ART.
 – They migrate from nodes to blood via an S1P1-dependent mechanism
 – FTY 720 (Fingolimid) blocks S1P1, sequestering immune cells (including cytolytic effector T cells) in lymphoid tissues.
 – Approved for treatment of multiple sclerosis
FTY720 induces a profound redistribution of cytolytic T cells from blood

#CD8+Perforin+

- Days Post-FTY720:
 - Pre-treatment: 600
 - Post-treatment: 100

 p < 0.001

#CD8+GrB+

- Days Post-FTY720:
 - Pre-treatment: 500
 - Post-treatment: 100

 p < 0.001

#CD8+Tbet+

- Days Post-FTY720:
 - Pre-treatment: 600
 - Post-treatment: 100

 p < 0.001
Even though FTY720 keeps immune cells in lymph nodes, the Germinal Center may comprise an additional barrier to cytolytic immune cells that can destroy HIV infected targets.

And don’t forget the central nervous system as a reservoir for HIV persistence
Can we make cells resistant to HIV infection? CCR5 and its “knockout”

• CCR5 a coreceptor for HIV cellular entry
• 32 bp deletion in the CCR5 gene results in defective protein
• Persons homozygous for this knockout are almost completely resistant to HIV infection
• The knockout occurred an estimated 10,000 years ago (only once), is in Hardy-Weinberg equilibrium and has an allele frequency of 10-20% in Northern Europe
• About 1% of Caucasians are born with two defective alleles
Long-Term Control of HIV by CCR5 Delta32/Delta32 Stem-Cell Transplantation

Gero Hütter, M.D., Daniel Nowak, M.D., Maximilian Mossner, B.S., Susanne Ganepola, M.D., Arne Müßig, M.D., Kristina Allers, Ph.D., Thomas Schneider, M.D., Ph.D., Jörg Hofmann, Ph.D., Claudia Kücherer, M.D., Olga Blau, M.D., Igor W. Blau, M.D., Wolf K. Hofmann, M.D., and Eckhard Thiel, M.D.
The Hutter Case Report

- HIV+ patient (CCR5 wt/Δ32) suppressed on HAART developed AML and failed chemotherapy
- During first induction, HAART held and viremia rebounded.
- After recurrence, conditioned with: TBI; amsacrine, fludarabine, cytarabine, cyclophosphamide, ATG
- Allo stem cell transplant (CCR5 Δ32/Δ32 donor); HAART held.
- Mild GVHD (treated with immune suppressants)
- Plasma levels of virus remained undetectable off HAART. No viral RNA or DNA in blood, BM, rectal biopsy, meningeal biopsy.
- CD4 T cell counts rose, serum Abs to gag/pol proteins decreased and T cell responses to HIV fell to background levels
- He remains well without evidence of virus recurrence more than 9 years after transplant and off antiretrovirals

Hutter et al NEJM ‘09
Can this outcome be replicated?

Table 1. Men with Human Immunodeficiency Virus Type 1 (HIV-1) Infection Who Received an Allogeneic Transplant from a Stem-Cell Donor Who Was Homozygous for the CCR5 delta32/delta32 Mutation.*

<table>
<thead>
<tr>
<th>Location of Transplantation</th>
<th>Age of Patient (yr)</th>
<th>Type of Cancer</th>
<th>Type of Graft</th>
<th>Outcome after Transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin†</td>
<td>40</td>
<td>Acute myeloid leukemia</td>
<td>HLA-matched unrelated</td>
<td>Alive after 7 yr, no viral rebound, no ART</td>
</tr>
<tr>
<td>Utrecht, the Netherlands‡</td>
<td>53</td>
<td>Myelodysplastic syndrome</td>
<td>Combined haploidentical bridge with umbilical-cord blood</td>
<td>Died from relapse of the myelodysplastic syndrome and pneumonia after 2 mo</td>
</tr>
<tr>
<td>Münster, Germany§</td>
<td>51</td>
<td>Non-Hodgkin’s lymphoma</td>
<td>HLA-mismatched unrelated</td>
<td>Died from infection after 4 mo</td>
</tr>
<tr>
<td>Essen, Germany¶</td>
<td>30</td>
<td>Non-Hodgkin’s lymphoma</td>
<td>HLA-matched unrelated</td>
<td>CXCR4-tropic HIV-1 rebound, died from relapse of non-Hodgkin’s lymphoma after 12 mo</td>
</tr>
<tr>
<td>Minneapolis§</td>
<td>12</td>
<td>Acute lymphoblastic leukemia</td>
<td>Umbilical-cord blood</td>
<td>Died from GVHD after 3 mo</td>
</tr>
<tr>
<td>Santiago, Chile§</td>
<td>46</td>
<td>Non-Hodgkin’s lymphoma</td>
<td>HLA-matched related</td>
<td>Died from pneumonia shortly afterward</td>
</tr>
<tr>
<td>Barcelona§</td>
<td>37</td>
<td>Non-Hodgkin’s lymphoma</td>
<td>Combined haploidentical bridge with umbilical-cord blood</td>
<td>Died from relapse of non-Hodgkin’s lymphoma after 3 mo</td>
</tr>
</tbody>
</table>

* ART denotes antiretroviral therapy, and GVHD graft-versus-host disease.
† Data are from Hütter et al.¹
‡ Data are from Kwon et al.³
§ Data are from personal communication with the transplantation center.
¶ Data are from Kordelas et al.²
• 2 HIV+ pts with lymphoma
• Allogeneic stem cell transplantation (donors CCR5 wt/wt)
• On HAART 2.6 and 4.3 yrs with
 – No HIV detected in plasma
 – No HIV DNA found in multiple assays of 5 million CD4 cells
 – No HIV DNA in rectal bx of one patient
 – ART withdrawn
 – Initially, no virus or viral sequences in blood or tissues. HIV Antibody levels fell
• But viral rebound after 12 and 32 weeks off ART
• Virus persisted somewhere at low frequency
What does this mean??

