Courses in Neuroscience

Potential elective courses may be listed in Neurosciences, Biology, Cell Biology, Psychology, Genetics, Pharmacology or other departments. This is a partial list of available courses:

Lecture/discussion course covering concepts in cell and molecular neuroscience, principles of systems neuroscience as demonstrated in the somatosensory system, and fundamentals of the development of the nervous system. This course will prepare students for upper level Neuroscience courses and is also suitable for students in other programs who desire an understanding of neurosciences. Recommended preparation: CBIO 453. Offered as BIOL 402 and NEUR 402.

Cell biology of nerve cells, including aspects of synaptic structure physiology and chemistry. The application of molecular biological tools to questions of synaptic function will be addressed. Recommended preparation: BIOL 473. Prereq: NEUR 402.

Current topics of interest in neurosciences. Students attend weekly seminars. From this series, students prepare critiques. No credit is given for less than 75% attendance.

The goal of this course is to develop the student's critical reasoning skills through reading and discussing primary research papers. Each year, the course will focus on 3-4 different topics selected by participating Neuroscience faculty members. Students will receive a letter grade based on their contributions to discussions, and at the discretion of the faculty, performance on exams and/or term paper. Prereq: NEUR 402.

How do our brains and those of other animals allow for the acquisition and processing of unique sensory percepts? In what manners might sensory systems interact to enhance perception? Further, what happens to sensory system function in cases of neurological disorders? This course is a topic introduction to sensory neuroscience, a major area of modern neuroscience with connections to neurology, psychology, ethology, and related topics. Topics include visual, auditory, somatosensory, gustatory, and olfactory neuroscience. We will also examine the mechanisms and uses of magnetoreception, electroreception, echolocation, and other 'special' senses. All of the above topics will be covered under the theme of how animals actively sample their sensory environments for information. Prereq: BIOL 402 or BIOL 473 or NEUR 402 or PSCL 403 or Consent of Instructor.

This course is intended to teach current understanding of stem cells as it relates to their characterization, function, and physiologic and pathological states. The course will expose students to the current understanding of various types of stem cells, including embryonic and adult stem cells of various tissues, techniques for their isolation and study. Experimental models and potential biomedical therapeutic applications will be discussed. The course will be taught by the faculty of the “Center for Stem Cell and Regenerative Medicine” who are affiliated with multiple departments of Case Western Reserve University, Cleveland Clinic Foundation and the partnering biomedical companies. Cross-listed as PATH 425.

Topics include cell commitment, regulation of proliferation and differentiation, cell death and trophic factors, pathfinding by the outgrowing nerve fiber, synapse formation, relationships between center and periphery in development and the role of activity. Cross-listed as BIOL 427.

This course is designed to provide students with the foundation in the biology of stem cells, their roles as therapeutics, and the engineering approaches that can be used to direct stem cells and control their microenvironments. The course will cover the current understanding of various types of stem cells, including embryonic and adult stem cells, techniques for their isolation and study, and their application as therapeutic agents, with a particular focus on applications in the CNS. Experimental models and potential biomedical therapeutic applications will be discussed. Engineering approaches to direct the fate of stem cells will also be presented and discussed. The course will be taught by the faculty of the “Center for Stem Cell and Regenerative Medicine” who are affiliated with multiple departments of Case Western Reserve University, Cleveland Clinic Foundation and the partnering biomedical companies. Offered as NEUR 430 and EBME 430.

Vision research is an exciting and multidisciplinary area that draws on the disciplines of biochemistry, genetics, molecular biology, structural biology, neuroscience, and pathology. This graduate level course will provide the student with broad exposure to the most recent and relevant research currently being conducted in the field. Topics will cover a variety of diseases and fundamental biological processes occurring in the eye. Regions of the eye that will be discussed include the cornea, lens, and retina. Vision disorders discussed include age-related macular degeneration, retinal ciliopathies, and diabetic retinopathy. Instructors in the course are experts in their field and are members of the multidisciplinary visual sciences research community here at Case Western Reserve University. Students will be exposed to the experimental approaches and instrumentation currently being used in the laboratory and in clinical settings. Topics will be covered by traditional lectures, demonstrations in the laboratory and the clinic, and journal club presentations. Students will be graded on their performance in journal club presentations (40%), research proposal (40%), and class participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and BIOC 432.

This course will explore the basic mechanisms of synaptic transmission that operate at central and peripheral synapses. Students will read and present a mixture of historical and modern papers that established the fundamental principles of synaptic transmission and plasticity. The course will begin with a brief review of cellular neurophysiology and the techniques used to study synaptic potentials. We will then read classic papers by Katz and colleagues that defined the mechanisms controlling transmitter release at the neuromuscular junction. Next we will consider the role of calcium in regulating the release of neurotransmitters and in short-term modulation of synaptic potentials. We will then explore pre- and post-synaptic processes such as receptor saturation and vesicle dynamics that govern the amplitude and time course of postsynaptic potentials. Quantal analysis and silent synapses will be discussed in the context of the present-day controversies regarding long-term potentiation at central synapses. We will also consider the relationship between short- and long-term synaptic plasticity and behavioral functions such as learning and memory. Occasional faculty lectures will complement student presentations on primary research articles. Student grades will be based on two short (5 page) essays and class participation. Prereq: Permission of the course director.

