Antiretroviral Therapy for HIV Infection 2017

Novel and Investigational Strategies

Frank J. Palella Jr MD
Professor of Medicine
Division of Infectious Diseases
Northwestern University
Feinberg School of Medicine
Chicago
Current Status: 90-90-90 Targets

Global (2016)

- Number of People Living With HIV (Millions)
 - People With HIV Who Know Their Status: 18.5
 - People With HIV on Treatment: 50
 - People With HIV Who Are Virally Suppressed: 100

- Percent: 70% 53% 44%

Western and Central Europe and North America (2015)

- Number of People Living With HIV (Thousands)
 - People With HIV Who Know Their Status: 2000
 - People With HIV on Treatment: 1500
 - People With HIV Who Are Virally Suppressed: 200

- Percent: 85% 76% 64%

Eastern and Southern Africa (2016)

- Number of People Living With HIV (Millions)
 - People With HIV Who Know Their Status: 37
 - People With HIV on Treatment: 75
 - People With HIV Who Are Virally Suppressed: 25

- Percent: 76% 60% 50%

When to Start ART: Global Consensus

<table>
<thead>
<tr>
<th>AIDS or HIV-Related Symptoms</th>
<th>CD4 Count (cells/mm³)</th>
<th><200</th>
<th>200-350</th>
<th>350-500</th>
<th>>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States DHHS (2016)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IAS-USA (2016)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>British HIV Association (2016)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>European AIDS Clinical Society (2016)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>WHO (2015)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

HOPS Cohort: ART Initiation and Achieving CD4 Normalization

- CD4 trajectories in the HOPS Cohort after >3 years of ART (n=1327) (1996-2012)
 - CD4 normalization (>750 cells/mm³)

- After 7.9 years of follow-up, progressively higher CD4 at ART initiation was associated with
 - Greater gains in CD4
 - Greater likelihood of CD4 normalization (baseline CD4 and hazard ratio for achieving CD4 normalization with ART)
 - 500-750 cells/mm³: 12.78 (P<0.001)
 - 350-499 cells/mm³: 7.02 (P<0.001)
 - 200-349 cells/mm³: 3.16 (P<0.001)
 - Reference: 0-49 cells/mm³: 1.0
 - Increased survival rates

Narrowing the Gap in Life Expectancy Between HIV-Positive and Uninfected Persons (1996-2011)

Kaiser Permanente Northern California (1996 to 2011): HIV-positive (n=25,768) and matched non-HIV-infected adults (n=257,600). Males (91%) and MSM (75%).

DHHS Guidelines: Recommended Regimens

Regardless of Baseline HIV RNA Level or CD4 Count

INSTI
- Raltegravir + emtricitabine/tenofovir DF or emtricitabine/tenofovir AF
- Elvitegravir/cobicistat/emtricitabine/tenofovir AF*
- Elvitegravir/cobicistat/emtricitabine/tenofovir DF*
- Dolutegravir/abacavir/lamivudine*
- Dolutegravir + emtricitabine/tenofovir DF or emtricitabine/tenofovir AF

PI
- Darunavir + ritonavir (qd) + emtricitabine/tenofovir DF or emtricitabine/tenofovir AF

*Available as a once-daily, single-tablet regimen.

Notes:
- Lamivudine may be substituted for emtricitabine or vice versa (if non-fixed dose NRTI combination is desired).
- The evidence supporting the use of emtricitabine/TAF with dolutegravir or raltegravir is based on relative bioavailability data plus data from randomized, controlled switch trials demonstrating the safety/efficacy of TAF-containing regimens.
- Tenofovir DF: use with caution in patients with renal insufficiency.
- Elvitegravir/cobicistat/emtricitabine/tenofovir AF: only for patients with pre-ART creatinine clearance ≥30 mL/min.
- Elvitegravir/cobicistat/emtricitabine/tenofovir DF: only for patients with pre-ART creatinine clearance ≥70 mL/min.
- Dolutegravir/abacavir/lamivudine: only for patients who are HLA-B*5701 negative.

DHHS Guidelines:
Alternative Regimens

May Be the Preferred Regimen for Some Patients

<table>
<thead>
<tr>
<th>NNRTI</th>
<th>Efavirenz/emtricitabine/tenofovir DF*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Efavirenz + emtricitabine/tenofovir AF</td>
</tr>
<tr>
<td></td>
<td>Rilpivirine/emtricitabine/tenofovir DF*</td>
</tr>
<tr>
<td></td>
<td>Rilpivirine/emtricitabine/tenofovir AF*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI</th>
<th>Atazanavir/cobicistat + emtricitabine/tenofovir DF or emtricitabine/tenofovir AF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atazanavir + ritonavir + emtricitabine/tenofovir DF or emtricitabine/tenofovir AF</td>
</tr>
<tr>
<td></td>
<td>Darunavir/cobicistat + emtricitabine/tenofovir DF or emtricitabine/tenofovir AF</td>
</tr>
<tr>
<td></td>
<td>Darunavir/cobicistat or darunavir/ritonavir + abacavir/lamivudine</td>
</tr>
</tbody>
</table>

*Available as a once-daily, single-tablet regimen.

Notes:
- Lamivudine may be substituted for emtricitabine or vice versa (if non-fixed dose NRTI combination is desired).
- The evidence supporting the use of emtricitabine/TAF with efavirenz, rilpivirine, atazanavir, or darunavir is based on relative bioavailability data plus data from randomized, controlled switch trials demonstrating the safety/efficacy of TAF-containing regimens.
- Efavirenz: avoid use in women trying to conceive or are sexually active and not using contraception.
- Tenofovir DF: use with caution in patients with renal insufficiency.
- Rilpivirine/emtricitabine/tenofovir DF: only for patients with pre-ART HIV RNA <100K copies/mL and CD4 >200 cells/mm³.
- Atazanavir/cobicistat or darunavir/cobicistat + emtricitabine/tenofovir DF: only for patients with pre-ART creatinine clearance ≥70 mL/min.
- Atazanavir + RTV: absorption depends on food and low gastric pH.
- Atazanavir + RTV: absorption depends on food and low gastric pH.

