Kathryn Daltorio

Associate Professor
Department of Mechanical and Aerospace Engineering
Case School of Engineering

Develops robots that can traverse and operate in new environments, inspired by biological models of smart physical systems.

View the Biologically-Inspired Robotic Lab.

Research Information

Research Interests

Kathryn Daltorio’s robotics research is inspired by animal behaviors that exceed current robot capabilities. She has studied the locomotion of earthworms, decision-making in cockroaches, and climbing in geckos and insects. Her robots won autonomous lawn mowing competitions, were the first to climb vertically with gecko-inspired adhesives on simple feet, and provided platforms for testing hypotheses about animal locomotion and neurobiologically-inspired control. She and her students build a range of robotic prototypes that use fabrics, mechanical linkages, adhesives, servomotors and shape-memory alloy actuators, various sensors and cameras, soft and hard polymers, and modular 3D printed parts to explore new designs and control strategies. These provide test-beds for scalable neurobiologically-inspired control networks, abstract mathematical modeling and optimization, and other software tools. Her current goals are to:

  1. make robots even more capable of traversing through and working in diverse, unknown environments and
  2. to better understand animals as model smart physical systems.

Awards and Honors

Faculty Early Career Development Program (CAREER) Award
2021
NSF
Young Investigator Program (YIP) Award
2019
ONR

Professional Memberships

Jan. 1, 2016 - PRESENT, Member ASME
Jan. 1, 2016 - PRESENT, Member IEEE

Publications

  • Kandhari, A., Wang, Y., Chiel, H., Quinn, R. D., & Daltorio, K. A. (2020). An Analysis of Peristaltic Locomotion for Maximizing Velocity or Minimizing Cost of Transport of Earthworm-Like Robots. Soft Robotics.
  • Kandhari, A., Mehringer, A., Chiel, H., Quinn, R. D., & Daltorio, K. A. (2019). Design and actuation of a fabric-based worm-like robot. Biomimetics, 4 (1), 13.
  • Kandhari, A., Wang, Y., Chiel, H., & Daltorio, K. A. (2019). Turning in Worm-Like Robots: The Geometry of Slip Elimination Suggests Nonperiodic Waves. Soft robotics, 6 (4), 560--577.
  • Kandhari, A., Mehringer, A., Chiel, H., Quinn, R. D., & Daltorio, K. A. (2019). Design and Actuation of a Fabric-Based Worm-Like Robot. Biomimetics, 4 (1), 13.
  • Kandhari, A., Huang, Y., Daltorio, K. A., Chiel, H. A., & Quinn, R. D. (2018). Body stiffnesses in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion. Bioinspiration & Biomimetics, 13 , 026003.
  • Daltorio, K. A., & Fox, J. A. (2018). Haltere removal alters responses to gravity in standing flies. Journal of Experimental Biology, 221 (14), jeb181719.
  • Horchler, A., Daltorio, K. A., Chiel, H. A., & Quinn, R. D. (2015). Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control. Bioinspiration \& biomimetics, 10 (2), 026001.
  • Daltorio, K. A., Mirletz, B. A., Sterenstein, A. A., Cheng, J. A., Watson, A. A., Kesavan, M. A., Bender, J. A., Martin, J. A., Ritzmann, R. A., & Quinn, R. D. (2015). How cockroaches exploit tactile boundaries to find new shelters. Bioinspiration \& biomimetics, 10 (6), 065002.
  • Horchler, A., Kandhari, A., Daltorio, K. A., Moses, K. A., Ryan, J. A., Stultz, K. A., Kanu, E. A., Andersen, K. A., Kershaw, J. A., Bachmann, R. A., & Others, R. A. (2015). Peristaltic locomotion of a modular mesh-based worm robot: precision, compliance, and friction. Soft Robotics, 2 (4), 135--145.
  • Daltorio, K. A., Boxerbaum, A. A., Horchler, A. A., Shaw, K. A., Chiel, H. A., & Quinn, R. D. (2013). Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots. Bioinspiration \& biomimetics, 8 (3), 035003.
  • Daltorio, K. A., Tietz, B. A., Bender, J. A., Webster, V. A., Szczecinski, N. A., Branicky, M. S., Ritzmann, R. S., & Quinn, R. D. (2013). A model of exploration and goal-searching in the cockroach, Blaberus discoidalis. Adaptive Behavior, 21 (5), 404--420.
  • Ritzmann, R., Harley, C., Daltorio, K. A., Tietz, B. A., Pollack, A. A., Bender, J. A., Guo, P. A., Horomanski, A. A., Kathman, N. A., Nieuwoudt, C. A., & Others, C. A. (2012). Deciding which way to go: how do insects alter movements to negotiate barriers?. Frontiers in neuroscience, 6 , 97.
  • Bender, J., Simpson, E., Tietz, B., Daltorio, K. A., Quinn, R. D., & Ritzmann, R. D. (2011). Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis. Journal of Experimental Biology, 214 (12), 2057--2064.
  • Daltorio, K. A., Wei, T. A., Horchler, A. A., Southard, L. A., Wile, G. A., Quinn, R. D., Gorb, S. D., & Ritzmann, R. D. (2009). Mini-whegs TM climbs steep surfaces using insect-inspired attachment mechanisms. The International Journal of Robotics Research, 28 (2), 285--302.
  • Gorb, S., Sinha, M., Peressadko, A., Daltorio, K. A., & Quinn, R. D. (2007). Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinspiration \& biomimetics, 2 (4), S117.
  • Daltorio, K. A., Gorb, S. A., Peressadko, A. A., Horchler, A. A., Wei, T. A., Ritzmann, R. A., & Quinn, R. D. (2007). Microstructured polymer adhesive feet for climbing robots. MRS bulletin, 32 (6), 504--508.

View all publications on Google Scholar.

Education

PhD
Mechanical & Aerospace Engineering
Case Western Reserve University
2013
MS
Mechanical & Aerospace Engineering
Case Western Reserve University
2007
BS
Mechanical & Aerospace Engineering
Case Western Reserve University
2005