Courses in Neuroscience

Potential elective courses may be listed in Neurosciences, Biology, Cell Biology, Psychology, Genetics, Pharmacology or other departments. This is a partial list of available courses:

Offered every fall semester (1 Credit Pass/No Pass).

Instructor: FRIEL, D.

Description: This survey course provides students with an opportunity to learn about some of the most exciting and timely concepts in neuroscience, including topics in basic and translational research, as well as perspectives on neuroscience as a profession, through a series of 14 lectures given by members of the Neurosciences Department in the Case Western Reserve University School of Medicine. Topics are presented in a way that can be understood by students who have taken a high school biology class. Every effort is made to explain any new concepts that are included in the lectures. Each lecturer will provide general background reading material for the topics they discuss. 
 

Offered in fall and spring semesters respectively (3 Credits each).

Contact: Ashley Nemes, Ph.D. 

NEUR 201 - Fundamentals of Neuroscience I. The purpose of this course is to provide students with an introduction to neuroscience with an emphasis on the functional properties of neural systems. This is the first of two introductory neuroscience courses that are required for the undergraduate neuroscience major at Case. Topics that will be discussed, and the level at which they are discussed, presupposes that students have a basic familiarity with cell structure and function and specialized properties of cells found in different physiological systems from their previous biology coursework. The course will also provide a foundation for elective upper-level courses in the undergraduate neuroscience curriculum.

NEUR 202 - Fundamentals of Neuroscience II.  This course examines the cellular and molecular properties that underlie these functional properties. This course is designed for undergraduates in their sophomore year to provide them with an understanding of signaling mechanisms that are utilized by nerve cells, including mechanisms that are responsible for signaling within cells and mechanisms that underlie signaling between cells. These mechanisms will range from the fast, millisecond time-scale transitions of ion channels that contribute to action potentials and synaptic signaling, to slower events that underlie modulation of channel activity and neurotransmitter synthesis and degradation, to even slower events on the hour and day timescale involving changes in gene expression and protein synthesis that underlie phenotypic development and neural plasticity. Prerequisite NEUR 201.

 

Offered every fall semester (3 Credits).

Instructor: KATZ, D.

Description: This course is designed to introduce students to a broad range of neurological and neuropsychiatric diseases and disorders in order to understand how genetic and environmental perturbations can disrupt normal brain function. The primary focus will be on understanding the biological bases of nervous system dysfunction. For each disease discussed, the subject matter will be organized to explain how normal brain function is impacted, the biological mechanisms underlying dysfunction (including still-unanswered questions) and current efforts to develop effective treatments (translational research). With this approach, students will gain an understanding of disease presentation, how animal models and human studies are being used to elucidate pathophysiological mechanisms, and opportunities and challenges in the development of new therapies. The class format will be a mix of lecture-based sessions and discussions of scientific journal articles.

Prereq: Undergraduate: BIOL 216 or PSCL 352; Graduate: Permission of instructor.
* Cross-listed: Undergraduates should register for NEUR 301/Graduates should register for NEUR 401
 

Offered every semester  (3 Credits Pass/No Pass).

Contact: David Friel Ph.D. or Ashley Nemes, Ph.D. 

Guided laboratory research under the sponsorship of a SOM faculty member who conducts basic and/or translational neuroscience research. Students are required to obtain permission from the prospective research supervisor and the Neuroscience Undergraduate Curriculum Committee (NUCC) prior to enrolling in the course. Appropriate forms must be submitted to the Neurosciences Department office. At the end of the semester, a research report, written in the format of a scientific research publication, must be submitted and approved by the research mentor and the NUCC before credit is granted. Graded Pass/No Pass.

Offered every semester  (1-3 Credits).

Contact: David Friel Ph.D. or Ashley Nemes, Ph.D.

Guided laboratory research supervised and guided by a SOM faculty member who conducts basic and/or translational neuroscience research. Students are required to obtain permission from the prospective research supervisor and the Neuroscience Undergraduate Curriculum Committee (NUCC) prior to enrolling in the course. Appropriate forms must be submitted to the Neurosciences Department office. At the end of the semester, a research report, written in the format of a scientific research publication, must be submitted and approved by the research mentor and the NUCC before credit is granted. A public presentation is required. Graded A-F.

Offered every semester (1-3 Credits, Pass/No Pass).

Contact: David Friel Ph.D. or Ashley Nemes, Ph.D.

Guided research under the sponsorship of a SOM faculty member who conducts basic and/or translational neuroscience research. Students are required to obtain permission from the prospective research supervisor and the Neuroscience Undergraduate Curriculum Committee (NUCC) prior to enrolling in the course. Appropriate forms must be submitted to the Neurosciences Department office. Does not count toward the hours required for a major in neuroscience, but may be counted toward the total number of hours required for graduation. At the end of the semester, a written report must be submitted and approved by the research mentor and the NUCC before credit is granted. Graded Pass/NoPass.

Offered in the spring semester (3 Credits).