IAS-USA Guidelines: Recommended Regimens

<table>
<thead>
<tr>
<th>INSTI</th>
<th>Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elvitegravir/cobicistat/emtricitabine/tenofovir AF*</td>
</tr>
<tr>
<td></td>
<td>Dolutegravir/abacavir/lamivudine†</td>
</tr>
<tr>
<td></td>
<td>Dolutegravir + emtricitabine/tenofovir AF*</td>
</tr>
<tr>
<td></td>
<td>Raltegravir + emtricitabine/tenofovir AF*</td>
</tr>
</tbody>
</table>

* Tenofovir DF may be substituted for tenofovir AF if tenofovir AF is not available.
† HLA-B*5701-negative patients.

Notes:
- Tenofovir DF is not recommended for individuals with creatinine clearance <50 mL/min or at high risk of kidney or bone disease (e.g., osteopenia/osteoporosis).
- Abacavir should be used with caution in patients who have or are at high risk of cardiovascular disease.
- Tenofovir AF is not recommended in patients with creatinine clearance <30 mL/min.

IAS-USA Guidelines: Alternative Regimens in Whom an INSTI is not an Option

| PI | Darunavir/cobicistat + emtricitabine/tenofovir AF
| | Darunavir + ritonavir + emtricitabine/tenofovir DF |
| NNRTI | Rilpivirine/emtricitabine/tenofovir AF
| | Rilpivirine/emtricitabine/tenofovir DF
| | Efavirenz/emtricitabine/tenofovir DF |

Notes:

- Tenofovir DF is not recommended for individuals with or at high risk of kidney or bone disease (osteopenia or osteoporosis).
- Tenofovir AF is not recommended in patients with a creatinine clearance <30 mL/min.

Registrational Treatment-Naive Clinical Trials: Cross-Study Comparison*

HIV RNA <50 c/mL at Week 48

*This slide depicts data from multiple studies published from 2004-2012. Not all regimens have been compared head-to-head in a clinical trial.
Current Status of INSTI Resistance in the United States

- Transmitted INSTI resistance remains rare and rates of on-treatment INSTI resistance continue to be low \cite{1-3}

- **CDC National HIV Surveillance System** \cite{1}:
 - Prevalence of INSTI resistance for HIV diagnoses through 2014: 65/14,468 (0.4%)
 - Pre-ART prevalence of INSTI resistance (ie, transmitted): 2/4631 (0.04%)

- **UNC CFAR HIV Clinical Cohort** \cite{2}:
 - 2015 INSTI resistance prevalence in 685 pts who began ART in 2007 or later: 1%

- **In modeling study assuming 0.1% rate of transmitted INSTI resistance and $250 cost per test: pre-ART INSTI resistance testing correlated with worse outcomes, higher costs vs no test** \cite{3}

Investigational ART Regimens
Bictegravir/FTC/TAF vs Dolutegravir-Containing Regimens for Treatment-Naive Pts

- **Bictegravir**: novel QD unboosted INSTI coformulated with FTC/TAF
- **GS-1489**: randomized, double-blind, active-controlled phase III trial[1]

 ART-naive, HLA-B*5701–negative pts with eGFR_{CG} ≥ 50 mL/min (N = 629)

 - Bictegravir/FTC/TAF* (n = 314)
 - Dolutegravir/ABC/3TC† (n = 315)

 ART-naive, HLA-B*5701–negative pts with eGFR_{CG} ≥ 30 mL/min (N = 645)

 - Bictegravir/FTC/TAF* (n = 320)
 - Dolutegravir + FTC/TAF‡ (n = 325)

Wk 48

All pts also received placebo tablets for comparator regimen (eg, pts in GS-1489 who received BIC/FTC/TAF also received DTG/ABC/3TC placebo). *BIC/FTC/TAF, 50/200/25 mg PO QD. †DTG/ABC/3TC, 50/600/300 mg PO QD. ‡DTG + FTC/TAF, 50 + 200/25 mg PO QD

BIC/FTC/TAF vs DTG-Containing Regimens: Selected Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIC/FTC/TAF (n = 314)</td>
<td>DTG/ABC/3TC (n = 315)</td>
<td>BIC/FTC/TAF (n = 320)</td>
<td>DTG + FTC/TAF (n = 325)</td>
</tr>
<tr>
<td>Median age, yrs (range)</td>
<td>31 (18-71)</td>
<td>32 (18-68)</td>
<td>33 (18-71)</td>
<td>34 (18-77)</td>
</tr>
<tr>
<td>Male, %</td>
<td>91</td>
<td>90</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>Median HIV-1 RNA, log_{10} copies/mL (IQR)</td>
<td>4.42 (4.03-4.87)</td>
<td>4.51 (4.04-4.87)</td>
<td>4.43 (3.95-4.90)</td>
<td>4.45 (4.03-4.84)</td>
</tr>
<tr>
<td>HIV-1 RNA > 100,000 copies/mL, %</td>
<td>17</td>
<td>16</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>Median CD4+ cell count, cells/mm³ (IQR)</td>
<td>443 (299-590)</td>
<td>450 (324-608)</td>
<td>440 (289-591)</td>
<td>441 (297-597)</td>
</tr>
<tr>
<td>CD4+ cell count < 200 cells/mm³, %</td>
<td>11</td>
<td>10</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>

BIC/FTC/TAF vs DTG-Containing Regimens: Key Efficacy Findings

- No resistance for any regimen components detected for either group

BIC/FTC/TAF vs DTG-Containing Regimens: Key Safety Findings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIC/FTC/TAF (n = 314)</td>
<td>DTG/ABC/3TC (n = 315)</td>
</tr>
<tr>
<td>Diarrhea, %</td>
<td>12.7</td>
<td>13.0</td>
</tr>
<tr>
<td>Headache, %</td>
<td>11.5</td>
<td>13.7</td>
</tr>
<tr>
<td>Nausea, %</td>
<td>10.2</td>
<td>22.9*</td>
</tr>
<tr>
<td>Upper respiratory tract infection, %</td>
<td>6.4</td>
<td>10.8</td>
</tr>
<tr>
<td>Median eGFR_CG (\Delta) from BL, mL/min</td>
<td>-10.5</td>
<td>-10.8†</td>
</tr>
<tr>
<td>Mean BMD (\Delta) from BL, % spine/hip</td>
<td>-0.83/-0.78</td>
<td>-0.60/-1.02†</td>
</tr>
<tr>
<td>D/c for AE, n (%)</td>
<td>0</td>
<td>4 (1.3)</td>
</tr>
</tbody>
</table>

*[^P < .001. †^P = NS. ‡^P = .02.]

