Toxic Algae, Undrinkable Water, and Dead Zones in Lake Erie: Understanding the Problems and Solutions

Dr. Jeffrey M. Reutter Special Advisor, Ohio Sea Grant College Program

Stone Lab OSU's Island Campus

OHIO SEA GRANT AND STONE LABORATORY

Blue-green Algae Bloom 1971, But I've Seen Worse (1956)

Photo: Forsythe and Reutter

Lake Erie: The Poster Child for Pollution Problems

- •Cuyahoga River burns in 1969
- •USEPA, NOAA, and 1st Earth Day in 1970
- Great Lakes Water Quality Agreement 1972
 - Provided P targets
 - Doesn't impact sewage treatment plants outside of Lake Erie watershed
- Clean Water Act in 1972
 - Gave us the tools to attack the problem
 - Concern—HR 861 would terminate USEPA

Impact of GLWQA and CWA

- Binational agreement on targets
- Binational strategy to reach the targets
- Would not have happened without USEPA & ECCC
- First discussion of Ecosystem Based Management
- Recognition that we can't manage Lake Erie from the middle of the Lake
- •We have to manage Lake Erie from places like Findlay, Ohio, Fort Wayne, Indiana, and London, Ont.

What brought about the rebirth from dead lake to Walleye Capital?

- •62% Phosphorus reduction (29,000 metric tons to 11,000)
 - •New TP load for lake = <7,000 MT vs. 11,000
- In those days 2/3 of phosphorus from sewage treatment plants
- Today, more than 2/3 is non-point source loading from agriculture
- HABs are back
- Working on Domestic Action Plans

OHIO SEA GRANT AND STONE LABORATORY

Microcystis, Stone Lab, 9/20/13

Western Basin HAB July 28, 2015

HAB Lake St. Clair July 28, 2015

BERRING METAL MARKET

OHIO SEA GRANT AND STONE LABORATORY

Major groups/kinds in Lake Erie

Diatoms

Greens

Blue-greens (Cyanobacteria)

Toxicity of Algal **Toxins** Relative to Other Toxic Compounds found in Water

• Reference Dose = amount that can be ingested orally by a person, above which a toxic effect may occur, on a milligram per kilogram body weight per day basis.

Toxin Reference Doses

- Dioxin (0.000001 mg/kg-d
 - Microcystin LR (0.000003 mg/kg-d)
- Saxitoxin (0.000005 mg/kg-d)
- PCBs (0.00002 mg/kg-d) Cylindrospermopsin (0.00003 mg/kg-d)
- Methylmercury (0.0001 mg/kg-d)
- Anatoxin-A (0.0005 mg/kg-d)
- DDT (0.0005 mg/kg-d)
- Selenium (0.005 mg/kg-d)
- Botulinum toxin A (0.001 mg/kg-d)
- Alachlor (0.01 mg/kg-d)
- Cyanide (0.02 mg/kg-d)
- Atrazine (0.04 mg/kg-d)
- Fluoride (0.06 mg/kg-d)
- Chlorine (0.1 mg/kg-d)
- Aluminum (1 mg/kg-d)
 - Ethylene Glycol (2 mg/kg-d)

Cyanobacteria "Preferences"

- •Warm water—above 60F
- High concentrations of nutrients
 - Particularly phosphorus (P)
 - If nitrogen (N) is low, some cyanos are capable of fixing their own from the air
 - Source of nutrients doesn't matter
- Preferences tell us where to expect Cyanos anywhere in world
- Cyanos are capable of producing toxins
- •1 March to 31 July load determines size of HAB

Lake Erie has always been at the forefront of the algae and nutrient problem. Why?

Southernmost

Shallowest and Warmest

OHIO SEA GRANT AND STONE LABORATORY

Great Lakes Land Use Continued

80:10:10 Rule

- •80% of water Detroit River from upper lakes
- 10% direct precipitation
- •10% from Lake Erie tributaries
 - Detroit & Niagara Rivers—connecting channels
 - Maumee
 - Largest tributary to Great Lakes
 - Drains 4.2 million acres of ag land
 - 3-4% of flow into Lake Erie

- •Lake Erie
 - •9,906 sq. miles •11th in area 17th
 - •11th in area 17th volume
 - •241 miles long 57 wide
- •Western Basin
 - •Ave. depth 24 ft.
 - •13% area, 5% volume
- •Central Basin
 - •Ave. depth 60 ft.
 - •63% area and volume
- •Eastern Basin
 - •Ave. 80 ft., Max 210 ft.
 - •24% area, 32% volume

Lake Erie Stats

OHIO SEA GRANT AND STONE LABORATORY

Lake Superior: 30% of the evaluate and 52% of the fish

Why do we target phosphorus?

