A primary focus of the Taylor lab is to understand the molecular architecture and functional interactions that regulate human telomeres and telomerase. We are particularly interested in understanding how the telomere is assembled and how it interacts with telomerase to regulate its function. Another primary area of research in my lab addresses how telomere end-binding proteins interact exclusively with telomere DNA to prevent illicit induction of the DNA damage response. An overarching goal is to use the detailed, mechanistic insight to design small molecules that can be used to manipulate processes related to telomeres and telomerase in cancer cells. An NIH Innovator Award has provided the primary funding for achieving this latter objective.
An equally important emphasis within my research group lies in the structural determination of nucleoprotein complexes. My lab has used cryo-electron microscopy to examine the structural architecture of cellular assemblies that are important for DNA packaging, mRNA 3’ processing, ribosome-mediated protein translation, membrane transport, and virus structure, assembly, and maturation. The structural detail helps to understand the molecular mechanisms involved in important cellular pathways and provides information for how they become abrogated in disease states such as cancer. We are using this information to repurpose and develop small molecule compounds that are intended to exploit or manipulate these properties as potential therapies. Ongoing projects are aimed to understand protein phosphatase 2A biogenesis, structure, and selective substrate binding; cap-independent mechanisms of protein synthesis; and assembly and maturation of the anthrax toxin membrane-spanning pore.
I investigate telomere maintenance, phosphatase signaling, macromolecular structure and function, drug development, and cancer biology.
Derek J. Taylor's Biography