- GS-1489: similar changes in lipids and proteinuria between groups; some pt-reported neuropsychiatric (eg, anxiety, depression) and sleep-related symptoms (eg, disturbance) more frequent with DTG/ABC/3TC
- No d/c for renal AEs and no proximal tubulopathy for any regimen

DRIVE-AHEAD: Doravirine/3TC/TDF vs EFV/FTC/TDF for Treatment-Naive Pts

- **Doravirine**: NNRTI with unique resistance profile, low drug–drug interaction potential; doravirine + 2 NRTIs noninferior to DRV/RTV + 2 NRTIs with improved lipid profile in phase III DRIVE-FORWARD[1]

- DRIVE-AHEAD: randomized, double-blind, active-controlled phase III trial[1]

ART-naive pts with HIV-1 RNA ≥ 1000 copies/mL within 45 days of Day 1; no resistance to study drugs (N = 734)

- Baseline: male, 84% to 85%; mean CD4+ cell count, 416-435 cells/mm³ (12% to 13% ≤ 200 cells/mm³)

DRIVE-AHEAD: Key Efficacy Findings

Wk 48 Virologic Efficacy

- **Treatment difference:** 3.5% (95% CI: -2.0% to 9.0%)

Outcome at Wk 48, n (%)

<table>
<thead>
<tr>
<th></th>
<th>DOR/3TC/TDF (n = 364)</th>
<th>EFV/FTC/TDF (n = 364)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDVF</td>
<td>22 (6.0)</td>
<td>14 (3.8)</td>
</tr>
<tr>
<td>Genotyped</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Primary NNRTI* resistance</td>
<td>6 (1.6)</td>
<td>12 (3.3)</td>
</tr>
<tr>
<td>Primary NRTI* resistance</td>
<td>5 (1.4)</td>
<td>5 (1.4)</td>
</tr>
</tbody>
</table>

*See slidenotes for specific mutations.

- No unanticipated mutations observed

DRIVE-AHEAD: Key Safety Findings

Neuropsychiatric Outcomes, Wk 48

- **Dizziness**: DOR/3TC/TDF (8.8%) vs. EFV/FTC/TDF (37.1%)
- **Sleep Disorders and Disturbances**: DOR/3TC/TDF (12.1%) vs. EFV/FTC/TDF (25.5%)
- **Altered Sensorium**: DOR/3TC/TDF (4.4%) vs. EFV/FTC/TDF (8.2%)
- **Depression and Suicide/Self-injury**: DOR/3TC/TDF (4.1%) vs. EFV/FTC/TDF (6.6%)
- **Psychosis and Psychotic Disorders**: DOR/3TC/TDF (0.3%) vs. EFV/FTC/TDF (1.1%)

Drug-related AE, %
- DOR/3TC/TDF (31%)
- EFV/FTC/TDF (63%)

D/c for AEs, %
- DOR/3TC/TDF (3%)
- EFV/FTC/TDF (7%)

Lipid ∆ From BL at Wk 48, mg/dL

<table>
<thead>
<tr>
<th>Lipid</th>
<th>DOR/3TC/TDF</th>
<th>EFV/FTC/TDF</th>
<th>Difference (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-C</td>
<td>-1.6</td>
<td>8.7</td>
<td>-10.3 (-13.7, -6.8)</td>
<td>< .0001</td>
</tr>
<tr>
<td>Non–HDL-C</td>
<td>-3.8</td>
<td>13.3</td>
<td>-17.1 (-20.6, -13.6)</td>
<td>< .0001</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>-2.0</td>
<td>21.8</td>
<td>-23.8 (-27.4, -19.2)</td>
<td>NR</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>-12.4</td>
<td>22.0</td>
<td>-34.4 (-37.9, -30.8)</td>
<td>NR</td>
</tr>
<tr>
<td>HDL-C</td>
<td>1.9</td>
<td>8.5</td>
<td>-6.6 (-9.1, -4.1)</td>
<td>NR</td>
</tr>
</tbody>
</table>

Doravirine or Darunavir + RTV Both With FTC/TDF or ABC/3TC in Treatment-Naive Pts

- Doravirine: next-gen NNRTI, unique resistance profile, low DDI potential
- Multicenter, randomized, double-blind phase III trial
 - Primary endpoint: HIV-1 RNA < 50 copies/mL at Wk 48

Efficacy similar in both arms regardless of baseline HIV-1 RNA or CD4+ cell count.

No drug resistance detected in pts with PDVF through Wk 48 in either arm.

- n = 1 pt with noncompliance discontinued at Wk 24, developed DOR and FTC resistance.

Doravirine vs DRV + RTV in Combination With FTC/TDF or ABC/3TC: Safety

<table>
<thead>
<tr>
<th>AE, %</th>
<th>DOR (n = 383)</th>
<th>DRV + RTV (n = 383)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 AE</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>Treatment-related AE</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>Serious AE</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Discontinuation for AE</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AEs of clinical interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Rash*</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>▪ Neuropsychiatric†</td>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fasting Lipid Δ From BL to Wk 48, mg/dL</th>
<th>DOR (n = 383)</th>
<th>DRV + RTV (n = 383)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-c*</td>
<td>-4.51</td>
<td>9.92</td>
</tr>
<tr>
<td>Non-HDL-c*</td>
<td>-5.3</td>
<td>13.75</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>-1.37</td>
<td>17.9</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>-3.14</td>
<td>21.97</td>
</tr>
<tr>
<td>HDL-c</td>
<td>3.94</td>
<td>4.15</td>
</tr>
</tbody>
</table>

*Discontinued due to rash: n = 2 in DOR arm; n = 1 in DRV + RTV arm.
†No discontinuation for neuropsychiatric conditions.

