Year 2024
[54] Narayanan, Jayachandran K., et al. "Experimental investigations on the flow boiling and heat transfer characteristics during chilldown process in a closed loop chilldown test section." International Journal of Heat and Mass Transfer 232 (2024): 125915. https://www.sciencedirect.com/science/article/pii/S0017931024007452
[53] Qiu, Yue, et al. "Experimental investigation of heat transfer and pressure drop in copper manifold microchannel heat sinks." Applied Thermal Engineering 255 (2024): 124024. https://www.sciencedirect.com/science/article/pii/S1359431124016922
[53] Huang, Cho-Ning, et al. "Machine learning boiling prediction: From autonomous vision of flow visualization data to performance parameter theoretical modeling." International Journal of Multiphase Flow 179 (2024): 104928. https://www.sciencedirect.com/science/article/pii/S0301932224002052
[52] Shingote, Chinmay, Farshad Barghi Golezani, and Chirag R. Kharangate. "Investigation of fluid flow during flow boiling inside a horizontal rectangular channel with single-sided heating using particle image velocimetry." Experimental Thermal and Fluid Science 156 (2024): 111221. https://www.sciencedirect.com/science/article/pii/S0894177724000906
[51] Shingote, Chinmay, Cho-Ning Huang, and Chirag R. Kharangate. "Investigation of flow boiling critical heat flux and heat transfer within a horizontally oriented channel with one-sided heating at three levels of subcooled inlet." International Communications in Heat and Mass Transfer 152 (2024): 107297. https://www.sciencedirect.com/science/article/pii/S0735193324000599.
Year 2023
[50] S. Chang, Y. Suh, C. Shingote, C.-N. Huang, I. Mudawar, C. Kharangate, Y. Won, BubbleMask: Autonomous visualization of digital flow bubbles for predicting critical heat flux, Int J Heat Mass Transf. 217 (2023) 124656. https://doi.org/10.1016/J.
[49] Li, Jiayuan, Lucas E. O'Neill, Michael G. Izenson, and Chirag R. Kharangate. "Data consolidation, correlations assessment, and new correlation development for pool boiling critical heat flux specific to cryogenic fluids." International Journal of Heat and Mass Transfer 213 (2023): 124315. https://www.sciencedirect.com/
[48] CN Huang, KL Lee, C Tarau, Y Kamotani, C Kharangate, Thermal and Hydrodynamic Analysis of a Self-Purging Hot Reservoir Variable Conductance Heat Pipe, Applied Thermal Engineering, 120346, https://doi.org/10.1016/j.applthermaleng.2023.120346
[47] Y Qiu, T Vo, D Garg, H Lee, CR Kharangate, A systematic approach to optimization of ANN model parameters to predict flow boiling heat transfer coefficient in mini/micro-channel heatsinks, International Journal of Heat and Mass Transfer 202, 123728. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123728
[46] G Mlakar, CN Huang, C Kharangate, Effects of surface modifications on pool boiling heat transfer with HFE-7100, International Journal of Thermofluids, 100286,https://www.sciencedirect.com/science/article/pii/S2666202723000083
Year 2022
[45] K.-L. Lee, C. Tarau, W. Anderson, C.-N. Huang, C. Kharangate, Y. Kamotani, Integrated Hot Reservoir Variable Conductance Heat Pipes with Improved Reliability, (2022). https://www.1-act.com/wp-content/uploads/2022/07/ICES-2022-132-HotReservoirVCHPLoop_FInal.pdf
[44] Y. Qiu, C. Kharangate, J. Carter, J. McGuffin-Cawley, Si 3 N 4 Manifold Microchannels Cooling System for High Heat Flux Electronic Applications, in: 2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), IEEE, 2022: pp. 1–7. http://10.1109/iTherm54085.2022.9899560
[43] K. Kim, H. Lee, M. Kang, G. Lee, K. Jung, C.R. Kharangate, M. Asheghi, K.E. Goodson, H. Lee, A machine learning approach for predicting heat transfer characteristics in micro-pin fin heat sinks, Int J Heat Mass Transf. 194 (2022) 123087. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123087
[42] A. Bard, Y. Qiu, C.R. Kharangate, R. French, Consolidated modeling and prediction of heat transfer coefficients for saturated flow boiling in mini/micro-channels using machine learning methods, Applied Thermal Engineering. 210 (2022) 118305. https://doi.org/10.1016/J.APPLTHERMALENG.2022.118305.