Lecture/discussion course covering concepts in cell and molecular neuroscience, principles of systems neuroscience as demonstrated in the somatosensory system, and fundamentals of the development of the nervous system. This course will prepare students for upper level Neuroscience courses and is also suitable for students in other programs who desire an understanding of neurosciences. Recommended preparation: CBIO 453. Offered as BIOL 402 and NEUR 402.

Not currently offered (3 Credits). 

Cell biology of nerve cells, including aspects of synaptic structure physiology and chemistry. The application of molecular biological tools to questions of synaptic function will be addressed. Recommended preparation: BIOL 473. Prereq: NEUR 402.

Offered in fall and spring semesters (1 Credit).

Current topics of interest in neurosciences. Students attend weekly seminars. From this series, students prepare critiques. No credit is given for less than 75% attendance.

Offered in the spring semester (3 Credits).

The goal of this course is to develop the student's critical reasoning skills through reading and discussing primary research papers. Each year, the course will focus on 3-4 different topics selected by participating Neuroscience faculty members. Students will receive a letter grade based on their contributions to discussions, and at the discretion of the faculty, performance on exams and/or term paper. Prereq: NEUR 402.

Offering is variable  (3 Credits).

Vision research is an exciting and multidisciplinary area that draws on the disciplines of biochemistry, genetics, molecular biology, structural biology, neuroscience, and pathology. This graduate level course will provide the student with broad exposure to the most recent and relevant research currently being conducted in the field. Topics will cover a variety of diseases and fundamental biological processes occurring in the eye. Regions of the eye that will be discussed include the cornea, lens, and retina. Vision disorders discussed include age-related macular degeneration, retinal ciliopathies, and diabetic retinopathy. Instructors in the course are experts in their field and are members of the multidisciplinary visual sciences research community here at Case Western Reserve University. Students will be exposed to the experimental approaches and instrumentation currently being used in the laboratory and in clinical settings. Topics will be covered by traditional lectures, demonstrations in the laboratory and the clinic, and journal club presentations. Students will be graded on their performance in journal club presentations (40%), research proposal (40%), and class participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and BIOC 432.

Offered in the spring semester in Physiology and Biophysics (3 Credits).

This is an advanced lecture/journal/discussion format course that covers cell signaling mechanisms. Included are discussions of neurotransmitter-gated ion channels, growth factor receptor kinases, cytokine receptors, G protein-coupled receptors, steroid receptors, heterotrimeric G proteins, ras family GTPases, second messenger cascades, protein kinase cascades, second messenger regulation of transcription factors, microtubule-based motility, actin/myosin-based motility, signals for regulation of cell cycle, signals for regulation of apoptosis. Offered as CLBY 466, PHOL 466 and PHRM 466.

Offered in the fall semester in Biology  (3 Credits).

How nervous systems control behavior. Biophysical, biochemical and molecular biological properties of nerve cells, their organization into circuitry, and their function within networks. Emphasis on quantitative methods for modeling neurons and networks, and on critical analysis of the contemporary technical literature in the neurosciences. Term paper required for graduate students. This course satisfies a lab requirement for the B.A. in Biology, and a Quantitative Laboratory requirements for the B.S. in Biology. Offered as BIOL 373, BIOL 473, and NEUR 473.

Offering is variable (3 Credits).

In this course, students will examine how neurobiologists interested in animal behavior study the linkage between neural circuitry and complex behavior. Various vertebrate and invertebrate systems will be considered. Several exercises will be used in this endeavor. Although some lectures will provide background and context on specific neural systems, the emphasis of the course will be on classroom discussion of specific journal articles. In addition, students will each complete a project in which they will observe some animal behavior and generate both behavioral and neurobiological hypotheses related to it. In lieu of examinations, students will complete three written assignments, including a theoretical grant proposal, a one-page Specific Aims paper related to the project, and a final project paper. These assignments are designed to give each student experience in writing biologically-relevant documents. Classroom discussions will help students understand the content and format of each type document. They will also present their projects orally to the entire class. Offered as BIOL 374, BIOL 474 and NEUR 474. Counts as SAGES Departmental Seminar.

Offered in the fall semester in Physiology and Biophysics  (3 Credits).

This course focuses on in-depth understanding of the molecular biophysics of proteins. Structural, thermodynamic and kinetic aspects of protein function and structure-function relationships will be considered at the advanced conceptual level. The application of these theoretical frameworks will be illustrated with examples from the literature and integration of biophysical knowledge with description at the cellular and systems level. The format consists of lectures, problem sets, and student presentations. A special emphasis will be placed on discussion of original publications. Offered as BIOC 475, CHEM 475, PHOL 475, PHRM 475, and NEUR 475.

Offering is variable (variable Credits). 

This course is offered to NEUR graduate students for research performed prior to their qualifying examinations.

Offered all semesters. (1 - 6 Credits).

(Credit as arranged.) Recommended preparation: Master's degree candidates only.

Offered all semesters (1 - 9 Credits).

Prerequisite: Predoctoral research consent or advanced to Ph.D. candidacy milestone.