* P < .0001 for DOR vs DRV + RTV.
Dual-Therapy Regimens for Initial ART

- **ANDES**: randomized phase IV study of DRV/RTV + 3TC vs DRV/RTV + TDF/3TC in ART-naive pts (N = 145)\(^1\)
 - Baseline: 24% HIV-1 RNA > 100,000 c/mL

<table>
<thead>
<tr>
<th>HIV-1 RNA < 400 c/mL (ITT) at Wk 24, n/N (%)</th>
<th>DRV/RTV + 3TC</th>
<th>DRV/RTV + TDF/3TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>71/75 (95)</td>
<td>68/70 (97)</td>
</tr>
<tr>
<td>BL HIV-1 RNA > 100,000 c/mL</td>
<td>20/20 (100)</td>
<td>15/15 (100)</td>
</tr>
</tbody>
</table>

- 1 virologic failure with DRV/RTV + TDF/3TC

- **ACTG A5353**: single-arm phase II study of DTG + 3TC in ART-naive pts (N = 120)\(^2\)
 - Baseline: 31% HIV-1 RNA > 100,000 c/mL

<table>
<thead>
<tr>
<th>Virologic Outcome at Wk 24, n (%)</th>
<th>Baseline HIV-1 RNA, c/mL</th>
<th>Total (N = 120)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> 100,000 (n = 37)</td>
<td>≤ 100,000 (n = 83)</td>
</tr>
<tr>
<td>Success*</td>
<td>33 (89)</td>
<td>75 (90)</td>
</tr>
<tr>
<td>Nonsuccess</td>
<td>3 (8)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>No data</td>
<td>1 (3)</td>
<td>6 (7)</td>
</tr>
</tbody>
</table>

*HIV-1 RNA < 50 copies/mL.
- n = 3 with PDVF; n = 1 with emergent M184V and R263R/K mixture
- **GEMINI 1/2** randomized phase III trials of DTG + 3TC ongoing\(^3,4\)

Switch/Simplification
SWORD 1 & 2: Switch FromSuppressive ART to DTG + RPV Dual Therapy

- Randomized, open-label, multicenter phase III trials
 - Primary endpoint: HIV-1 RNA < 50 copies/mL at Wk 48 (ITT-E snapshot)

HIV-infected pts with HIV-1 RNA < 50 c/mL for ≥ 12 mos while receiving first-line or second-line ART with 2 NRTIs + INSTI, NNRTI, or PI; no previous VF; HBV negative (N = 1024)

- 70% to 73% of pts receiving TDF at baseline

Llibre JM, et al. CROI 2017. Abstract 44LB.
Switch From Suppressive ART to DTG + RPV
Noninferior to Continued Baseline ART at Wk 48

- 1 pt with confirmed criteria for virologic withdrawal at Wk 36 in DTG + RPV arm had K101K/E
 - Documented nonadherence at VF
 - Resuppressed with continued DTG + RPV
 - No INSTI resistance

Switch From Suppressive ART to DTG + RPV: Safety Outcomes

- AE rates generally similar between treatment arms through Wk 52
 - Numerically higher rate of drug-related grade 1/2 AEs with switch: 17% vs 2%
 - Numerically higher rate of withdrawal for AEs with switch: 4% vs < 1%

- No notable change in serum lipid values from baseline to Wk 48 in either treatment arm
SWORD 1 & 2 Substudy: BMD Impact of Switch From TDF-Based ART to DTG + RPV

- Randomized, open-label, multicenter phase III trials demonstrated that switch to DTG + RPV noninferior to remaining on baseline ART at Wk 48 in virologically suppressed pts[1]

- Current analysis assessed BMD in pts who continued on TDF-containing triple ART regimen or switched from TDF-containing triple ART to DTG + RPV (N = 102)[2]

Reproduced with permission.

Change From BL in BMD at Wk 48

Primary endpoint.

<table>
<thead>
<tr>
<th></th>
<th>DTG + RPV (n = 46)</th>
<th>Continued TDF-based ART (n = 35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hip</td>
<td>P = .014</td>
<td></td>
</tr>
<tr>
<td>Mean Adjusted Change in BMD From BL (%)</td>
<td>1.34 ± 0.05</td>
<td>0.05 ± 0.15</td>
</tr>
<tr>
<td>BL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 Wks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DTG + RPV (n = 46)</th>
<th>Continued TDF-based ART (n = 35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar Spine</td>
<td>P = .039</td>
<td></td>
</tr>
<tr>
<td>Mean Adjusted Change in BMD From BL (%)</td>
<td>1.46 ± 0.15</td>
<td>0.15 ± 0.05</td>
</tr>
<tr>
<td>BL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 Wks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANRS 167 LAMIDOL: Switch to DTG + 3TC in Virologically Suppressed Pts on Triple ART

- Noncomparative, open-label, single-arm multicenter trial
 - Primary endpoint: therapeutic success at Wk 56 (ie, after 48 wks of dual therapy)
 - Therapeutic failure: HIV-1 RNA > 50 copies/mL, interruption, lost to f/u, death

HIV-infected pts with HIV-1 RNA ≤ 50 copies/mL for ≥ 2 yrs on first-line ART;
≤ 2 ART modifications allowed, except within 6 mos of study start; CD4+ cell count > 200 cells/mm³
(N = 110)

Phase I

Wk 8*

DTG 50 mg QD + 2 NRTI†

Phase II

Wk 56

DTG 50 mg QD + 3TC 300 mg QD
(n = 104)

*Pts with HIV-1 RNA ≤ 50 copies/mL proceeded to phase II.
†In phase I, third agent in regimen replaced with DTG; baseline NRTI backbone maintained.