- Normally limiting nutrient in <u>freshwater</u> systems
- P reduction is best strategy ecologically and economically
- Reducing both P and N will help the most
 - Can solve problem by reducing only P
 - Nitrogen is more important than originally thought
 - Cannot solve it by reducing only N
 - Best solution is to reduce both

Nutrient Loading

- •P discharges from sewage treatment plants vary little from year to year
- •P discharges from ag tributaries vary greatly from year to year depending on rainfall
- Vast majority of P loading occurs during storm events

Maumee River Basin Storm Runoff Statistics (1960-2010)

- Statistically significant increases in :
 - -Number of storm runoff events per year (up 67%)
 - -Number of spring runoff events (up 40%)
 - -Number of winter runoff events (up 47%)
 - -Annual storm discharge (up 53%)
 - -Summer storm discharge (up 27%)

80-90% of loading occurs 10-20% of time

Source: Dr. Peter Richards, Heidelberg University

Great Lakes Tributary Total Phosphonus Loads 74 ⁹⁸41 **69 43** Legend Total Phosphorus: < 100 MTA Total Phosphorus: > 100 MTA Connecting Channel 3<mark>96</mark> 5<mark>02</mark> 6<mark>37</mark> 1<u>2</u>4 ⁸¹59 41 83 45 3,812 41 37 GREEN BAY

wy13 Loading Breakdown - Maumee Watershed

Not all P is created equal

- Total P (TP) = particulate P (PP) and dissolved reactive P (DRP)
- •PP is about 25% bioavailable
- DRP is 100% bioavailable
- DRP load up ~150%!
- Most BMPs have focused on PP (stopping erosion)
- Removing 1 ton of DRP = removing 4 tons of PP

LAKE ERIE AND LAKE ST. CLAIR— 3/8/17

HABs 2002-16

Ē

GLWQA Annex 4 (Nutrients) Charge to Objectives and Targets Task Team

- Provide science-based recommendations to address:
 - HABs-primarily Western Basin problem
 - Hypoxia–Central Basin problem
 - Cladophora—primarily an Eastern Basin north shore problem—NO TARGET YET
- Adaptive management approach
- TT identified 14 Priority tributaries
- •40% spring P reduction for HABs
 - Goal: Blooms like 2012 or smaller 90% of time
- •40% annual reduction for hypoxia
 - Goal: Average hypolimnetic DO above 2.0 mg/l

OHIO SEA GRANT AND STONE LABORATORY

Ann. discharge = 8.0 billion m³ Spring discharge = 3.4 billion m³ Ann. P load = 3,800 tonnes Spring P load = 1,400 tonnes

2008

Ann. discharge = 6.2 billion m³ Spring discharge = 5.0 billion m³ Ann. P load = 3,100 tonnes Spring P load = 2,300 tonnes

2011

Ann. discharge = 6.1 billion m^3 Spring discharge = 1.0 billion m^3 Ann. P load = 2,500 tonnes Spring P load = 400 tonnes

Understanding Central Basin Issues

- Volume of water in hypolimnion is very important
 - Lake morphometry and water level
 - May be as important and P and C loading
 - Evidence that it has always had episodes of anoxia
- Changes that occur when hypo becomes anoxic
 - Oxidizing to reducing environment
 - Anaerobic bacteria—methane released to atmosphere
 - Sedimented P redissolves in water
 - Internal P loading is more important than in WB
 - Heavy metals dissolve in water
 - Taste and odor problems at water treatment plants
 - HABs now occurring annually
- Understanding material transport between basins
- Less data available than in WB

