Associate Professor
Department of Molecular Medicine
School of Medicine
Assistant Professor
Department of Genetics and Genome Sciences
School of Medicine
Member
Cancer Genomics and Epigenomics Program
Case Comprehensive Cancer Center
I research the mechanisms of epigenetic gene silencing and understanding the functional relevance of DNA methylation in diseases.
Research Information
Research Projects
Epigenetic gene regulation is important for both normal development and disease states. In cancers, aberrant promoter CpG island hypermethylation correlates highly with gene inactivation and can account for lack of gene expression where mutations do not exist. We are interested in dissecting the mechanisms of epigenetic gene silencing and understanding the functional relevance of DNA methylation in diseases.
We have 3 major focus areas in the lab:
- Pioneering technical and computational tools for genome-wide DNA methylation assay. We developed MBD -isolated Genome Sequencing (MiGS), which is a cost-effective technique to survey whole genome DNA methylation patterns. We also develop computational tools that facilitate sequencing data analyses and interpretation: http://jeffbhasin.github.io/index.html.
- Defining novel and clinically relevant functions for DNA methylation. Utilizing MiGS and other genomic tools, we have defined abnormal DNA methylation patterns throughout the genome for colon and prostate cancers. Knowing where these disruptions occur enables us to generate and test hypotheses regarding the function of these changes. We investigate both gene promoters and non-promoter regions with the goal to define context-specific functions of DNA methylation.
- Delineating the mechanics of DNA methylation in cancer. Wide-spread disruptions to DNA methylation patterns are well-recognized to contribute to tumorigenesis and progression, but the regulatory mechanisms that establish, maintain, and modify these patterns are still being worked out. We are exploring the roles for epigenetic enzymes, small non-coding RNAs, and DICER 1 in the initiation and maintenance of abnormal DNA methylation patterns in cancer.
External Appointments
Associate Staff, Genomic Medicine Institute
Lerner Research Institute, Cleveland Clinic