LAMIDOL Interim Analysis: Switch to DTG + 3TC Effective in Maintaining Viral Suppression

- 97% (101/104) pts maintained therapeutic success through 40 wks of dual therapy (study Wk 48)[1]
 - No INSTI resistance in 3 pts with virologic failure
 - 7 pts with serious AEs, only 2 related to dual therapy

- DTG + 3TC dual therapy currently under phase III evaluation as both initial ART[2,3] and as a switch strategy for virologically suppressed pts[4]

<table>
<thead>
<tr>
<th>Therapeutic Success, n/N* (%)</th>
<th>DTG + 3TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wk 0 (entry; on BL triple therapy)</td>
<td>110/110 (100)</td>
</tr>
<tr>
<td>Wk 8 (end of phase I, start of phase II)</td>
<td>104/104 (100)</td>
</tr>
<tr>
<td>Wk 12</td>
<td>104/104 (100)</td>
</tr>
<tr>
<td>Wk 16</td>
<td>103/104 (99)</td>
</tr>
<tr>
<td>Wk 24</td>
<td>103/104 (99)</td>
</tr>
<tr>
<td>Wk 32</td>
<td>103/104 (99)</td>
</tr>
<tr>
<td>Wk 40</td>
<td>102/104 (98)</td>
</tr>
<tr>
<td>Wk 48</td>
<td>101/104 (97)</td>
</tr>
</tbody>
</table>

*Pts enrolled in phase I, N = 110; pts enrolled in phase II, N = 104.

DOMONO: Switch to DTG Monotherapy in Virologically Suppressed Pts Not Sufficient

- Randomized comparison of switch to DTG 50 mg QD monotherapy vs continued baseline ART for 24 wks in virologically suppressed pts with no previous VF\(^2\)

- At Wk 24, DTG monotherapy noninferior to continued baseline ART for maintained HIV-1 RNA < 200 c/mL
 - After 24 wks, all pts allowed to switch to DTG QD monotherapy

- Study d/c early because of high VF rate after 48 wks of DTG monotherapy
 - VF in 8/77 pts with DTG monotherapy vs 3/152 pts on combination ART in concurrent control group \((P = .03)\)
 - Among 6 VF cases with resistance data in DTG monotherapy group, 3 developed INSTI resistance

Emergent INSTI Resistance After Switch to DTG Monotherapy

- International, multicenter retrospective study evaluated virologically suppressed pts who were switched from combination ART to DTG 50 mg QD monotherapy
 - Pts with history of VF on INSTI and INSTI resistance excluded
- 11 of 122 pts switched to DTG monotherapy experienced VF
 - 9 of 11 had genotypic INSTI resistance at VF
 - INSTI resistance pathways varied: 92Q/155H (n = 1); 97A/155H (n = 1); 155H/148R (n = 1); 118R (n = 2); 148K (n = 1); 148H (n = 2); 148R (n = 1)
LATTE-2: 96-Wk Results for Cabotegravir IM + Rilpivirine IM as Long-Acting Maintenance ART

- **Cabotegravir**: INSTI formulated as PO tablet and for long-acting IM injection
- LATTE-2: phase IIb study in which pts randomized to CAB 400 mg + RPV 600 mg IM Q4W, CAB 600 mg + RPV 900 mg IM Q8W, or CAB 30 mg + ABC/3TC 600/300 mg PO QD after induction/virologic suppression with oral CAB + ABC/3TC (N = 309)

Wk 96 Virologic Efficacy

- At 96 wks, ~ 30% pts receiving IM injection experienced ISR
 - 99% of ISRs mild/moderate
- AEs leading to withdrawal
 - Pooled Q4W/Q8W IM arms, 4%; PO arm, 2%
- Withdrawals between Wks 48 and 96: CAB IM arms, n = 4 (n = 1 for AE, n = 3 withdrew consent); CAB PO arm, n = 3 (all withdrew consent)
- No additional PDVFs after Wk 48 in any arm
- ~ 88% of pts receiving IM CAB very satisfied to continue present treatment vs 43% receiving PO CAB

Virologic Success

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Pts (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM CAB + RPV Q4W (n = 115)</td>
<td>87</td>
</tr>
<tr>
<td>IM CAB + RPV Q8W (n = 115)</td>
<td>94</td>
</tr>
<tr>
<td>PO CAB + ABC/3TC (n = 56)</td>
<td>84</td>
</tr>
</tbody>
</table>

Treatment difference (vs CAB PO):
- CAB IM Q4W: 3.0% (95% CI: -8.4% to 14.4%)
- CAB IM Q8W: 10.0% (95% CI: -0.6% to 20.5%)

Virologic Nonresponse

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Pts (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM CAB + RPV Q4W (n = 115)</td>
<td>0</td>
</tr>
<tr>
<td>IM CAB + RPV Q8W (n = 115)</td>
<td>4</td>
</tr>
<tr>
<td>PO CAB + ABC/3TC (n = 56)</td>
<td>2</td>
</tr>
</tbody>
</table>

No Virologic Data

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Pts (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM CAB + RPV Q4W (n = 115)</td>
<td>13</td>
</tr>
<tr>
<td>IM CAB + RPV Q8W (n = 115)</td>
<td>2</td>
</tr>
<tr>
<td>PO CAB + ABC/3TC (n = 56)</td>
<td>14</td>
</tr>
</tbody>
</table>

*HIV-1 RNA < 50 copies/mL.

Slide credit: clinicaloptions.com
NEAT 022: Switch From Boosted PI to DTG in Suppressed Pts With High CV Risk

- International, randomized, open-label phase IV study
 - Primary endpoints at Wk 48: proportion with HIV RNA < 50 copies/mL (ITT), change in total plasma cholesterol

Pts with stable HIV-1 RNA < 50 c/mL on PI/RTV + 2 NRTIs, high CV risk,* no resistance mutations, no VF (N = 415)

Immediate switch to DTG + 2 NRTIs† (n = 205)

Continue PI/RTV + 2 NRTIs‡ (n = 210)

Deferred switch to DTG + 2 NRTIs‡

Wk 48
Wk 96

* > 50 yrs of age and/or Framingham risk score > 10% at 10 yrs. †NRTIs to remain the same throughout study.

