
Event Attendees

The bulk of the platform functionality belongs to
managers. Managers have the ability to fully customize
and operate events, ensuring a seamless experience for

an event attendee.

Manager pages are generally optimized for
desktop, with the assumption that desktop will be

the most frequent mode of accessing the site
with this status.

Overview of all events in a manager’s group
The check in attendee page. Check-in speed is now three times faster

compared to using CampusGroups

The Event Analytics page allows managers a quick overview of event
statistics

Any functionality that is available on the physical terminals has a web-
portal counterpart, including operating activities and redeeming vouchers

Admins alone have the ability to add and remove other admins Editing the group involves modifying group permissions, adding
managers, setting the group as active, and more

Having an overview of the devices allows administrators to track
the terminals

Admins ensure longevity, as they can add new groups to the platform as well as create new admins

Goals
Consolidate all features of a potential event on one web platform
Increase the speed of checking in students to events
Ensure that students are able to see earned vouchers, points, and raffle
entries
Make each feature customizable by event managers, ensuring platform
longevity and flexibility in event creation
Ensure that student data is securely handled
Allow event terminals to function offline

Technical Details: Backend

Event Architecture: Several listeners monitor events that we are
interested in, such as a keypad press or a swipe. These events are
placed into an event queue, which is being emptied by the event

handler.

To host, we used Netlify, which allows for the creation of serverless
functions. These can be invoked without the need for an always-on

server. Our serverless functions allow CampusGroups, Mongo Atlas,
and Netlify to communicate, which help retrieve and update data

from the end systems.

Events are first given to the Actor. The Actor is responsible for taking
in events and deciding what they are – i.e. is this a manager swipe, a
user swipe, a keypad input, etc. The Actor then feeds the event into
the State Machine, which performs the appropriate state transition

depending on the current state as well as the input received. Any
business logic needed on state transition is performed by the Actions

class, as called upon by the state machine.

To facilitate the state machine, we have created a custom, lightweight
state machine library called “pysm” to be used in this project.

Interactive Event View,
displaying an overview of

available points and
raffles

Interactive Event View,
displaying earned points
and available vouchers

The experience for an
event attendee is

customized by the
event creator.

Attendees have the
ability to view the

customized raffles,
point distributions, and

vouchers, as well as
enter raffles directly
on the web platform.

Attendee View of all
upcoming events. This
view is auto-populated

by the upcoming events
of CampusGroups
organizations the

attendee is part of.

Technical Details:
Frontend

The frontend leverages React as its primary library. The React
project is bootstrapped via Vite, which allows for efficient

development and production runtime. The entire project is then
hosted publicly via Netlify, which has built in functionality to

support Vite. The page’s routing needs are handled via React Router,
which allows the definition of dynamic routes for the various pages

of the site. All styling is done by custom SCSS files, and the
MaterialUI library is extended for many of the common inputs such

as dropdowns, modals, tables, and moreparagraph text.

Devices

The physical terminals are built from Raspberry Pi Zero 2 Ws and
programmed with Python. The devices have a local MongoDB database

to store offline changes and update when a network connection is
available, which allow offline functionality.

Devices are programmed to only work on the CaseRegistered network
and require a manager or admin to swipe their ID card before being

logged in to use a device. All actions on the device are logged and can
be tracked from the web portal.

Netlify has built in CI/CD, which was used to test the frontend. Deploy
previews meant that full-system functionality could be tested before
integration to the main project, allowing testing of front end and back

end integration. Additionally, the frontend team took advantage of
Chrome Dev Tools to check responsiveness and device compatibility.

We have run pilots with the platform at 23 events this semester, and
have recieved feedback and monitored for discrepancies or

abnormalities in a live event scenario.

Testing

Future Work
The UPBoints Platform is currently set to be used on Sunday,

December 8th, at the Thwing Study Over. As the platform begins to be
used around campus, further features will likely be suggested, and the

project will remain a living work for the remainder of the 2024-2025
school year.

Functionality has been planned to support the remote control of event
terminals. Throughout testing at events, we have received feedback

regarding the learning of device features without a screen on the
device. We plan to allow devices to be controlled from the website,

helping users set up the devices and learn the functionality.

About

UPBoints is a project inspired by the need for an event management
system to configure custom events for campus organizations.

Organizations such as UPB (University Program Board) program events
for up to 6,000 students, necessitating an efficient and secure system

to track attendees and handle events. Our project is a web platform
coupled with physical devices (terminals) to check in attendees,

distribute vouchers and points for different activities, and track event
statistics.

Event Managers

UPBoints is a platform designed for three types of users: Event Attendees, Event Managers, and Event Administrators. Each status has distinct
features and privileges, with administrator privileges having the greatest scope, and event attendees having the least.

User Experience

Platform Administrators

Join our Event!
UPBoints is an event management platform. In order to
showcase its functionality, we’ve made Intersections an
interactive event! Follow the QR code to win points, see

your vouchers, and experience the platform for yourself.

Attendees

upboints.netlify.app

James Bish
College of Arts and Sciences

Calvin Cai
Case School of Engineering

Annika Markoff
College of Arts and Sciences

Joshua Hager
Case School of Engineering

Charles Lin
Case School of Engineering

John McCormick
Case School of Engineering

Carson Williams
Case School of Engineering

Chelsea Yu Zheng
Case School of Engineering