This is an advanced lecture/journal/discussion format course that covers cell signaling mechanisms. Included are discussions of neurotransmitter-gated ion channels, growth factor receptor kinases, cytokine receptors, G protein-coupled receptors, steroid receptors, heterotrimeric G proteins, ras family GTPases, second messenger cascades, protein kinase cascades, second messenger regulation of transcription factors, microtubule-based motility, actin/myosin-based motility, signals for regulation of cell cycle, signals for regulation of apoptosis. Offered as CLBY 466, PHOL 466 and PHRM 466.

How nervous systems control behavior. Biophysical, biochemical and molecular biological properties of nerve cells, their organization into circuitry, and their function within networks. Emphasis on quantitative methods for modeling neurons and networks, and on critical analysis of the contemporary technical literature in the neurosciences. Term paper required for graduate students. This course satisfies a lab requirement for the B.A. in Biology, and a Quantitative Laboratory requirements for the B.S. in Biology. Offered as BIOL 373, BIOL 473, and NEUR 473.

In this course, students will examine how neurobiologists interested in animal behavior study the linkage between neural circuitry and complex behavior. Various vertebrate and invertebrate systems will be considered. Several exercises will be used in this endeavor. Although some lectures will provide background and context on specific neural systems, the emphasis of the course will be on classroom discussion of specific journal articles. In addition, students will each complete a project in which they will observe some animal behavior and generate both behavioral and neurobiological hypotheses related to it. In lieu of examinations, students will complete three written assignments, including a theoretical grant proposal, a one-page Specific Aims paper related to the project, and a final project paper. These assignments are designed to give each student experience in writing biologically-relevant documents. Classroom discussions will help students understand the content and format of each type document. They will also present their projects orally to the entire class. Offered as BIOL 374, BIOL 474 and NEUR 474. Counts as SAGES Departmental Seminar.

This course focuses on in-depth understanding of the molecular biophysics of proteins. Structural, thermodynamic and kinetic aspects of protein function and structure-function relationships will be considered at the advanced conceptual level. The application of these theoretical frameworks will be illustrated with examples from the literature and integration of biophysical knowledge with description at the cellular and systems level. The format consists of lectures, problem sets, and student presentations. A special emphasis will be placed on discussion of original publications. Offered as BIOC 475, CHEM 475, PHOL 475, PHRM 475, and NEUR 475.

Introduction to the basic laboratory techniques of neurobiology. Intracellular and extracellular recording techniques, forms of synaptic plasticity, patch clamping, immunohistochemistry and confocal microscopy. During the latter weeks of the course students will be given the opportunity to conduct an independent project. One laboratory and one discussion session per week. Recommended preparation for BIOL 476 and NEUR 476: BIOL 216. Offered as BIOL 376, BIOL 476 and NEUR 476.

This course focuses on a quantitative understanding of cellular processes. It is designed for students who feel comfortable with and are interested in analytical and quantitative approaches to cell biology and cell physiology. Selected topics in cellular biophysics will be covered in depth. Topics include theory of electrical and optical signal processing used in cell physiology, thermodynamics and kinetics of enzyme and transport reactions, single ion channel kinetics and excitability, mechanotransduction, and transport across polarized cell layers. The format consists of lectures, problem sets, computer simulations, and discussion of original publications. The relevant biological background of topics will be provided appropriate for non-biology science majors. Offered as BIOC 476, NEUR 477, PHOL 476, PHRM 476.

Computer simulations and mathematical analysis of neurons and neural circuits, and the computational properties of nervous systems. Students are taught a range of models for neurons and neural circuits, and are asked to implement and explore the computational and dynamic properties of these models. The course introduces students to dynamical systems theory for the analysis of neurons and neural learning, models of brain systems, and their relationship to artificial and neural networks. Term project required. Students enrolled in MATH 478 will make arrangements with the instructor to attend additional lectures and complete additional assignments addressing mathematical topics related to the course. Recommended preparation: MATH 223 and MATH 224 or BIOL 300 and BIOL 306. Offered as BIOL 378, COGS 378, MATH 378, BIOL 478, EBME 478, EECS 478, MATH 478 and NEUR 478.

This course is concerned with the mechanisms underlying neurochemical signaling and the impact of drugs on those mechanisms. The first half of the course emphasizes the fundamental mechanisms underlying intra- and extracellular communication of neurons and the basic principles of how drugs interact with the nervous system. The second half of the course emphasizes understanding the neural substrates of disorders of the nervous system, and the mechanisms underlying the therapeutic effects of drugs at the cellular and behavioral levels. This course will consist of lectures designed to give the student necessary background for understanding these basic principles and class discussion. The class discussion will include viewing video examples of behavioral effects of disorders of the nervous system, and analysis of research papers. The goal of the class discussions is to enhance the critical thinking skills of the student and expose the student to contemporary research techniques. Offered as BIOL 382, BIOL 482, and NEUR 482.

This course offers continuing education in responsible conduct of research for advanced graduate students. The course will cover the nine defined areas of research ethics through a combination of lectures, on-line course material and small group discussions. Six 2-hr meetings per semester. Maximum enrollment of 15 students with preference given to graduate students in the Neurosciences program. All neurosciences graduate students must complete this course during their 3rd or 4th year.

(Credit as arranged.) Recommended preparation: M.S. candidates only.

Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.