- Baseline NRTI backbones: FTC/TDF, 64.8%; ABC/3TC, 31.3%

Slide credit: clinicaloptions.com
NEAT 022: Key Findings

- Switching to DTG noninferior to continuing boosted PI through Wk 48

- Switching to DTG associated with improved lipid profile vs continuing boosted PI through Wk 48

- No emergent resistance in pts with VF

- No significant differences in grade 3/4 AEs, serious AEs, AE-related d/c

Slide credit: clinicaloptions.com
DAWNING: Second-line DTG vs LPV/RTV + 2 NRTIs in Pts With Virologic Failure

- Interim results of an international, randomized, open-label phase IIIb study (N = 627)
 - Most frequent enrolment sites: South Africa (27%), Peru, Ukraine, Brazil, Thailand, China (8% to 10% each)

Stratified by HIV-1 RNA (≤ vs > 100,000 c/mL), fully active investigator-selected NRTIs (2 vs < 2)

- Interim analysis
 - Wk 24

- Primary analysis
 - Wk 48
 - Wk 52

Pts on first-line NNRTI + 2 NRTIs ≥ 6 mos with VF*, no primary resistance to INSTIs or PIs (N = 627)

- DTG + 2 NRTIs
 - (n = 312)

- LPV/RTV + 2 NRTIs†
 - (n = 312)

HIV-1 RNA ≥ 400 copies/mL on 2 occasions. †After preplanned analysis (all Wk 24 and subsets of Wks 36/48 data), it was recommended that LPV/RTV be discontinued due to differences in virologic nonresponse and PDVF favoring DTG arm. Protocol amendment allowed pts on LPV/RTV to switch to DTG.

- Baseline characteristics (DTG vs LPV/RTV): female, 37% vs 33%; African heritage, 42% vs 36%; HIV-1 RNA > 100,000 copies/mL, 22% vs 20%

DAWNING: Key Findings

<table>
<thead>
<tr>
<th>Virologic Outcome at Wk 24, n (%)</th>
<th>DTG + 2 NRTIs (n = 312)</th>
<th>LPV/RTV + 2 NRTIs (n = 312)</th>
<th>Treatment Difference, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success*</td>
<td>257 (82)</td>
<td>215 (69)</td>
<td>13.8 (7.3-20.3; P < .001)</td>
</tr>
<tr>
<td>Nonresponse</td>
<td>37 (12)</td>
<td>77 (25)</td>
<td>NR</td>
</tr>
<tr>
<td>No data</td>
<td>18 (6)</td>
<td>20 (6)</td>
<td>NR</td>
</tr>
</tbody>
</table>

ITT-E population. *HIV-1 RNA < 50 copies/mL.

- **Virologic withdrawal†**: DTG arm, n = 10 (3%); LPV/RTV arm, n = 28 (9%)

- In pts with virologic withdrawal:
 - No pts in DTG arm developed INSTI or NRTI RAMs
 - n = 3 in LPV/RTV arm developed NRTI RAMs

- **AEs, DTG vs LPV/RTV**
 - Drug related, 15% vs 36%
 - Serious/death, 5% vs 6%
 - Leading to withdrawal, 2% vs 5%

†HIV-1 RNA decrease of < 1 log_{10} c/mL by Wk 16, increase to ≥ 400 c/mL after suppression, ≥ 400 c/mL at or after Wk 24.
Efficacy, Safety of Ibalizumab Through 24 Wks

- Non-immunosuppressive monoclonal antibody that binds CD4 and inhibits viral entry
- Able to block both CCR5- and CXCR4 tropic viruses.

Primary endpoint: 83% with ≥ 0.5 log\(_{10}\) HIV-1 RNA decrease at Day 14 vs 3% at end of control period (\(P < .0001\))
 - 60% with ≥ 1.0 log\(_{10}\) HIV-1 RNA decrease
 - Mean decrease by Day 14: 1.1 log\(_{10}\)

9 pts reported 17 serious AEs
 - 1 drug-related serious AE (IRIS) resulted in discontinuation

9 other pts discontinued
 - Death (n = 4; liver failure, Kaposi sarcoma; end-stage AIDS, lymphoma)
 - Consent withdrawal (n = 3)
 - Lost to follow-up (n = 2)

No cases of anti-ibalizumab antibodies

<table>
<thead>
<tr>
<th>Wk 24 Virologic Outcome</th>
<th>Ibalizumab + OBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1.0 log(_{10}) HIV-1 RNA decrease, %</td>
<td>55</td>
</tr>
<tr>
<td>≥ 2.0 log(_{10}) HIV-1 RNA decrease, %</td>
<td>48</td>
</tr>
<tr>
<td>HIV-1 RNA < 50 copies/mL, %</td>
<td>43</td>
</tr>
<tr>
<td>HIV-1 RNA < 200 copies/mL, %</td>
<td>50</td>
</tr>
<tr>
<td>Mean HIV-1 RNA decrease from baseline, log(_{10})</td>
<td>1.6</td>
</tr>
</tbody>
</table>
TMB-301: Long-Acting Ibalizumab in Pretreated Pts Infected With Multidrug-Resistant HIV

- Ibalizumab: humanized mAb to conformational epitope on CD4 receptor that blocks postattachment HIV entry into CD4+ T-cells without altering normal cell function
- Single-arm, open-label phase III trial
 - Primary endpoint: $\geq 0.5 \log_{10}$ HIV-1 RNA decrease at Day 14

- 53% with resistance to all drugs from ≥ 3 classes; 68% with INSTI resistance

CD01 Extension: Long-term, Maintenance PRO 140 Monotherapy Following Initial ART

- PRO 140: humanized IgG4 CCR5 mAb
- Single-arm, open-label phase IIb extension study\(^1\)
 - Maintenance PRO 140 given at 350 mg SC/wk for ≤ 3 yrs in pts stable on initial ART from CD01 study (N = 16)
- Wkly PRO 140 maintenance SC injection generally well tolerated
 - No drug-related severe AEs or d/c for AEs
 - Infrequent, mild, transient administration-site reactions in < 10% of pts
- HIV-1 RNA < 40 copies/mL maintained in majority of pts
 - > 40 wks: 13/16 pts (81.3%)
 - > 2 yrs: 10/16 pts (62.5%)
 - 1 pt d/c due to relocation; 5 pts had VF
- CD4+ cell counts stable through study
- No anti-PRO 140 antibodies detected
- Ongoing phase IIb/III studies of PRO 140 monotherapy\(^2\) and in combination with ART\(^3\)

