Case Western Reserve University theorists suggest the Standard Model may account for the stuff
The physics community has spent three decades searching for and finding no evidence that dark matter is made of tiny exotic particles. Case Western Reserve University theoretical physicists suggest researchers consider looking for candidates more in the ordinary realm and, well, more massive. Dark matter is unseen matter, that, combined with normal matter, could create the gravity that, among other things, prevents spinning galaxies from flying apart. Physicists calculate that dark matter comprises 27 percent of the universe; normal matter 5 percent. Instead of WIMPS, weakly interacting massive particles, or axions, which are weakly interacting low-mass particles, dark matter may be made of macroscopic objects, anywhere from a few ounces to the size of a good asteroid, and probably as dense as a neutron star, or the nucleus of an atom, the researchers suggest.
- A minimum of 55 grams. If dark matter were smaller, it would have been seen in detectors in Skylab or in tracks found in sheets of mica
- A maximum of 1024 (a million billion billion) grams. Above this, the Macros would be so massive they would bend starlight, which has not been seen.
- The range of 1017 to 1020 grams should also be eliminated from the search, the theorists say. Dark matter in that range would be massive for gravitational lensing to affect individual photons from gamma ray bursts in ways that have not been seen.
- At the mass of 1018 grams, dark matter Macros would hit the Earth about once every billion years.
- At lower masses, they would strike the Earth more frequently but might not leave a recognizable record or observable mark.
- In the range of 109 to 1018, dark matter would collide with the Earth once annually, providing nothing to the underground dark matter detectors in place.