• Allo stem cell transplants for malignancy carry risk.
• Cure in this setting is possible but not predictable.
• You can decrease reservoir with myeloablation but cure may need replacement with resistant cells.
• Large blood or tissue sampling is needed for eradication studies
 – We can’t sample a whole person to find a rare infectious virus.
• Stochastic awakening of even very few (even one?) infectious virus may be enough to restart full blown infection.
So why was Tim Brown (the Berlin Patient) cured

- A combination of non-selective myeloablation and replacement of the immune repertoire with HIV resistant cells resulted in a “Cure”
- Can’t find virus or viral sequences
- Are all HIV-infected cells gone?
- Maybe, Maybe not: His CD4 T cells are all HIV resistant, any HIV reactivation cannot amplify to produce detectable rebound
Can a similar effect be achieved genetically?

- Without risking morbidity of allo transplantation?
Zinc Finger Nucleases can target host elements and delete them

- Comprised of two domains:
 - Nuclease domain of FokI restriction enzyme
 - Engineered zinc finger protein (ZFP) provides DNA binding specificity
 - Targets 12 nucleotides each for a total of 24-bps of DNA

- ZFN cleaves genomic DNA as a heterodimer within a 5-6 bp gap between the two binding domains

- Repair typically renders a deletion in the target gene

- Introduction of this vector into host target cells or host stem cells can render the target or stem cell progeny resistant to HIV infection (if both gene copies are knocked out)
Adoptive Transfer of CCR5 Gene Modified Autologous CD4+ T-cells

- This immunotherapy is minimally invasive, with no severe adverse events.
- It is more accessible than HSCT; it removes the need of searching for compatible donors and the risks associated with GVHD.

Diagram:
- SB-728 CCR5 ZFNs
- Enrich CD4+
- Apheresis
- Median CCR5 modification ~25%
- Expand, formulate and test
- Single Infusion of SB-728-T
- HIV+ subjects
Infusion of autologous CD4 cells with modified CCR5

Dramatic CD4 rises – mechanism?
Modified cells persisted durably (were they protected?)

Tebas et al NEJM ‘14
We can expand autologous CD4 T cells in treated HIV infection and render some of them resistant to HIV infection by CCR5 knockout

• Is the CD4 T cell expansion related to the CCR5 knockout or is it related to the ex vivo CD4 T cell expansion?

• How many “resistant” CD4 T cells are needed to allow control of HIV infection off ART?

• A clinical trial of CCR5 knockout to begin here at CWRU in late 2018

• Can we learn how to knockout CCR5 in autologous stem cells (HSC) and protect their progeny (without the risks of allogeneic HSC transplant?)
What if we can render all HSC and their progeny resistant to HIV

- Will knocking out CCR5 work for everyone?
 - There are other ways to help cells become HIV resistant
- Will brain microglia be protected by resistant HSC?
- Are there other sites of viral persistence?
- Will HIV eradication “fix” the residual fibrosis, inflammation and coagulation characterize treated HIV infection?
Engaging participants in Cure Studies?

- Eradication – a high priority for many persons with HIV infection
- Be careful not to promise too much
- Journalistic and Institutional Sensationalism hurt the field
- Remember that ART regimens are now safe, effective, well tolerated and life expectancy can be normal or near normal
- The bar is high!!
Thanks to:

Benigno Rodriguez
Rafick Sekaly
Marcos DeLima
Jane Baum
Jane Reese
Souheil Younes
Susan Ribeiro
Peter Wilkinson
Ali Filali

- Mirko Paiardini – Emory
- Sara Paganini - Emory
- Guido Silvestri – Emory
- Constantinos Petrovas – NCI
- Jeff Lifson – NCI
- Jintanat Ananworanich – MHRP

Steven Deeks – UCSF
Carl Fichtenbaum – Cinci
Daniel Kuritzkes – Harvard
Tae-Wook Chun - NIH
Winson Tang – Sangamo
www.paijournal.com – a new Open Access Journal

Rapid submission on line (5 minutes)
Submit in any NLM-approved format
Authors may include prior review and response
Reviewers are paid for timely reviews
No fees to authors
Free Open Access on Line
Already Listed on Google Scholar, NCBI, PubMed

See review of PAI in Science Magazine: (Jan 15)
http://www.sciencemag.org/news/2016/01/5-minute-journal-submission

Senior Editors
- Michael M. Lederman MD
- Donald D. Anthony MD, PhD
- Robert A. Bonomo MD
- Neil S. Greenspan MD, PhD

First five issues already on Website