Curriculum and Training

Women in Stem

During the first semester, you will embark on lab rotations alongside research faculty, participate in coursework with your peers, and select one of the eleven biomedical PhD programs of your choice. The BSTP program begins in July, so we encourage you to arrive as early as possible to complete a research rotation before classes begin. You'll complete at least three rotations, learn new techniques and get to know the faculty. During the lab rotations, you will attend journal clubs, research seminars, and lab meetings. 

Curriculum Details 

  • You will have an academic advisor who will help set up rotations. 
  • In the middle of the first year, you’ll choose the thesis advisors and join one of our 11 BSTP PhD programs. Your research interests are the primary factor in this choice.
  • Most students take our course in cell and molecular biology IBMS 453 & IBMS 455. It offers an introduction to modern cell and molecular biology and provides a strong foundation for research in all of the PhD programs of the BSTP. (Students with master’s degrees can place out of this course and take more advanced offerings.)
  • If you have strong quantitative skills in physics or math but limited biology exposure, you may be guided instead to cell physiology courses including PHOL 432, PHOL 456. 
First Year Coursework
Course Code Course Name
IBMS 450 Fundamental Biostatistics to Enhance Research Rigor & Reproducibility
IBMS 453 Cell Biology I
IBMS 455 Molecular Biology I
IBMS 456a Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years
IBMS 500 On Being a Professional Scientist: The Responsible Conduct of Research

This is a required graduate level course for all first year PhD students in the School of Medicine biomedical PhD programs excluding Biomedical Engineering, Population and Quantitative Health Sciences, Molecular Medicine and Clinical Translation Science. This course focuses on providing students with a basic working knowledge and understanding of best practices in biostatistics that can be applied to common biomedical research activities in numerous fields. Weekly sessions involve a combination of basic programming activities, lectures, exercises, hands-on data manipulation and presentation. Topics include experimental design and power analysis, hypothesis testing, descriptive statistics, linear regression, and others with an emphasis on when and in which experimental design a particular test is properly used. The overall goal of the course is to empower students to use these biostatistics to enhance the rigor of their experimental design and reproducibility of their primary data. The major focus is not on theory, but on a practical acquisition of a working knowledge of basic data processing analysis, interpretation, and presentation skills.

Part of the first semester curriculum for first year graduate students along with IBMS 455. This course is designed to give students an intensive introduction to prokaryotic and eukaryotic cell structure and function. Topics include membrane structure and function, mechanisms of protein localization in cells, secretion and endocytosis, the cytoskeleton, cell adhesion, cell signaling and the regulation of cell growth. Important methods in cell biology are also presented. This course is suitable for graduate students entering most areas of basic biomedical research. Undergraduate courses in biochemistry, cell and molecular biology are excellent preparation for this course. Recommended preparation: Undergraduate biochemistry or molecular biology.

Part of the first semester curriculum for first year graduate students along with IBMS 453. This course is designed to give students an intensive introduction to prokaryotic and eukaryotic molecular biology. Topics include protein structure and function, DNA and chromosome structure, DNA replication, RNA transcription and its regulation, RNA processing, and protein synthesis. Important methods in molecular biology are also presented. This course is suitable for graduate students entering most areas of basic biomedical research. Undergraduate courses in biochemistry, cell and molecular biology are excellent preparation for this course. Recommended preparation: Undergraduate biochemistry or molecular biology.

This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The IBMS 456A section will cover Nobel Prizes related to the areas of Genetics & Genome Science, Systems Biology & Bioinformatics, and RNA Biology. These include: 1) 2012 Prize, J. Gurdon and S. Yamanaka: Mechanisms of pluripotent stem cell development and reprogramming; 2) 2010 Prize, R. Edwards: Development of in ,vitro fertilization; 3) 2009 Prize, E. Blackburn, C. Greider, andJ Szostack: Mechanisms of chromosome protection by telomeres and telomerase; 4) 2009 Prize, Y. Ramakrishnan, T. Steitz, and A. Yonath: Structure/function analysis of ribosomes; 5) 2007 Prize, M. Capecchi, M. Evans, and O. Smithies: Discovery/development of transgenic and gene-deletion methods in mice; 6) 2006 Prize, A. Fire and C. Mello: Discovery/development of RNA interference-gene silencing methods; 7) 2006 Prize, R. Kornberg: Mechanisms of eukaryotic transcription; 8) 1995 Prize, E. Lewis, C. Nusslein-Volhard, and W. Wieschaus: Mechanisms of genetic control in early embryonic development.

The goal of this course is to provide graduate students with an opportunity to think through their professional ethical commitments before they are tested, on the basis of the scientific community's accumulated experience with the issues. Students will be brought up to date on the current state of professional policy and federal regulation in this area, and, through case studies, will discuss practical strategies for preventing and resolving ethical problems in their own work. The course is designed to meet the requirements for "instruction about responsible conduct in research" for BSTP and MSTP students supported through NIH/ADAMHA institutional training grant programs at Case. Attendance is required.