[41] E. Cho, H. Lee, M. Kang, D. Jung, G. Lee, S. Lee, C.R. Kharangate, H. Ha, S. Huh, H. Lee, A neural network model for free-falling condensation heat transfer in the presence of non-condensable gases, Int. J. Therm. Sci. 171 (2022) 107202. https://doi.org/10.1016/J.IJTHERMALSCI.2021.107202.
Year 2021
[40] M.N. Hasan, R. An, A. Akkus, D. Akkaynak, A.R. Minerick, C.R. Kharangate, U.A. Gurkan, Dynamic pH and Thermal Analysis of Paper-Based Microchip Electrophoresis. Micromachines. 12 (2021) 1433.https://doi.org/10.3390/mi12111433
[39] Y. Qiu, D. Garg, S.M. Kim, I. Mudawar, C.R. Kharangate, Machine learning algorithms to predict flow boiling pressure drop in mini/micro-channels based on universal consolidated data, Int. J. Heat Mass Transf. 178 (2021) 121607. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.121607.
[38] H. Lee, M. Kang, K. Wook, C.R. Kharangate, S. Lee, M. Iyengar, C. Malone, M. Asheghi, K.E. Goodson, H. Lee, An artificial neural network model for predicting frictional pressure drop in micro-pin fin heat sink, Appl. Therm. Eng. 194 (2021) 117012. https://www.sciencedirect.com/science/article/pii/S1359431121004580
[37] D. Jung, H. Lee, D. Kong, E. Cho, K. Wook, C.R. Kharangate, M. Iyengar, C. Malone, M. Asheghi, K.E. Goodson, H. Lee, International Journal of Heat and Mass Transfer Thermal design and management of micro-pin fin heat sinks for energy-efficient three-dimensional stacked integrated circuits, Int. J. Heat Mass Transf. 175 (2021) 121192. https://www.sciencedirect.com/science/article/pii/S0017931021002957
[36] CN Huang,KL Lee,C Tarau,Y Kamotani,C Kharangate, Computational Fluid Dynamics Model for A Variable Conductance Thermosyphon,
https://www.sciencedirect.com/science/article/pii/S2214157X21001234
Year 2020
[35] KL Lee, C Tarau, A Lutz, WG Anderson, CN Huang, C Kharangate, Y Kamotani, Advanced Hot Reservoir Variable Conductance Heat Pipes for Planetary Landers. https://ttu-ir.tdl.org/bitstream/handle/2346/86409/ICES-2020-579.pdf?sequence=3
[34] L Zhou, D Garg, Y Qiu, SM Kim, I Mudawar, CR Kharangate, Machine learning algorithms to predict flow condensation heat transfer coefficient in mini/micro-channel utilizing universal data, International Journal of Heat and Mass Transfer 162, 120351. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120351
[33] Y Qiu, H Lee, CR Kharangate, Computational investigation of annular flow condensation in microgravity with two-phase inlet conditions, International Communications in Heat and Mass Transfer 118, 104877. https://doi.org/10.1016/j.icheatmasstransfer.2020.104877
[32] CN Huang, CR Kharangate, Consolidated model for predicting flow boiling critical heat flux in single-sided and double-sided heated rectangular channels, International Journal of Heat and Mass Transfer 160, 120132. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120132
[31] J Ki Wook, E Cho, H Lee, C Kharangate, F Zhou, M Asheghi, E Dede, K Goodson, Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-3D Manifold Coolers (EMMCs): Part 1—Experimental Study of Single-Phase Cooling Performance With R-245fa, Journal of Electronic Packaging. https://doi.org/10.1115/1.4047846
Year 2019
[30] Y Qiu, D Garg, L Zhou, CR Kharangate, SM Kim, I Mudawar, An artificial neural network model to predict mini/micro-channels saturated flow boiling heat transfer coefficient based on universal consolidated data, International Journal of Heat and Mass Transfer 149, 119211. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119211
[29] CR Kharangate, W Libeer, J Palko, H Lee, J Shi, M Asheghi, KE Goodson, Investigation of 3D manifold architecture heat sinks in air-cooled condensers, Applied Thermal Engineering 167, 114700. https://doi.org/10.1016/j.applthermaleng.2019.114700