Conclusions and Recent Findings—1

- Maumee: 55% of farms <50 acres, but represent 3% of acres
- DRP dissolves in water and comes out drain tiles
- P loss directly related to amount of P on field
- P concentration coming out of tiles meets targets when soil test P is not above crop needs
- Can't apply multiple years of P at one time and bank it
- Legacy P from fields with too much P is big part of problem
- Blind inlets & managing flow from tiles will help
- Up to 60% reduction in P loss when incorporated
- 42% of acres responsible for 78% of P & sediment loss
- 42% of acres apply P above removal rates
- 1% of acres account for 40+% of sediment loss
- 1/3 of farmers not likely to take needed action without more aggressive encouragement

Conclusions and Recent Findings—2

- Total elimination of all point sources reduces P load by very small amount
- Ag load from Maumee is about 85% of total
- Manure and commercial fertilizer same when not over applied, but manure is more likely to be over applied
- Models show that it is possible to achieve a 40% reduction
 - Requires extensive changes
 - Not likely to be accomplished voluntarily
 - Will require identification of problem fields
- My opinion of what is needed:
 - More voluntary actions by farmers
 - More targeted incentives for farmers
 - More common sense regulations
 For example: Ohio Senate Bills 150 and 1

 - Follow the 4R's for fertilizer and manure: Right time, amount, place, & form—Why optional?

Needs and Opportunities

- Accurate info about what is happening on each ag field
- Accurate loads from connecting channels & atmosphere
- Annual soil test P and nutrients for each field
- Monitoring around animal operations
- BMPs for DRP
- Tributary transport models for 14 priority watersheds
- Ag incentives that create permanent changes
- Phosphorus and toxin probes
- Funding for long-term monitoring
- Daily trib P&N monitoring linked to ag actions
- More info on algal toxins, impacts, and safety levels
- Transfer what we learn on Lake Erie to other Great Lakes, US, and world
- Expand Western Basin Ecosystem Model to CB & Lake

Ideas for Cities and Individuals

- Sewage treatment plants—GLWQA target 0.5 mg/l of P
- Reduce CSO's
- Stormwater management
- Reduce consumption and runoff—Low-flow toilets and shower heads, rain barrels and rain gardens
- No P in lawn fertilizers
- Septic tanks
- Cleaners and detergents—Low P and use recommended amount
- Advocacy, education, and outreach
- Citizen Science, new ideas, out-of-box thinking
- Climate change—Warmer and more frequent storms
 - Solar panels, solar thermal, reduce power consumption

The Battles of Lake Erie

EATTLE OF LARE END, COMPODERE PERSO, SEPT. 10, 1042.

Third: 2013

We Should Care!!! Environment vs. Economy

- Lake Erie is living proof that it is not either/or.
- •We don't have to make a choice between a clean environment or jobs.
- •You can have both!

Impact of the Second Battle of Lake Erie

- Charter Fishing Businesses: 34 to over 1200
- Coastal businesses: 207 to over 425
- Walleye harvest: 112,000 to over 5 million
- Lake Erie becomes the "Walleye Capital of the World" and the best example of ecosystem recovery in the world.
- Tourism in the 8 Ohio Counties bordering Lake Erie currently employs over 120,000 people and is valued at more than \$13 billion.

Impact of the Third Battle of Lake Erie

- 2002 HABs observed from satellites
- October 2011, HABs cover the water intakes of 2.8 million people
- 2012: Multiple blooms occur in the Central Basin
- September 2013, 2000+ people in Carroll Township told not to drink their water.
- August 2014: 400,000+ people in Toledo told not to drink their water.
- A number of health impacts reported statewide.
- A number of dogs killed.
- Charter fishing down 25% and many businesses close.
- What are you going to do about it? HB 861?

Thoughts and Challenges for the Future

- Scientists must help public understand science
- Goal: convey truth not impress audience
- You are not important—your message is!
- Style: simplicity, informality, and specificity
- Ecclesiastes 6:11 "The more the words, the less the meaning, and how does that profit anyone."
- Reach people before they have made a decision
- Mark Twain: "It is easier to fool someone than to convince them they have been fooled."
- All can have opinions, but expertise really maters!
- Making fun of people only makes them dig their heels in. Be a good expert!

For more information: Dr. Jeff Reutter, Special Advisor

Ohio Sea Grant and Stone Lab **Ohio State Univ.** 1314 Kinnear Rd. Col, OH 43212 614-292-8949 Reutter.1@osu.edu ohioseagrant.osu.edu

Stone Laboratory Ohio State Univ. Box 119 Put-in-Bay, OH 43456 614-247-6500

