Search interface allows for more efficient, faster searches to find information on Internet and hand-held devices
Computer scientists at Case Western Reserve University have developed a new tool to search and fetch electronic files that saves users time by more quickly identifying and retrieving the most relevant information on their computers and hand-held devices.
Anonymous testers recruited through crowdsourcing preferred the new search tool nearly two-to-one over a keyword-based lookup interface and the most commonly available lookup search interface using Google.
Side-by-side comparisons showed the scientists’ Conjunctive Exploratory Navigation Interface (CENI), which combines two search modes and a more comprehensive way to organize and tag data, is more effective than looking up items by matched keywords alone.
CENI, an on-screen portal where users access data by browsing through menus of topics and typing in keywords, provides a more focused search and retrieves the most pertinent information.
In one test, for example, a keyword search came up with 89 responses to a question: “What are the typical vision problems associated with diabetes?” CENI came up with the most applicable 13 by selecting appropriate menus.
The study is now online in the open-access Journal of Medical Internet Research.
“Most people have an iPhone or laptop that stores a wide variety of information and, often, you can’t find it when you need it, even though you know it’s there,” said GQ Zhang, professor of electrical engineering and computer science, division chief of medical informatics at Case Western Reserve and an author of the study. “Or, you go to a website where the content has been divided under different areas, and what you’re looking for fits several. If you choose one area but whoever filed the data chose another area, you may not find that information.”
CENI overcomes this limitation by allowing data to be tagged into as many areas as relevant, and provides an interface and system that leverages multiple tags for each single data item.
Zhang and Licong Cui, a PhD student in Zhang’s lab, developed CENI.