<table>
<thead>
<tr>
<th>Agent</th>
<th>MoA or Formulation</th>
<th>Phase</th>
<th>Dosing/Administration</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS-CA1[^1]</td>
<td>HIV capsid inhibitor</td>
<td>Pre-clinical</td>
<td>Extended release, suitable for SC of solid depot formulation</td>
<td>Potent ART with orthogonal resistance profile to existing ART; potential for long-acting formulation due to low aqueous solubility, high stability</td>
</tr>
<tr>
<td>GS-9131[^2]</td>
<td>NRTI</td>
<td>Pre-clinical</td>
<td>Potential for once daily dosing</td>
<td>Potent ART active against NRTI RAMs K65R, L74V, M184V alone or in combination; minimal loss of susceptibility with 4 or more TAMs</td>
</tr>
<tr>
<td>MK-8591[^3]</td>
<td>Nucleoside Reverse Transcriptase Translocation Inhibitor (NRTTI)</td>
<td>Pre-clinical</td>
<td>10 mg QW PO; potential for extended duration</td>
<td>Comparable MK-8591 levels in animal rectal, vaginal tissue to TDF levels in tissues of human subjects highlights potential prophylaxis utility</td>
</tr>
<tr>
<td>GS-PI1[^4]</td>
<td>PI</td>
<td>Pre-clinical</td>
<td>Potential for unboosted, once daily dosing</td>
<td>Potent ART with high barrier to resistance, including < 2-fold loss in potency against major PI RAMs, and 10-fold to 40-fold longer in vivo half life vs ATV or DRV</td>
</tr>
<tr>
<td>NANO-EFV, NANO-LPV[^5]</td>
<td>Oral, lower dose SDN</td>
<td>I</td>
<td>nEFV: 50 mg QD, 21 d nLPV/RTV: 200/100 mg BID, 7 d</td>
<td>Enhanced oral bioavailability suggests can reduce EFV, LPV dose by ~ 50% while maintaining PK</td>
</tr>
</tbody>
</table>

Additional Investigational Agents Reported at CROI 2017: Phase II

<table>
<thead>
<tr>
<th>Agent</th>
<th>MoA or Formulation</th>
<th>Phase</th>
<th>Dosing/Administration</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMC278 LA[1]</td>
<td>LA injectable RPV (IM)</td>
<td>II</td>
<td>1200 mg IM Q8W</td>
<td>Potential as injectable, long-acting PrEP</td>
</tr>
<tr>
<td>Elsulfavirine[2]</td>
<td>Prodrug of new NNRTI VM1500A</td>
<td>IIb</td>
<td>Combined therapy: 20 mg elsulfavirine + FTC/TDF PO QD</td>
<td>Less toxic alternative to EFV for initial ART</td>
</tr>
<tr>
<td>UB-421[3]</td>
<td>Anti-CD4 receptor mAb</td>
<td>II</td>
<td>10 mg/kg QW IV or 25 mg/kg Q2W IV</td>
<td>Possible ART alternative for maintenance therapy in virologically suppressed pts</td>
</tr>
</tbody>
</table>

ART and Pregnancy
Current DHHS Recommendations: Initial ART in Pregnant Women

<table>
<thead>
<tr>
<th>Guideline Status</th>
<th>NRTIs</th>
<th>PIs</th>
<th>INSTIs</th>
<th>NNRTIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred</td>
<td>3TC/ABC</td>
<td>ATV/RTV*</td>
<td>RAL* §</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FTC/TDF</td>
<td>DRV/RTV*†</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3TC + TDF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative</td>
<td>3TC/ZDV</td>
<td>LPV/RTV*†</td>
<td>EFV*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RPV*‡</td>
<td></td>
</tr>
<tr>
<td>Insufficient data to</td>
<td>FTC/TAF</td>
<td>FPV</td>
<td>DTG</td>
<td>EVG/COBI</td>
</tr>
<tr>
<td>recommend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*In addition to preferred 2-NRTI backbone. †Must be used twice daily in pregnancy. ‡Only if pretreatment HIV-1 RNA ≤ 100,000 copies/mL and CD4+ cell count ≥ 200 cells/mm³. § If adherence concerns or potential for ART discontinuation postpartum, a PI is preferred over INSTI to reduce resistance risk.

Tsepamo: Birth Outcomes When Initiating First-line DTG vs EFV in Pregnancy

- Prospective cohort study in HIV-infected women in Botswana initiating ART with EFV/FTC/TDF vs DTG/FTC/TDF while pregnant (N = 5438)

<table>
<thead>
<tr>
<th>Adverse Birth Outcomes, n (%)</th>
<th>DTG (n = 845)</th>
<th>EFV (n = 4593)</th>
<th>aRR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>291 (34.4)</td>
<td>1606 (35.0)</td>
<td>1.0 (0.9-1.1)</td>
</tr>
<tr>
<td></td>
<td>92 (10.9)</td>
<td>519 (11.3)</td>
<td>1.0 (0.8-1.2)</td>
</tr>
<tr>
<td>Stillbirth</td>
<td>18 (2.1)</td>
<td>105 (2.3)</td>
<td>0.9 (0.6-1.5)</td>
</tr>
<tr>
<td>Neonatal death (< 28 d)</td>
<td>11 (1.3)</td>
<td>60 (1.3)</td>
<td>1.0 (0.5-1.9)</td>
</tr>
<tr>
<td>Preterm birth (< 37 wks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very preterm (< 32 wks)</td>
<td>149 (17.8)</td>
<td>844 (18.5)</td>
<td>1.0 (0.8-1.1)</td>
</tr>
<tr>
<td></td>
<td>35 (4.2)</td>
<td>160 (3.5)</td>
<td>1.2 (0.8-1.7)</td>
</tr>
<tr>
<td>SGA (< 10th percentile weight)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very SGA (< 3rd percentile weight)</td>
<td>156 (18.7)</td>
<td>838 (18.5)</td>
<td>1.0 (0.9-1.2)</td>
</tr>
<tr>
<td></td>
<td>51 (6.1)</td>
<td>302 (6.7)</td>
<td>0.9 (0.7-1.2)</td>
</tr>
</tbody>
</table>

*For DTG vs EFV; adjusted for maternal age, education, gravida.