[28] KW Jung, H Lee, CR Kharangate, F Zhou, M Asheghi, EM Dede, KE Goodson, Experimental Investigation of Single-Phase Cooling in Embedded Microchannels: 3D Manifold Heat Exchanger With R-245fa. ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. https://doi.org/10.1115/IPACK2019-6400
[27] D Kong, KW Jung, S Jung, D Jung, J Schaadt, M Iyengar, C Malone, CR Kharangate, M Asheghi, KE Goodson, H Lee, Single-phase thermal and hydraulic performance of embedded silicon micro-pin fin heat sinks using R245fa, International Journal of Heat and Mass Transfer 141, 145-155. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.073
[26] CN Huang, CR Kharangate, A new mechanistic model for predicting flow boiling critical heat flux based on hydrodynamic instabilities, International Journal of Heat and Mass Transfer 138, 1295-1309. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.103
Year 2018
[25] KW Jung, CR Kharangate, H Lee, J Palko, F Zhou, M Asheghi, EM Dede, KE Goodson, Embedded cooling with 3D manifold for vehicle power electronics application: Single-phase thermal-fluid performance, International Journal of Heat and Mass Transfer 130, 1108-1119. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.108
[24] R Alizadeh, M Schupbach, T Adamson, JC Balda, Y Zhao, S Long, KW Jung, CR Kharangate, M Asheghi, KE Goodson, Busbar design for distributed DC-link capacitor banks for traction applications, 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 4810-4815. 10.1109/ECCE.2018.8558380
[23] CR Kharangate, K Wook Jung, S Jung, D Kong, J Schaadt, M Iyengar, C Malone, H Lee, M Asheghi, KE Goodson, Experimental investigation of embedded micropin-fins for single-phase heat transfer and pressure drop, Journal of Electronic Packaging 140 (2). https://doi.org/10.1115/1.4039475
[22] N Pallo, C Kharangate, T Modeer, J Schaadt, M Asheghi, K Goodson, ..., Modular heat sink for chip-scale GaN transistors in multilevel converters, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2798-2805. DOI: 10.1109/APEC.2018.8341414
[21] J Palko, W Li, AM Jacobi, Ad A Rahman, X Wang, H Prasser, M Narcy, C Colin, JB Marcinichen, N Lamaison, RL Amalfi, John R Thome, K Goodson, M Asheghi, K Jung, C Kharangate, J Zhang, Z Sun, Encyclopedia of Two-Phase Heat Transfer and Flow IV-Modeling Methodologies, Boiling of CO2, and micro-two-phase cooling Volume 4: Special Two-phase flow and boiling topics. World Scientific. https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/17992
Year 2017
[20] KW Jung, CR Kharangate, H Lee, J Palko, F Zhou, M Asheghi, EM Dede, ..., Microchannel cooling strategies for high heat flux (1 kW/cm2) power electronic applications, 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). DOI: 10.1109/ITHERM.2017.7992457
[19] CR Kharangate, H Lee, T Liu, KW Jung, MK Iyengar, C Malone, ..., Thermal modeling of single-phase and two-phase 2D-chip cooling using microchannels, 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). DOI: 10.1109/ITHERM.2017.7992485
Year 2016
[18] CR Kharangate, I Mudawar, Review of computational studies on boiling and condensation, International Journal of Heat and Mass Transfer 108, 1164-1196. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.065
[17] LE O’Neill, I Park, CR Kharangate, VS Devahdhanush, V Ganesan, I Mudawar, Assessment of body force effects in flow condensation, part II: Criteria for negating influence of gravity, International journal of heat and mass transfer 106, 313-328. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.019
[16] I Park, LE O’Neill, CR Kharangate, I Mudawar, Assessment of body force effects in flow condensation, Part I: Experimental investigation of liquid film behavior for different orientations, International journal of heat and mass transfer 106, 295-312. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.065