- Few first-trimester ART exposures (DTG, n = 116; EFV, n = 396); most second/third trimester
- Only 1 major congenital abnormality observed (skeletal dysplasia in EFV-exposed group)
- Adverse birth outcome risks similar when initiating first-line DTG vs EFV in pregnancy
Selected Prevention Studies

- **Opposites Attract**: international, prospective cohort study assessing the incidence of linked HIV transmission in MSM serodiscordant couples when HIV-infected partner on ART and virologically suppressed (N = 343 couples; 591 CYFU; 16,889 acts of CLAI)\(^1\)
 - For HIV-infected partner, HIV-1 RNA undetectable for 95% of CYFU
 - **No linked infections; 3 infections occurring during study contracted from outside partners**

- **Pluspills**: open-label demonstration study of FTC/TDF PO QD + support for HIV prevention in uninfected, sexually active adolescents 15-19 yrs of age in South Africa (N = 148)\(^2\)
 - **Adherence decreased over time and with less frequent study visits**; at Wk 12 (monthly visits), 54% had plasma TDF levels of ≥ 10 ng/mL; at Wk 48 (visits every 3 mos), 38% had plasma TDF levels of ≥ 10 ng/mL

- **MTN023/IPM 030**: randomized, double-blind, placebo-controlled phase IIa trial of a dapivirine vaginal ring for HIV prevention in uninfected, sexually active US adolescents 15-17 yrs of age (N = 96)\(^3\)
 - At Wk 24, similar rates of grade ≥ 2 AE between study groups; **87% of plasma samples (taken at 2, 4, 12, 24 wks) showed dapivirine levels suggestive of adherence; 95% of returned rings had residual dapivirine levels suggestive of adherence**

IPERGAY: randomized, double-blind, placebo-controlled study of event-driven FTC/TDF PO PrEP for uninfected, high-risk MSM in France and Canada (N = 400)

- Previous findings: HIV incidence/100 PY, FTC/TDF vs placebo groups 0.91 vs 6.60 ($P = .002$; 86% reduction in HIV incidence with event-driven FTC/TDF); median pills/mo 15[^1]

- Substudy of 269 pts using ≤ 15 pills/mo with reported PrEP use systematically/often during intercourse: HIV incidence/100 PY, FTC/TDF vs placebo groups 0 vs 9.3 ($P = .013$)[^2]

PROUD: randomized, open-label study of immediate vs deferred FTC/TDF PO QD PrEP for uninfected, high-risk MSM in England (N = 544)[^3]

- Current analysis: post deferred phase, in which all pts offered PrEP

<table>
<thead>
<tr>
<th>HIV Incidence/100 PY (Infections/PY)[^4]</th>
<th>Immediate PrEP</th>
<th>Deferred PrEP</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deferred phase (Yr 1)</td>
<td>1.6 (4/254)</td>
<td>9.4 (21/223)</td>
<td>NR</td>
</tr>
<tr>
<td>Post deferred phase (Yrs 2-4)</td>
<td>1.2 (5/424)</td>
<td>0.3 (1/356)*</td>
<td>.18</td>
</tr>
</tbody>
</table>

[^1]: Significant difference in HIV incidence observed for deferred group pts in deferred vs post deferred phases ($P < .0001$).

HPTN 077: Cabotegravir for PrEP in Low-Risk Persons

- International, randomized, double-blind, placebo-controlled phase IIa study (N = 199)

Men and women at low risk of HIV infection (N = 199)

Cohort 1
- Oral Phase:
 - CAB 30 mg PO QD (n = 82)
 - Placebo PO QD (n = 28)
- Injection Phase:
 - CAB 800 mg IM Q12W
 - Placebo IM Q12W

Cohort 2
- Oral Phase:
 - CAB 30 mg PO QD (n = 69)
 - Placebo PO QD (n = 20)
- Injection Phase:
 - CAB 600 mg IM Q8W*
 - Placebo IM Q8W*

*Pts received 4-wk loading dose.

- Grade ≥ 2 AEs significantly different between CAB and PBO during injection phase: injection-site pain (34% vs 2%; *P* < .0001), headache (15% vs 2%; *P* = .03)
 - Most injection-site reactions mild/moderate; 1 discontinuation due to injection-related AE
- 1 seroconversion (CAB cohort 1): detected 48 wks after final injection; CAB levels undetectable
- Participants in cohort 2 (600 mg IM Q8W) consistently met prespecified PK targets; this dose will be assessed in phase III studies

Slide credit: clinicaloptions.com
HIV Cure Strategies Currently in Human Trials

Minimize Reservoir
Early Treatment to Limit Reservoir
ART
Broadly neutralizing antibodies

Shock
Reactivate Latently Infected Cells
- HDAC inhibition
- Bromodomain and extra-terminal inhibition
- Activate toll-like receptors
- Activate protein kinase

Kill
Viral Clearance by Immune System
- Broadly neutralizing antibodies
- Therapeutic vaccines
- Anti-programmed death (PD) 1
- Anti-PD ligand 1

HIV-Resistant Cells
Transfuse Cells Without CCR5 Gene
- Gene-editing therapy
- Bone marrow or cord blood transplantation
Timing of ART Initiation in Primary Infection and HIV Reservoirs: Key Lessons

- **HIV persistence**
 - Established early in primary HIV infection in long-lived memory CD4+ T cells and not eliminated by immune surveillance or ART

- **ART initiated during primary HIV infection**
 - Can reduce the HIV reservoir size to a greater extent than when treatment is given in chronic HIV
 - However, infection persists in memory CD4+ T cells in most early treated individuals

- **Treatment initiated in the earliest primary HIV infection stage (Fiebig I)**
 - May protect central memory CD4+ T cells from infection and skew the distribution of latently infected cells to the shorter-lived memory CD4+ T cells (eg, elite controllers and post-treatment controllers)

- **Containing HIV reservoir seeding with ART in primary HIV infection (before use of other interventions aimed at eliminating all latently infected cells)**
 - May be a first critical step in achieving HIV remission