[15] CR Kharangate, LE O’Neill, I Mudawar, Effects of two-phase inlet quality, mass velocity, flow orientation, and heating perimeter on flow boiling in a rectangular channel: Part 1–Two-phase flow and heat transfer results, International journal of heat and mass transfer 103, 1261-1279. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.060
[14] CR Kharangate, LE O’Neill, I Mudawar, Effects of two-phase inlet quality, mass velocity, flow orientation, and heating perimeter on flow boiling in a rectangular channel: Part 2–CHF experimental results and model, International journal of heat and mass transfer 103, 1280-1296. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.059
[13] LE O’Neill, CR Kharangate, I Mudawar, Time-averaged and transient pressure drop for flow boiling with saturated inlet conditions, International journal of heat and mass transfer 103, 133-153. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.031
[12] M Hasan, R Balasubramaniam, H Nahra, J Mackey, N Hall, ..., Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility. https://ntrs.nasa.gov/citations/20170006574
Year 2015
[11] CR Kharangate, H Lee, I Park, I Mudawar, Experimental and computational investigation of vertical upflow condensation in a circular tube, International Journal of Heat and Mass Transfer 95, 249-263. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.010
[10] CR Kharangate, Experimental, theoretical and computational modeling of flow boiling, flow condensation and evaporating falling films. https://docs.lib.purdue.edu/open_access_dissertations/783/
[9] CR Kharangate, C Konishi, I Mudawar, Consolidated methodology to predicting flow boiling critical heat flux for inclined channels in Earth gravity and for microgravity, International Journal of Heat and Mass Transfer 92, 467-482. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.018
[8] CR Kharangate, LE O’Neill, I Mudawar, MM Hasan, HK Nahra, ..., Effects of subcooling and two-phase inlet on flow boiling heat transfer and critical heat flux in a horizontal channel with one-sided and double-sided heating, International Journal of Heat and Mass Transfer 91, 1187-1205. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.059
[7] H Nahra, M Hasan, R Balasubramaniam, M Patania, N Hall, J Wagner, ..., Development and Capabilities of ISS Flow Boiling and Condensation Experiment. https://ntrs.nasa.gov/citations/20150023463
[6] I Mudawar, MM Hasan, C Kharangate, L O'Neill, C Konishi, H Nahra, ..., Flow Boiling and Condensation Experiment (FBCE) for the International Space Station. https://ntrs.nasa.gov/citations/20150023462
[5] CR Kharangate, LE O’Neill, I Mudawar, MM Hasan, HK Nahra, ..., Flow boiling and critical heat flux in horizontal channel with one-sided and double-sided heating, International Journal of Heat and Mass Transfer 90, 323-338. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.073
[4] H Lee, CR Kharangate, N Mascarenhas, I Park, I Mudawar, Experimental and computational investigation of vertical downflow condensation, International Journal of Heat and Mass Transfer 85, 865-879. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.037
Year 2014
[3] CR Kharangate, H Lee, I Mudawar, Computational modeling of turbulent evaporating falling films, International Journal of Heat and Mass Transfer 81, 52-62. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.068
Year 2012
[2] CR Kharangate, I Mudawar, MM Hasan, Photographic study and modeling of critical heat flux in horizontal flow boiling with inlet vapor void, International journal of heat and mass transfer 55 (15-16), 4154-4168. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.057
Year 2011
[1] CR Kharangate, I Mudawar, MM Hasan, Experimental and theoretical study of critical heat flux in vertical upflow with inlet vapor void, International journal of heat and mass transfer 55 (1-3), 360-374. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.028